Supercritical CO2 Extraction of Narcissus poeticus L. Flowers for the Isolation of Volatile Fragrance Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extract Yields
2.2. Composition of N. poeticus SFE-CO2 Extracts
2.2.1. Aromatics
2.2.2. Monoterpene Hydrocarbons, Oxygenated Monoterpenes and Sesquiterpenes
2.2.3. Alcohols, Phenols, Lactones, Aldehydes and Other Volatiles
2.2.4. Triterpenoids, Tocopherols and Others
2.2.5. Aliphatic Hydrocarbons (Waxes)
3. Materials and Methods
3.1. Plant Material and Chemicals
3.2. Supercritical Carbon Dioxide Extraction (SFE-CO2)
3.3. Gas Chromatography–Time-of-Flight Mass Spectrometry (GC-TOF/MS)
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linnaeus, C. Narcissus. In Species Plantarum; Laurentius Salvius: Stockholm, Sweden, 1753; Tomus 1; pp. 289–290. [Google Scholar]
- Ferri, D.; Ubaldi, C.; Marcozzi, G.; Fasciani, P.; Bacchetta, L.; Pace, L. Chemical Characterization of Narcissus poeticus from Sirente—Velino (Apennines-Italy): Galantamine Accumulation and Distribution of Allergenic Compounds in the Flower. Nat. Prod. Commun. 2017, 12, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Harris, R. Narcissus poeticus: The Heart Note. Perfum. Flavor. 2005, 30, 46–53. [Google Scholar]
- Ferdausi, A.; Chang, X.; Hall, A.; Jones, M. Galanthamine production in tissue culture and metabolomic study on Amaryllidaceae alkaloids in Narcissus pseudonarcissus cv. Carlton. Ind. Crop. Prod. 2020, 144, 112058. [Google Scholar] [CrossRef]
- Kornienko, A.; Evidente, A. Chemistry, Biology, and Medicinal Potential of Narciclasine and its Congeners. Chem. Rev. 2008, 108, 1982–2014. [Google Scholar] [CrossRef] [Green Version]
- Cahlíková, L.; Benešová, N.; Macáková, K.; Kučera, R.; Hrstka, V.; Klimeš, J.; Jahodář, L.; Opletal, L. Alkaloids from Some Amaryllidaceae Species and Their Cholinesterase Activity. Nat. Prod. Commun. 2012, 7, 571–574. [Google Scholar] [CrossRef] [Green Version]
- Cahlíková, L.; Locarek, M.; Benešová, N.; Kučera, R.; Chlebek, J.; Novak, Z.; Opletal, L. Isolation and Cholinesterase Inhibitory Activity of Narcissus Extracts and Amaryllidaceae Alkaloid. Nat. Prod. Commun. 2013, 8, 81–785. [Google Scholar] [CrossRef] [Green Version]
- Šafratová, M.; Hošťálková, A.; Hulcová, D.; Breiterová, K.; Hrabcová, V.; Machado, M.; Fontinha, D.; Prudêncio, M.; Kuneš, J.; Chlebek, J.; et al. Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Arch. Pharmacal Res. 2018, 41, 208–218. [Google Scholar] [CrossRef]
- Benedec, D.; Oniga, I.; Hanganu, D.; Gheldiu, A.M.; Pușcaș, C.; Silaghi-Dumitrescu, R.; Duma, M.; Tiperciuc, B.; Vârban, R.; Vlase, L. Sources for developing new medicinal products: Biochemical investigations on alcoholic extracts obtained from aerial parts of some Romanian Amaryllidaceae species. BMC Complement. Altern. Med. 2018, 18, 226. [Google Scholar] [CrossRef] [Green Version]
- Groom, N. The New Perfume Handbook, 2nd ed.; Blackie Academic & Professional: London, UK, 1997; pp. 225–226. [Google Scholar]
- Ferri, D.; Adami, M.; de Santis, A.; Ubaldi, C.; Oratore, A.; Fracassi, P.; Gioia, E. Traditional and supercritical CO2 extraction of essential oil from Narcissus poeticus L.: Quantitative and qualitative comparison of yield from the two extraction techniques. Perfum. Flavor. 2009, 34, 30–35. [Google Scholar]
