Evolution Analysis of Free Fatty Acids and Aroma-Active Compounds during Tallow Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in FFAs during Oxidation
2.2. Sensory Analysis
2.3. Analysis of Aroma-Active Compounds of Oxidized Tallow
2.3.1. GC-MS Analysis
2.3.2. GC-O Analysis
2.4. OAV Analysis
2.5. Evolution Analysis of Aroma-Active Compound in Oxidized Tallow
2.6. Relationship of FFA and Aroma-Active Compound Data with Sensory Attribute Data
3. Materials and Methods
3.1. Materials
3.2. Samples Preparation
3.3. FFAs Analysis
3.4. Volatile Compounds Analysis
3.4.1. Isolation of the Volatiles by SAFE
3.4.2. GC-MS Analysis
3.4.3. GC-O Analysis
3.5. Identification and Quantification of the Volatile Compounds
3.6. Determination of the Odor Activity Values (OAVs)
3.7. Sensory Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tanimato, S.; Kitabayashi, K.; Fukusima1, C.; Sugiyama1, S.; Hashimoto, T. Effect of storage period before reheating on the volatile compound composition and lipid oxidation of steamed meat of yellowtail Seriola quinqueradiata. Food Sci. Technol. 2015, 81, 1145–1155. [Google Scholar] [CrossRef]
- Resconi, V.C.; Escudero, A.; Campo, M.M. The Development of Aromas in Ruminant Meat. Molecules 2013, 18, 6748–6781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; Rubin, L.J.; D’Souza, L.A.; Teranishi, R.; Buttery, R.G. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluation. CRC Crit. Rev. Food Sci. Nutr. 1986, 24, 141–243. [Google Scholar] [CrossRef] [PubMed]
- Mottram, D.S. The Flavour of Meat and Meat Products. In Some Aspects of the Chemistry of Meat Flavour; Howe, P.E., Babella, N.G., Eds.; United States Department of Agriculture, Bureau of Animal Industry: Washington, DC, USA, 1994; pp. 210–230. [Google Scholar]
- Liu, H.; Wang, Z.; Zhang, D.; Shen, Q.; Hui, T.; Ma, J. Generation of Key Aroma Compounds in Beijing Roasted Duck Induced via Maillard Reaction and Lipid Pyrolysis Reaction. Food Res. Int. 2020, 136, 109328. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, Y.; Pan, D.; Wang, Y.; Cao, J. Effects of high pressure treatment on lipolysis-oxidation and volatiles of marinated pork meat in soy sauce. Meat Sci. 2018, 145, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, X.; Wang, Y.; Pan, D.; Sun, Y.; Cao, J. Study on the volatile compounds generated from lipid oxidation of Chinese bacon (unsmoked) during processing. Eur. J. Lipid Sci. Technol. 2017, 119, 119. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Umano, K.; Shibamoto, T. Analysis of headspace volatiles from overheated beef fat. J. Agric. Food Chem. 1987, 35, 14–18. [Google Scholar] [CrossRef]
- Andrés, A.I.; Cava, R.; Ventanas, J.; Muriel, E.; Ruiz-Carrascal, J. Lipid oxidative changes throughout the ripening of dry-cured Iberian hams with different salt contents and processing conditions. Food Chem. 2004, 84, 375–381. [Google Scholar] [CrossRef]
- Varlet, V.; Prost, C.; Serot, T. Volatile aldehydes in smoked fish: Analysis methods, occurence and mechanisms of formation. Food Chem. 2007, 105, 1536–1556. [Google Scholar] [CrossRef]
- Song, S.; Tang, Q.; Hayat, K.; Karangwa, E.; Zhang, X.; Xiao, Z. Effect of enzymatic hydrolysis with subsequent mild thermal oxidation of tallow on precursor formation and sensory profiles of beef flavours assessed by partial least squares regression. Meat Sci. 2014, 96, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- León-Camacho, M.; Narváez-Rivas, M.; Gallardo, E. Analysis of volatile compounds from Iberian hams: A review. Grasas Y Aceites 2012, 63, 432–454. [Google Scholar] [CrossRef] [Green Version]
- Assaf, S.; Hadar, Y.; Dosoretz, C.G. 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzym. Microb. Technol. 1997, 21, 484–490. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; Hayat, K.; Liu, P.; Jia, C.; Xia, S.; Xiao, Z.; Tian, H.; Niu, Y. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chem. 2011, 124, 203–209. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; Xiao, Z.; Niu, Y.; Hayat, K.; Eric, K. Contribution of oxidized tallow to aroma characteristics of beeflike process flavour assessed by gas chromatography–mass spectrometry and partial least squares regression. J. Chromatogr. A 2012, 1254, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Ladikos, D.; Lougovois, V. Lipid oxidation in muscle foods: A review. Food Chem. 1990, 35, 295–314. [Google Scholar] [CrossRef]
- He, Y.; Zhou, M.; Xia, C.; Xia, Q.; He, J.; Cao, J.; Pan, D.; Sun, Y. Volatile flavor changes responding to heat stress-induced lipid oxidation in duck meat. Anim. Sci. J. 2020, 91, e13461. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, X.; Song, S.; Tan, C.; Jia, C.; Xia, S. Identification of characteristic flavour precursors from enzymatic hydrolysis-mild thermal oxidation tallow by descriptive sensory analysis and gas chromatography–olfactometry and partial least squares regression. J. Chromatogr. B 2013, 913–914, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, X.; Ren, Y.; Fan, E.; Chang, H.; Wu, H. Effects of high pressure treatment and temperature on lipid oxidation and fatty acid composition of yak (Poephagus grunniens) body fat. Meat Sci. 2013, 94, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Palacios, T.; Estévez, M. Chapter 13—Analysis of lipids and lipid oxidation products. Meat Qual. Anal. 2020, 217–239. [Google Scholar]
- Shahidi, F.; Wang, J.; Wanasundara, U.N. 19 Methods for measuring oxidative rancidity in fats and oils. In Food Lipids: Chemistry, Nutrition, and Biotechnology; Farmer, E., Sutton, D., Eds.; Marcel Dekker, Inc.: Washington, DC, USA, 2017; Volume 19, pp. 519–542. [Google Scholar]