- Melliou, E.; Kalpoutzakis, E.; Tsitsa, E.; Magiatis, P. Composition of the Essential Oils of Narcissus tazetta and Narcissus serotinus from Greece. J. Essent. Oil Bear. Plants 2007, 10, 101–103. [Google Scholar] [CrossRef]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Wysokowski, M.; Jesionowski, T.; Ehrlich, H.; Mirsadeghi, S. Supercritical fluid extraction of essential oils. TrAC Trends Anal. Chem. 2019, 118, 182–193. [Google Scholar] [CrossRef]
- Joulain, D. Study of the fragrance given off by certain spring-time flowers. In Proceedings of the 16th Essential Oil Congress, Holzminden, Germany, 18–21 September 1985; Brunke, E.-J., Ed.; Walter De Gruyter Incorporated: Berlin, Germany, 1986; pp. 58–67. [Google Scholar]
- Mookherjee, B.D.; Trenkle, R.W.; Wilson, R.A. Live vs. Dead. Part II. A Comparative Analysis of the Headspace Volatiles of Some Important Fragrance and Flavor Raw Materials. J. Essent. Oil Res. 1989, 1, 85–90. [Google Scholar] [CrossRef]
- Loo, A.; Richard, H. A Study on Narcissus Absolute Composition. In Flavors and Fragrances: A World Perspective, Proceedings of the 10th Essential Oil Congress, Washington, DC, USA, 16–20 November 1986; Lawrence, B.M., Mookherjee, B.D., Willis, B.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1988; pp. 355–373. [Google Scholar]
- Van Dort, H.M.; Jãgers, P.P.; ter Heide, R.; van der Weerdt, A.J.A. Narcissus trevithian and Narcissus geranium: Analysis and Synthesis of Compounds. J. Agric. Food Chem. 1993, 41, 2063–2075. [Google Scholar] [CrossRef]
- Bruno, S.; De Laurentis, N.; Amico, A.; Stefanizzi, L. Chemical investigation and cytologic localization of essential oils in the flowers of Narcissus tazetta. Int. J. Pharmacogn. 1994, 32, 357–361. [Google Scholar] [CrossRef]
- Dobson, H.E.M.; Arroyo, J.; Bergström, G.; Groth, I. Interspecific Variation in Floral Fragrances within the Genus Narcissus (Amaryllidaceae). Biochem. Syst. Ecol. 1997, 25, 685–706. [Google Scholar] [CrossRef]
- Chen, H.-C.; Chi, H.-S.; Lin, L.-Y. Headspace Solid-Phase Microextraction Analysis of Volatile Components in Narcissus tazetta var. chinensis Roem. Molecules 2013, 18, 13723–13734. [Google Scholar] [CrossRef]
- Ehret, C.; Maupetit, P.; Petrzilka, M. New organoleptically important components from Narcissus absolute (Narcissus poeticus L.). In Proceedings of the 11th Essential Oil Congress, New Delhi, India, 12–16 November 1989; Oxford and IBH Publishing: New Delhi, India, 1989; p. 49. [Google Scholar]
- Ehret, C.; Maupetit, P.; Petrzilka, M. New organoleptically important constituents of Narcissus absolute (Narcissus poeticus L.). J. Essent. Oil Res. 1992, 4, 41–47. [Google Scholar] [CrossRef]
- Anonis, D.P. Narcissus in perfumery and cosmetics. Drug Cosmet. Ind. 1983, 133, 34–38. [Google Scholar]
- Adams, T.; Cohen, S.; Doull, J.; Feron, V.; Goodman, J.; Marnett, L.; Munro, I.; Portoghese, P.; Smith, R.; Waddell, W.; et al. The FEMA GRAS assessment of benzyl derivatives used as flavor ingredients. Food Chem. Toxicol. 2005, 43, 1207–1240. [Google Scholar] [CrossRef] [PubMed]
- Flavornet. Available online: https://www.flavornet.org/flavornet.html (accessed on 23 October 2021).
- SAFC. Flavors & Fragrances. Available online: www.safcglobal.com (accessed on 23 October 2021).