- Sañudo, C.; Enser, M.; Campo, M.M.; Nute, G.; María, G.; Sierra, I.; Wood, J. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci. 2000, 54, 339–346. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Odour Thresholds. In Compilation of Odour Threshold Values in Air, Water and Other Media, 2nd ed.; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2011. [Google Scholar]
- Seuvre, A.M.; Díaz, M.A.E.; Voilley, A. Influence of the Food Matrix Structure on the Retention of Aroma Compounds. J. Agric. Food Chem. 2000, 48, 4296–4300. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, M.; Xie, J.; Zhao, M.; Hou, L.; Liang, J.; Wang, S.; Cheng, J. Volatile flavor constituents in the pork broth of black-pig. Food Chem. 2017, 226, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Elmore, J.S.; Mottram, D.S. The role of lipid in the flavour of cooked beef. In Flavour Science: Recent Advances and Trends; Bredie, W.L.P., Petersen, M.A., Eds.; Elsevier Science: Oxford, UK, 2006; pp. 375–378. [Google Scholar]
- Wang, Z.; Xiao, Q.; Zhuang, J.; Feng, T.; Ho, C.-T.; Song, S. Characterization of Aroma-Active Compounds in Four Yeast Extracts Using Instrumental and Sensory Techniques. J. Agric. Food Chem. 2020, 68, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Monika, C.; Peter, S. Characterization of the key aroma compounds in beef and pork vegetable gravies á la chef by application of the aroma extract dilution analysis. J. Agric. Food Chem. 2009, 57, 9114–9122. [Google Scholar]
- Cros, S.; Lignot, B.; Bourseau, P.; Jaouen, P.; Prost, C. Reverse osmosis for the production of aromatic concentrates from mussel cooking juices: A technical assessment. J. Food Eng. 2005, 69, 425–436. [Google Scholar] [CrossRef]
- Olivares, A.; Navarro, J.L.; Flores, M. Effect of fat content on aroma generation during processing of dry fermented sausages. Meat Sci. 2011, 87, 264–273. [Google Scholar] [CrossRef] [Green Version]
- García-González, D.L.; Tena, N.; Ruiz, R.A.; Morales, M.T. Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Sci. 2008, 80, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, K.; Wu, N.; Wang, X.; Wu, X.; Wang, S.; Long, X.; Wei, X. Effects of 3 Feeding Modes on the Volatile and Nonvolatile Compounds in the Edible Tissues of Female Chinese Mitten Crab (Eriocheir sinensis). J. Food Sci. 2016, 81, S968–S981. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yang, J.; Dong, H.; Liu, Q.; Li, X.; Zeng, X.; Bai, W. Key aroma compounds of Chinese dry-cured Spanish mackerel (Scomberomorus niphonius) and their potential metabolic mechanisms. Food Chem. 2021, 342, 128381. [Google Scholar] [CrossRef]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Influence of thermal treatment on formation of volatile compounds, cooking loss and lipid oxidation in foal meat. LWT 2014, 58, 439–445. [Google Scholar] [CrossRef]