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Business Media: Carol Stream, IL, USA, 2017; p. 803. [Google Scholar]
- Ohno, O.; Ye, M.; Koyama, T.; Yazawa, K.; Mura, E.; Matsumoto, H.; Ichino, T.; Yamada, K.; Nakamura, K.; Ohno, T.; et al. Inhibitory effects of benzyl benzoate and its derivatives on angiotensin II-induced hypertension. Bioorg. Med. Chem. 2008, 16, 7843–7852. [Google Scholar] [CrossRef]
- Havaux, M. Carotenoid oxidation products as stress signals in plants. Plant J. 2014, 79, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Shumbe, L.; Bott, R.; Havaux, M. Dihydroactinidiolide, a high light-induced β-carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis. Mol. Plant 2014, 7, 1248–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramel, F.; Birtic, S.; Ginies, C.; Soubigou-Taconnat, L.; Triantaphylidès, C.; Havaux, M. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc. Natl. Acad. Sci. USA 2012, 109, 5535–5540. [Google Scholar] [CrossRef] [Green Version]
- Malek, S.N.A.; Shin, S.K.; Wahab, N.A.; Yaacob, H. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Molecules 2009, 14, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, W.B.; Craft, D.A. Sjogren-Larsson Syndrome. Deficient Activity of the Fatty Aldehyde Dehydrogenase Component of Fatty Alcohol: NAD+ Oxidoreductase in Cultured Fibroblasts. J. Clin. Investig. 1991, 88, 1643–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhilwade, H.N.; Tatewaki, N.; Nishida, H.; Konishi, T. Squalene as novel food factor. Curr. Pharm. Biotechnol. 2010, 11, 875–880. [Google Scholar] [CrossRef]
- Bendif, H.; Adouni, K.; Miara, M.D.; Baranauskienė, R.; Kraujalis, P.; Venskutonis, P.R.; Nabavi, S.M.; Maggi, F. Essential oils (EOs), pressurized liquid extracts (PLE) and carbon dioxide supercritical fluid extracts (SFE-CO2) from Algerian Thymus munbyanus as valuable sources of antioxidants to be used on an industrial level. Food Chem. 2018, 260, 289–298. [Google Scholar] [CrossRef]
- Hadi, M.Y.; Mohammed, G.J.; Hameed, I.H. Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. J. Pharmacogn. Phytother. 2016, 8, 8–24. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.C.; Ker, Y.B.; Yu, T.H.; Lin, L.Y.; Peng, R.Y.; Peng, C.H. Chemical synthesis of 9(Z)-octadecenamide and its hypolipidemic effect: A bioactive agent found in the essential oil of mountain celery seeds. J. Agric. Food Chem. 2010, 58, 1502–1508. [Google Scholar] [CrossRef]
- Irshad, Z.; Hanif, M.A.; Ayub, M.A.; Hanif, A.; Afridi, H.I. Jujube. In Medicinal Plants of South Asia. Novel Sources for Drug Discovery, 1st ed.; Hanif, M.A., Nawaz, H., Khan, M.M., Byrne, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 451–463. [Google Scholar]
- Jug, U.; Naumoska, K.; Metlicar, V.; Schink, A.; Makuc, D.; Vovk, I.; Plavec, J.; Lucas, K. Interference of oleamide with analytical and bioassay results. Sci. Rep. 2020, 10, 2163. [Google Scholar] [CrossRef] [PubMed]
SFE-CO2 Extraction Conditions | Extract Yield, % |
---|---|
12 MPa | 1.63 ± 0.29 a |
24 MPa | 1.75 ± 0.10 a |
36 MPa | 1.82 ± 0.09 a |
48 MPa | 2.36 ± 0.09 b |
48 MPa + 5% EtOH | 3.12 ± 0.12 c |
No.# | Compound A | KI Calc. B | KI Lit. C | KI Lit. D | 12 Mpa | 24 Mpa | 36 Mpa | 48 Mpa | 48 Mpa/EtOH | Odour Description 1 |
---|---|---|---|---|---|---|---|---|---|---|
1. | (3E)-Hexenol | 854 | 853 | 1386 | 0.35 ± 0.02 c | 0.67 ± 0.10 b | 0.10 ± 0.02 a | 0.89 ± 0.06 d | 0.72 ± 0.06 b | moss, fresh |
2. | Heptanal | 907 | 902 | 1174 | 0.20 ± 0.01 c | 0.27 ± 0.02 d | 0.26 ± 0.01 b | 0.24 ± 0.02 b | 0.15 ± 0.01 a | fat, citrus, rancid 1; oily, fruity, woody, fatty, nutty 2 |
3. | tetrahydro-Citronellene | 938 | 937 | tr a | 0.05 ± 0.00 b | tr a | tr a | 0.07 ± 0.00 c | ||
4. | 2-methyl-Nonane | 971 | 970 E | 961 F | 0.06 ± 0.00 b | 0.09 ± 0.01 e | 0.07 ± 0.01 c | 0.08 ± 0.00 d | tr a | |
5. | Hexanoic acid | 978 | 973 | 1829 | 0.24 ± 0.02 a | 0.47 ± 0.05 d | 0.45 ± 0.03 b | 0.39 ± 0.00 e | 0.45 ± 0.04 bcd | sweat 1; cheese, fatty, sour 2 |
6. | 2-Pentyl furan | 992 | 988 | 1240 | 0.13 ± 0.00 a | 0.22 ± 0.01 d | 0.19 ± 0.01 c | 0.16 ± 0.01 b | green bean, butter 1; green, vegetable 2 | |
7. | Mesitylene | 998 | 995 | 1220 E | tr a | tr a | tr a | 0.18 ± 0.00 b | ||
8. | Decane * | 1000 | 1000 | 1000 | 0.12 ± 0.01 a | 0.15 ± 0.00 b | 0.17 ± 0.01 b | 0.20 ± 0.02 d | 0.20 ± 0.01 d | alkane |
9. | (2E,4E)-Heptadienal | 1014 | 1007 | 1401 | 0.10 ± 0.00 a | 0.30 ± 0.04 c | 0.15 ± 0.03 b | nut, fat 1; cinnamon, hazelnut, fatty 2 | ||
10. | p-Cymene | 1025 | 1025 | 1261 | tr a | tr b | tr a | tr a | solvent, gasoline, citrus | |
11. | Limonene | 1028 | 1029 | 1178 | 0.12 ± 0.00 b | 0.17 ± 0.01 d | 0.15 ± 0.00 c | 0.11 ± 0.01 b | 0.08 ± 0.00 a | lemon, orange 1; citrus, sweet 2 |
12. | Benzyl alcohol | 1034 | 1031 | 1865 | 0.18 ± 0.01 a | 0.77 ± 0.04 b | 0.84 ± 0.05 b | 0.96 ± 0.01 c | 1.00 ± 0.02 c | sweet, flower 1; berry, cherry, grapefruit, citrus, walnut 2 |
13. | Pantolactone | 1037 | 1032 F | 2034 F | 0.06 ± 0.00 | cotton candy | ||||