- Um, K.W.; Bailey, M.E.; Clarke, A.D.; Chao, R.R. Concentration and identification of volatile compounds from heated beef fat using supercritical carbon dioxide extraction-gas liquid chromatography/mass spectrometry. J. Agric. Food Chem. 1992, 40, 1641–1646. [Google Scholar] [CrossRef]
- Specht, K.; Baltes, W. Identification of Volatile Flavor Compounds with High Aroma Values from Shallow-Fried Beef. J. Agric. Food Chem. 1994, 42, 2246–2253. [Google Scholar] [CrossRef]
- Xu, X.; Xu, R.; Jia, Q.; Feng, T.; Huang, Q.; Ho, C.-T.; Song, S. Identification of dihydro-β-ionone as a key aroma compound in addition to C8 ketones and alcohols in Volvariella volvacea mushroom. Food Chem. 2019, 293, 333–339. [Google Scholar] [CrossRef] [PubMed]
No | FFA | Quality(mg/g) y | |||
---|---|---|---|---|---|
T0 x | T1 | T3 | T5 | ||
A1 | C10:0 decanoic acid | 0.12 ± 0.013 a | 0.10 ± 0.03 b | 0.05 ± 0.023 c | 0.07 ± 0.02 d |
A2 | C11:0 undecaoic acid | 0.025 ± 0.004 a | 0.02 ± 0.007 b | 0.007 ± 0.002 c | 0.005 ± 0.001 d |
A3 | C12:0 lauric acid | 0.09 ± 0.012 a | 0.07 ± 0.01 b | 0.04 ± 0.015 d | 0.05 ± 0.015 c |
A4 | C14:0 myristic acid | 1.21 ± 0.027 a | 0.99 ± 0.017 b | 0.78 ± 0.0015 c | 0.97 ± 0.018 b |
A5 | C15:0 pentadecanoic acid | 0.23 ± 0.017 a | 0.22 ± 0.02 a | 0.17 ± 0.012 b | 0.12 ± 0.02 c |
A6 | C16:0 palmitic acid | 10.29 ± 0.8421 a | 8.52 ± 0.87 b | 6.97 ± 0.89 c | 4.40 ± 0.12 d |
A7 | C16:1 n-7 palmitoleic acid | 0.62 ± 0.017 a | 0.03 ± 0.012 c | 0.04 ± 0.01 c | 0.21 ± 0.05 b |
A8 | C17:0 heptadecanoic acid | 1.06 ± 0.08 a | 0.87 ± 0.079 b | 0.67 ± 0.054 c | 0.16 ± 0.05 d |
A9 | C18:0 stearic acid | 8.68 ± 0.579 a | 6.80 ± 0.55 b | 5.50 ± 0.47 c | 1.85 ± 0.051 d |
A10 | C18:1 n-9 oleic acid | 6.76 ± 0.48 a | 5.55 ± 0.64 b | 3.57 ± 0.25 c | 1.46 ± 0.25 d |
A11 | C18:2 n-6 linoleic acid | 0.36 ± 0.025 a | 0.25 ± 0.005 b | 0.13 ± 0.07 c | 0.07 ± 0.013 d |
A12 | C18:3 n-3 linolenic acid | 0.03 ± 0.002 a | 0.03 ± 0.011 a | 0.01 ± 0.008 b | - |
A13 | Trans palmitoleic acid | 0.11 ± 0.003 c | 0.58 ± 0.012 a | 0.35 ± 0.09 b | - |
A14 | Elaidic acid | 0.14 ± 0.002 c | 0.23 ± 0.017 b | 0.35 ± 0.05 a | 0.0075 ± 0.002 d |
A15 | Inoleic acid | - | 0.05 ± 0.005 b | 0.09 ± 0.01 a | - |
A16 | Other fatty acids | 0.32 ± 0.09 b | 0.09 ± 0.02 c | 0.13 ± 0.04 c | 0.41 ± 0.1 a |
Total | 30.20 ± 2.3021 | 24.41 ± 2.305 | 18.90 ± 1.9955 | 9.76 ± 0.71 |
Sensory Attribute | F-Values | Adjusted F-Value | |||||
---|---|---|---|---|---|---|---|
Samples(S) (df = 3) | Panelist(P) (df = 10) | Replication(R) (df = 1) | S × P (df = 30) | P × R (df = 10) | S × R (df = 3) | Sample a (S) (df = 30) | |
milky | 796.10 *** | 1.55 | 0.44 | 1.95 * | 0.93 | 0.67 | 1159.201 *** |
cheesy | 1969.81 *** | 2.19 | 0.25 | 1.52 | 0.97 | 1.35 | 2828.100 *** |
sweet | 228.73 *** | 0.13 | 1.00 | 4.81 *** | 0.03 | 1.00 | 651.280 *** |
Beef tallow | 187.14 *** | 2.33 | 4.70 | 1.27 | 1.52 | 0.18 | 171.406 *** |
fatty | 137.85 *** | 1.97 | 2.22 | 2.20 ** | 1.16 | 2.54 * | 294.401 *** |
green | 589.50 *** | 0.48 | 1.00 | 11.99 *** | 0.16 | 0.21 | 1867.407 *** |
oxidized | 1170.95 *** | 0.981 | 0.18 | 16.0 *** | 1.11 | 1.29 | 4012.388 *** |
Smell of mutton | 1974.75 *** | 2.10 | 0.26 | 4.65 *** | 0.49 | 1.25 | 3955.130 *** |
No | Compounds | FD Factors | |||
---|---|---|---|---|---|
T0 | T1 | T3 | T5 | ||
1 | Hexanal | 8 | 32 | 128 | 128 |
2 | 1-Penten-3-ol | 0 | 0 | 2 | 2 |
3 | Heptanal | 8 | 4 | 8 | 4 |
4 | D-Limonene | 0 | 16 | 1 | 1 |
5 | (E)-2-Hexenal | 2 | 2 | 8 | 8 |
6 | 2-pentylfuran | 2 | 2 | 8 | 4 |
7 | 1-Pentanol | 0 | 0 | 32 | 4 |
8 | 2-Octanone | 0 | 0 | 32 | 1 |
9 | Octanal | 2 | 64 | 256 | 256 |
10 | (E)-2-Heptenal | 8 | 64 | 128 | 256 |
11 | 2-Nonanone | 0 | 0 | 32 | 4 |
12 | Nonanal | 8 | 4 | 32 | 16 |
13 | (E)-2-Octenal | 0 | 0 | 8 | 32 |
14 | 1-Octen-3-ol | 0 | 0 | 64 | 64 |
15 | 1-Heptanol | 0 | 0 | 4 | 256 |
16 | (E,E)-2,4-Heptadienal | 1 | 256 | 1024 | 512 |
17 | Decanal | 0 | 0 | 2 | 0 |
18 | Benzaldehyde | 64 | 0 | 0 | 0 |
19 | Propanoic acid | 0 | 0 | 64 | 64 |
20 | (E)-2-Nonenal | 16 | 512 | 512 | 512 |
21 | 1-Octanol | 0 | 0 | 64 | 1 |
22 | γ-Valerolactone | 0 | 0 | 0 | 4 |
23 | Butanoic acid | 0 | 0 | 64 | 16 |
24 | γ-Hexalactone | 0 | 0 | 2 | 4 |
25 | Pentanoic acid | 0 | 0 | 8 | 4 |
26 | γ-Heptalactone | 0 | 0 | 2 | 0 |
27 | (E,E)-2,4-Decadienal | 4 | 32 | 512 | 512 |
28 | Hexanoic acid | 4 | 32 | 512 | 256 |
29 | γ-Octalactone | 0 | 0 | 0 | 4 |
30 | Heptanoic acid | 0 | 4 | 8 | 4 |
31 | Octanoic acid | 8 | 16 | 16 | 16 |
32 | Nonanoic acid | 0 | 0 | 1 | 0 |
33 | n-Decanoic acid | 16 | 0 | 1 | 1 |
34 | Dodecanoic acid | 2 | 32 | 1 | 4 |
35 | Tetradecanoic acid | 16 | 14 | 64 | 128 |
No | Compounds | RI | Odor Discreption | Concentration (mg/kg) c | Threshold (mg/kg) d | OAV | Identification e | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HP-INNOWax a | DB-5 b | T0 | T1 | T3 | T5 | T0 | T1 | T3 | T5 | |||||
1 | Hexanal | 1085 | - | green, fatty | 30.9 ± 1.13 c | 9.0 ± 0.87 d | 111.0 ± 1.5921 b | 116.2 ± 0.9852 a | 0.005 a | 6174 | 1791 | 22,196 | 23,232 | MS,RI,O |
2 | 1-Penten-3-ol | 1153 | - | green, pungent | - | - | 22.8 ± 0.89 b | 26.2 ± 0.245 a | 0.3581 a | - | - | 64 | 73 | MS,RI,O |
3 | Heptanal | 1182 | 902 | fatty, green, herbal | 98.6 ± 2.6519 c | 49.0 ± 1.2 d | 585.0 ± 10.2378 b | 613.9 ± 8.5513 a | 0.0028 a | 35,200 | 17,493 | 208,918 | 219,257 | MS,RI,O |
4 | D-Limonene | 1192 | 1032 | citrus, sweet, peel | - | 5.7 ± 0.04 b | 4.6 ± 0.0311 c | 8.9 ± 0.0654 a | 0.034 a | - | 167 | 135 | 262 | MS,RI,O |
5 | (E)-2-Hexenal | 1211 | 855 | green, fruity | 9.0 ± 0.038 c | 4.5 ± 0.08 d | 90.7 ± 1.2306 b | 105.9 ± 1.003 a | 0.0028 a | 102 | 51 | 1024 | 1196 | MS,RI,O |