14. | Heptanoic acid | 1078 | 1074 E | 1918 E | 0.40 ± 0.06 a | 0.51 ± 0.05 c | 0.52 ± 0.05 bc | 0.47 ± 0.06 b | 0.60 ± 0.02 d | sour 2 |
15. | p-Cresol | 1083 | 1076 | 2067 | tr a | 0.06 ± 0.00 b | tr c | 0.06 ± 0.00 b | 0.10 ± 0.01 d | medicine, phenol, smoke 1; woody, ethereal, medicinal 2 |
16. | 2-Nonanone | 1097 | 1090 | 1388 | tr a | tr a | tr a | hot milk, soap, green 1; cheese, coconut, oily, fatty, herbaceous, floral, fruity, fishy, soapy, waxy 2 | ||
17. | Ethyl heptanoate | 1102 | 1093 E | 1321 E | tr | |||||
18. | (4E)-Nonenal | 1106 | 1096 G | 1458 E | tr a | tr b | tr ab | berry, melon, peach, pineapple, plum 2 | ||
19. | Nonanal | 1109 | 1100 | 1385 | 0.33 ± 0.01 c | 0.48 ± 0.02 d | 0.44 ± 0.01 b | 0.43 ± 0.04 b | 0.31 ± 0.01 a | fat, citrus, green 1; apple, coconut, grape, lemon, grapefruit, lime, melon, orange, nutty, citrus, oily, waxy, fatty, peach, rose, vegetable, fishy, meaty 2 |
20. | (2E)-Nonenal | 1167 | 1161 | 1527 | tr | cucumber, fat, green 1; waxy, fatty 2 | ||||
21. | Benzoic acid | 1163 | 1162 E | 1624 | 0.11 ± 0.02 | urine 1; balsam 2 | ||||
22. | δ-Terpineol | 1170 | 1166 | 1655 | tr a | tr ab | tr ab | 0.05 ± 0.00 b | 0.06 ± 0.00 c | |
23. | Octanoic acid | 1183 | 1171 | 2083 | 0.05 ± 0.00 a | 0.07 ± 0.02 c | 0.06 ± 0.0 abc | 0.05 ± 0.00 a | sweat, cheese 1; oily 2 | |
24. | Naphthalene | 1191 | 1181 | 1712 E | tr ab | tr ab | tr b | |||
25. | α-Terpineol | 1194 | 1188 | 1688 | 1.08 ± 0.04 a | 2.07 ± 0.10 b | 2.12 ± 0.06 b | 2.52 ± 0.19 c | 3.42 ± 0.16 d | oil, anise, mint 1; lilac 2 |
26. | (2E)-Hexenyl butanoate | 1197 | 1194 | 1458 E | tr a | tr a | 0.08 ± 0.00 b | apple, cheese, green, meaty 2 | ||
27. | n-Dodecane | 1200 | 1200 | 1200 | tr ab | tr ab | tr b | alkane | ||
28. | exo-2-Hydroxycineole | 1219 | 1219 E | 1845 E | tr ab | tr ab | tr a | tr b | ||
29. | 2-Hydroxycineole | 1230 | 1229 E | 0.06 ± 0.01 a | 0.11 ± 0.02 b | 0.08 ± 0.00 a | 0.08 ± 0.01 a | 0.11 ± 0.00 b | ||
30. | Hydrocinnamyl alcohol | 1242 | 1231 E | 1989 E | tr b | 0.09 ± 0.00 c | 0.05 ± 0.00 b | tr a | 0.09 ± 0.01 c | balsam, hyacinth, floral, sweet 2 |
31. | Carvone | 1249 | 1243 | 1720 | 0.05 ± 0.00 b | 0.08 ± 0.01 d | 0.06 ± 0.01 c | tr a | tr a | caraway, mint, basil, fennel 1; herbaceous 2 |
32. | Nonanoic acid | 1280 | 1270 | 2202 | 0.23 ± 0.01 a | 0.26 ± 0.03 bc | 0.26 ± 0.01 bc | 0.23 ± 0.03 a | 0.27 ± 0.02 c | green, fat 1; cheese, waxy 2 |
33. | n-Tridecane | 1301 | 1300 | 1300 | tr a | 0.06 ± 0.00 bc | 0.06 ± 0.00 b | 0.06 ± 0.01 bc | 0.06 ± 0.00 c | alkane |
34 | 8-Hydroxymenthol | 1304 | 1301 | 2167 E | 0.06 ± 0.01 a | 0.05 ± 0.01 a | 0.05 ± 0.00 a | 0.06 ± 0.01 a | 0.10 ± 0.01 b | |
35. | (2E,4Z)-Decadienal | 1306 | 1303 E | 1710 | 0.17 ± 0.01 b | 0.44 ± 0.02 e | 0.28 ± 0.0 c | 0.21 ± 0.02 d | tr a | fried, fat |
36. | Undecanal | 1308 | 1306 | 2444 | 0.07 ± 0.01 b | tr a | 0.05 ± 0.01 ab | oil, pungent, sweet | ||
37. | (2E,4E)-Decadienal | 1317 | 1316 | 1710 | 0.27 ± 0.01 b | 0.68 ± 0.04 e | 0.45 ± 0.00 d | 0.32 ± 0.03 c | tr a | fried, wax, fat 1; fatty, citrus, meaty 2 |
38. | (2E)-Undecenol | 1366 | 1365 | 1899 F | 0.07 ± 0.00 c | 0.09 ± 0.00 b | 0.09 ± 0.00 b | 0.05 ± 0.01 a | ||
39. | Decanoic acid | 1367 | 1366 | 2361 | 0.17 ± 0.00 b | 0.26 ± 0.03 d | 0.24 ± 0.02 c | 0.13 ± 0.01 a | rancid, fat 1; fatty, citrus 2 | |
40. | (E)-8-Hydroxylinalool | 1370 | 1367 | 2265 E | 0.13 ± 0.00 | |||||
41. | (E)-p-Menth-6-en-2,8-diol | 1377 | 1374 | 1740 E | tr a | tr ab | tr a | 0.05 ± 0.00 b | 0.12 ± 0.01 c | |
42. | 3-Dodecanone | 1391 | 1390 | 1655 E | 0.05 ± 0.01 a | 0.05 ± 0.00 a | 0.06 ± 0.00 a | 0.06 ± 0.01 a | 0.11 ± 0.00 b | |
43. | n-Tetradecane | 1400 | 1400 | 1400 | tr c | tr a | tr b | alkane | ||
44. | Vanillin | 1406 | 1407 | 2540 E | tr a | 0.08 ± 0.01 b | caramel, chocolate, sweet, vanilla 2 | |||
45. | Carvone hydrate | 1432 | 1423 | 1754 E | tr a | tr a | tr ab | tr b | ||
46. | 1b,5,5,6a-Tetramethyl-octahydro-1-oxa-cyclopropa[a]inden-6-one | 1454 | 1445 G | tr a | tr b | 0.11 ± 0.01 c | tr ab | |||
47. | (E)-Isoeugenol | 1455 | 1451 | 2372 | tr a | tr b | 0.13 ± 0.01 c | flower 1; clove, sweet, woody, spicy 2 | ||
48. | 3a,4,7,7a-tetrahydro-3a-methyl-2(3H)-Benzofuranone | 1457 | 1456 E | 2235 E | tr a | tr b | tr ab | tr ab | 0.13 ± 0.01 c | |
49. | (E)-β-Ionone | 1489 | 1488 | 1912 | tr ab | tr c | tr bc | tr ab | tr a | seaweed, violet, flower, raspberry 1; almond, basam, berry, grape, jam, orange, fruity, woody, floral, peach, raspberry, rose, sweet, violet, minty, wine-like, vegetable 2 |
50. | β-Ionone epoxide | 1494 | 1488 E | 1957 E | 0.28 ± 0.01 a | 0.42 ± 0.02 d | 0.40 ± 0.01 b | 0.41 ± 0.02 c | 0.40 ± 0.02 bc | fruit, sweet, wood |
51. | (E)-Methyl isoeugenol | 1497 | 1492 | 2176 E | tr a | tr b | tr b | tr b | 0.05 ± 0.00 c | spicy 2 |
52. | 2-Tridecanone | 1499 | 1496 | 1805 E | tr a | 0.05 ± 0.00 b | 0.05 ± 0.00 b | 0.05 ± 0.00 b | tr a | spicy 1; herbaceous 2 |
53. | n-Pentadecane | 1500 | 1500 | 1500 | 0.05 ± 0.01 b | tr a | 0.07 ± 0.00 c | 0.06 ± 0.00 bc | 0.06 ± 0.00 bc | alkane |