6 | 2-pentylfuran | 1224 | 990 | fruity, green | 15.8 ± 0.69 c | 4.4 ± 0.08 d | 95.3 ± 1.5546 a | 61.4 ± 0.7845 b | 0.0058 a | 2725 | 759 | 16,423 | 10,590 | MS,RI,O |
7 | 1-Pentanol | 1236 | - | fermented, pungent | - | - | 145.4 ± 4.23 b | 152.7 ± 0.8894 a | 0.1502 a | - | - | 968 | 1016 | MS,RI,O |
8 | 2-Octanone | 1273 | - | earthy, musty, cheesy | 2.9 ± 0.035 c | - | 27.3 ± 0.8974 a | 21.2 ± 0.1457 b | 0.0502 a | 57 | - | 543 | 422 | MS,RI,O |
9 | Octanal | 1278 | 1002 | green | 52.3 ± 0.68 c | 12.2 ± 0.17 d | 549.6 ± 8.841 a | 410.7 ± 4.4437 b | 0.000587 a | 89,064 | 20,853 | 936,344 | 699,633 | MS,RI,O |
10 | (E)-2-Heptenal | 1310 | 958 | green, fatty, fruity | 17.5 ± 0.3458 c | - | 401.3 ± 7.563 b | 420.8 ± 5.1126 a | 0.051 a | 344 | - | 7868 | 8252 | MS,RI,O |
11 | 2-Nonanone | 1371 | 1990 | Fruity, sweet, waxy | - | - | 14.9 ± 0.2113 a | 6.4 ± 0.031 b | 0.041 a | - | - | 364 | 157 | MS,RI,O |
12 | Nonanal | 1377 | 1104 | fatty, citrus, green | 7.6 ± 0.623 c | - | 214.5 ± 2.31 a | 181.7 ± 1.2897 b | 0.0011 a | 6887 | - | 195,013 | 165,225 | MS,RI,O |
13 | (E)-2-Octenal | 1412 | 1059 | fatty, green, herbal | - | - | 321.9 ± 4.332 a | 202.5 ± 1.9613 b | 0.003 a | - | - | 107,304 | 67,503 | MS,RI,O |
14 | 1-Octen-3-ol | 1423 | - | earthy, mushroom, green | - | - | 89.8 ± 1.5843 a | 67.4 ± 0.5633 b | 0.0015 a | - | - | 59,856 | 44,928 | MS,RI,O |
15 | 1-Heptanol | 1427 | 971 | green, musty, pungent | - | - | 216.7 ± 5.6617 a | 200.2 ± 1.4785 b | 0.0054 a | - | - | 40,124 | 37,073 | MS,RI,O |
16 | (E,E)-2,4-Heptadienal | 1447 | 1011 | fatty, green, oily | - | - | 111.0 ± 1.589 a | 84.3 ± 0.8521 b | 0.057 b | - | - | 1803 | 1479 | MS,RI,O |
17 | Decanal | 1483 | 1205 | sweet, aldehydic | - | - | 53.8 ± 1.22 a | - | 0.003 a | - | - | 17,936 | - | MS,RI,O |
18 | Benzaldehyde | 1507 | 963 | fruity, almond, sweet | 0.7 ± 0.081 a | - | - | - | 0.75089 a | 1 | - | - | - | MS,RI,O |
19 | Propanoic acid | 1514 | - | acidic, pungent, dairy | - | - | 35.1 ± 0.8524 a | 26.9 ± 0.9971 b | 2.19 a | - | - | 16 | 12 | MS,RI,O |
20 | (E)-2-Nonenal | 1526 | 1158 | fatty, green, cucumber | 3.9 ± 0.1124 d | 10.8 ± 0.51 c | 334.5 ± 3.872 a | 212.4 ± 2.3001 b | 0.00019 a | 20,749 | 56,751 | 1,760,642 | 118,026 | MS,RI,O |
21 | 1-Octanol | 1533 | 1070 | waxy, green, citrus | - | - | 243.1 ± 7.1102 a | 140.5 ± 1.7736 b | 0.1258 a | - | - | 1932 | 1117 | MS,RI,O |
22 | γ-Valerolactone | 1600 | 951 | herbal, sweet, woody | - | - | 45.6 ± 0.9857 a | 10.8 ± 0.054 b | - | - | - | - | - | MS,RI,O |
23 | Butanoic acid | 1606 | 791 | cheesy, dairy, buttery | - | - | 19.4 ± 0.052 a | 12.1 ± 0.03 b | 2.4 a | - | - | 8 | 5 | MS,RI,O |
24 | γ-Hexalactone | 1693 | 1051 | tonka, sweet, creamy | - | - | 53.7 ± 0.8864 a | 27.1 ± 0.4613 b | 0.26 a | - | - | 207 | 104 | MS,RI,O |
25 | Pentanoic acid | 1716 | 879 | cheesy, acidic, | - | - | 35.1 ± 0.7985 a | 33.4 ± 0.7763 b | 11 a | - | - | 7 | 3 | MS,RI,O |