54. | Tridecanal | 1515 | 1510 | 1824 | tr ab | tr a | tr ab | 0.05 ± 0.01 c | flower, sweet, must | |
55. | Methyl dodecanoate | 1530 | 1525 | 1795 | tr a | tr b | tr b | tr b | 0.06 ± 0.00c | fat, coconut 1; coconut, creamy, soapy, waxy 2 |
56. | 3-Hydroxydecanoic acid | 1536 | 1534 | 0.10 ± 0.01 | ||||||
57. | Dihydroactinidiolide | 1546 | 1535 E | 2308 E | 0.42 ± 0.01 a | 0.63 ± 0.03 d | 0.62 ± 0.01 bc | 0.64 ± 0.04 cd | 0.62 ± 0.02 b | |
58. | (3Z)-Hexenyl benzoate | 1570 | 1566 | 2122 E | 0.05 ± 0.00 b | tr a | tr a | woody, herbaceous, green 2 | ||
59. | γ-Undecalactone | 1576 | 1570 | 2270 | tr bc | tr b | tr b | tr b | tr a | apricot 1; musty, peach, sweet, earthy 2 |
60. | Hexyl benzoate | 1582 | 1580 | 2066 E | tr | balsam, woody, green 2 | ||||
61. | Caryophyllene oxide | 1587 | 1583 | 1962 | tr a | tr b | herb, sweet, spice | |||
62. | γ-Dodecalactone | 1687 | 1677 | 2384 | 0.12 ± 0.00 b | 0.13 ± 0.01 bc | 0.14 ± 0.00 c | 0.14 ± 0.01 bc | 0.09 ± 0.00 a | fruit, sweet 1; musty, fatty, fruity 2 |
63. | 2-Pentadecanone | 1697 | 1697 | 2016 E | 0.17 ± 0.00 a | 0.17 ± 0.01 ab | 0.18 ± 0.00 ab | 0.18 ± 0.01 b | 0.16 ± 0.00 a | |
64. | Heptadecane | 1700 | 1700 | 1700 | tr b | tr c | tr b | tr a | alkane | |
65. | Benzyl benzoate | 1763 | 1760 | 2071 | 9.90 ± 0.34 a | 9.44 ± 0.44 a | 10.22 ± 0.16 ab | 10.22 ± 0.69 b | 9.85 ± 0.12 a | balsamic, oil, herb 1; almond, cheese, cherry, floral, pineapple, strawberry, sweet 2 |
66. | Ethyl tetradecanoate | 1799 | 1796 | 2042 | 0.08 ± 0.00 | ether 1; waxy, soapy 2 | ||||
67. | Octadecane | 1800 | 1800 | 1800 | tr | alkane | ||||
68. | 2-Hexadecanone | 1816 | 1809 | 2112 | 0.06 ± 0.00 c | 0.06 ± 0.00 bc | 0.06 ± 0.00 bc | 0.05 ± 0.00 abc | tr a | fruit |
69. | Hexadecanal | 1828 | 1818 E | 2141 E | tr a | tr ab | tr b | tr b | ||
70. | 2-Phenylethyl benzoate | 1865 | 1859 E | 2189 | 0.15 ± 0.02 bc | 0.05 ± 0.01 a | 0.15 ± 0.01 bc | 0.15 ± 0.02 bc | 0.18 ± 0.01 c | flower, honey 1; honey, rose 2 |
71. | 3-Heptadecanone | 1884 | 1880 E | 2155 E | 0.05 ± 0.00 a | 0.05 ± 0.00 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a | 0.20 ± 0.01 b | |
72. | n-Nonadecane | 1900 | 1900 | 1900 | 0.20 ± 0.01 d | 0.17 ± 0.01 a | 0.19 ± 0.00 bcd | 0.19 ± 0.01 cd | 0.18 ± 0.00 ab | alkane |
73. | 2-Heptadecanone | 1904 | 1900 E | 2245 E | tr a | tr a | tr a | tr a | ||
74. | Methyl hexadecanoate | 1922 | 1921 | 2204 E | 0.18 ± 0.01 bc | 0.17 ± 0.01 bc | 0.19 ± 0.01 c | 0.17 ± 0.02 bc | 0.15 ± 0.00 a | |