26 | γ-Heptalactone | 1795 | 1148 | coconut, sweet, coumarinic | - | - | 28.0 ± 0.4562 a | 12.4 ± 0.1523 b | 0.4 a | - | - | 70 | 31 | MS,RI,O |
27 | (E,E)-2,4-Decadienal | 1802 | 1320 | fatty | 11.4 ± 0.8887 c | - | 130.2 ± 3.2543 a | 47.0 ± 0.7134 b | 0.000027 a | 421,063 | - | 4,821,417 | 1,740,885 | MS,RI,O |
28 | Hexanoic acid | 1824 | 975 | fatty, sour, sweet, cheesy | 40.5 ± 2.17 c | 38.8 ± 0.69 c | 153.2 ± 2.3214 a | 60.6 ± 0.5684 b | 0.89 a | 46 | 44 | 152 | 68 | MS,RI,O |
29 | γ-Octalactone | 1910 | 1253 | coconut, sweet | - | - | 17.6 ± 0.3254 a | 4.5 ± 0.081 b | 0.0156 a | - | - | 1131 | 289 | MS,RI,O |
30 | Heptanoic acid | 1930 | 1067 | cheesy, sweet | 8.8 ± 0.62 c | 8.6 ± 0.04 c | 20.8 ± 0.6231 a | 13.9 ± 0.0125 b | 0.64 a | 14 | 13 | 33 | 22 | MS,RI,O |
31 | Octanoic acid | 2033 | 1160 | fatty, cheesy | 68.8 ± 3.01 a | 49.8 ± 1.11 c | 64.0 ± 0.8787 b | 49.0 ± 0.21 c | 3 a | 23 | 17 | 21 | 16 | MS,RI,O |
32 | Nonanoic acid | 2136 | 1257 | waxy, cheesy | 8.9 ± 0.58 c | - | 27.2 ± 0.6613 a | 15.0 ± 0.02 b | 4.6 a | 2 | - | 6 | 3 | MS,RI,O |
33 | n-Decanoic acid | 2243 | 1357 | fatty, citrus | 51.4 ± 1.64 a | 34.5 ± 0.95 c | 37.3 ± 0.7461 b | 34.9 ± 0.7741 c | 10 a | 5 | 3 | 4 | 3 | MS,RI,O |
34 | Dodecanoic acid | 2461 | 1555 | fatty, coconut | 17.5 ± 0.77 b | 15.0 ± 0.24 c | 18.9 ± 0.058 a | 15.0 ± 0.085 c | 0.1 b | 175 | 150 | 189 | 150 | MS,RI,O |
35 | Tetradecanoic acid | 2679 | - | waxy, fatty, citurs | 30.7 ± 1.09 a | 23.2 ± 0.77 c | 23.7 ± 0.7755 c | 26.8 ± 1.008 b | 10 a | 96 | 72 | 74 | 84 | MS,RI,O |
Aroma Description | Reference Sample |
---|---|
Milky | Fresh milk |
Cheesy | cheesy |
Sweet | sweets |
Beef tallow | tallow |
Fatty | Animal fat |
Green | Freshly cut grass |
Oxidized | Fresh milk (ultraviolet light 12 h) |
Smell of mutton | Beef |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Zheng, F.; Tian, X.; Feng, T.; Yao, L.; Sun, M.; Shi, L. Evolution Analysis of Free Fatty Acids and Aroma-Active Compounds during Tallow Oxidation. Molecules 2022, 27, 352. https://doi.org/10.3390/molecules27020352
Song S, Zheng F, Tian X, Feng T, Yao L, Sun M, Shi L. Evolution Analysis of Free Fatty Acids and Aroma-Active Compounds during Tallow Oxidation. Molecules. 2022; 27(2):352. https://doi.org/10.3390/molecules27020352
Chicago/Turabian StyleSong, Shiqing, Feiting Zheng, Xiaoyan Tian, Tao Feng, Lingyun Yao, Min Sun, and Lei Shi. 2022. "Evolution Analysis of Free Fatty Acids and Aroma-Active Compounds during Tallow Oxidation" Molecules 27, no. 2: 352. https://doi.org/10.3390/molecules27020352
APA StyleSong, S., Zheng, F., Tian, X., Feng, T., Yao, L., Sun, M., & Shi, L. (2022). Evolution Analysis of Free Fatty Acids and Aroma-Active Compounds during Tallow Oxidation. Molecules, 27(2), 352. https://doi.org/10.3390/molecules27020352