75. | Benzyl 4-methoxybenzoate | 1925 | 1922 G | 0.11 ± 0.00 c | 0.09 ± 0.01 a | 0.10 ± 0.00 b | 0.10 ± 0.01 b | 0.09 ± 0.00 a | ||
76. | Hexadecanoic acid | 1967 | 1960 | 2931 E | 0.07 ± 0.01 b | tr a | 0.16 ± 0.02 c | 0.08 ± 0.02 b | 0.10 ± 0.01 b | |
77. | Geranyl benzoate | 1982 | 1978 | 0.09 ± 0.00 c | 0.07 ± 0.00 a | 0.08 ± 0.00 bc | 0.08 ± 0.01 ab | 0.08 ± 0.00 bc | ||
78. | Ethyl hexadecanoate | 1997 | 1993 | 2250 | 0.07 ± 0.00 bc | 0.08 ± 0.00 c | 0.04 ± 0.00 a | 0.06 ± 0.00 b | 1.31 ± 0.02 d | waxy |
79. | n-Eicosane | 2000 | 2000 | 2000 | 0.05 ± 0.00 | alkane | ||||
80. | Octadecanal | 2036 | 2033 E | 2400 | 0.48 ± 0.01 c | 0.41 ± 0.03 a | 0.46 ± 0.00 b | 0.45 ± 0.03 b | 0.43 ± 0.01 ab | oil |
81. | n-Heneicosane | 2100 | 2100 | 2100 | 5.50 ± 0.19 d | 4.16 ± 0.22 b | 4.69 ± 0.08 c | 4.49 ± 0.31 c | 3.71 ± 0.06 a | alkane |
82. | Methyl oleate | 2105 | 2103 | 2430 | 0.12 ± 0.00 a | 0.19 ± 0.01 b | 0.18 ± 0.01 b | 0.22 ± 0.01 d | 0.21 ± 0.00 c | fat |
83. | Methyl linolenate | 2113 | 2108 E | 2590 E | 0.07 ± 0.00 b | 0.06 ± 0.00 a | 0.06 ± 0.00 a | 0.08 ± 0.00 c | 0.10 ± 0.00 d | |
84. | Phytol | 2115 | 2115 E | 2571 | 0.05 ± 0.00 ab | tr a | tr a | 0.06 ± 0.01 b | 0.23 ± 0.00 c | flower 1; balsamic, floral 2 |
85. | (E)-Benzyl cinnamate | 2131 | 2134 E | 2769 E | tr a | tr b | apricot, cherry, chocolate, floral, peach, pineapple 2 | |||
86. | Linoleic acid | 2139 | 2134 E | 3168 E | 0.10 ± 0.01 c | 0.08 ± 0.01 b | 0.05 ± 0.00 a | 0.08 ± 0.00 bc | 1.53 ± 0.02 d | |
87. | Oleic acid | 2147 | 2142 | 2430 | tr a | tr b | tr a | tr a | 0.07 ± 0.00 c | fat |
88. | Ethyl 9-octadecenoate | 2162 | 2150 E | 2469 E | 0.14 ± 0.00 | |||||
89. | n-Nonadecanol-1 | 2171 | 2156 E | 2637 E | tr a | tr b | tr b | tr b | tr b | |
90. | Ethyl linolenate | 2176 | 2169 E | 2621 E | tr a | 0.12 ± 0.01 b | 0.15 ± 0.00 b | tr a | 1.56 ± 0.03 c | |
91. | Hexadecanamide | 2189 | 2182 E | 2858 E | 0.14 ± 0.01 a | 0.18 ± 0.01 b | 0.20 ± 0.00 c | 0.22 ± 0.01 d | 0.32 ± 0.01 e | |
92. | n-Butyl hexadecanoate | 2194 | 2188 E | 2419 E | tr b | tr c | tr a | 0.17 ± 0.01 d | 0.05 ± 0.01 c | |
93. | 1-Docosene | 2199 | 2189 | 0.10 ± 0.00 c | 0.09 ± 0.00 b | 0.10 ± 0.00 c | 0.10 ± 0.01 c | 0.07 ± 0.00 a | ||
94. | n-Docosane | 2200 | 2200 | 2200 | 0.98 ± 0.05 d | 0.72 ± 0.04 ab | 0.83 ± 0.02 c | 0.79 ± 0.05 bc | 0.71 ± 0.02 a | alkane |
95. | Tributyl acetylcitrate | 2258 | 2250 E | tr a | tr a | |||||
96. | n-Tricosane | 2300 | 2300 | 2300 | 11.36 ± 0.39 e | 8.54 ± 0.44 b | 9.94 ± 0.17 d | 9.14 ± 0.55 c | 7.57 ± 0.12 a | alkane |
97. | 2-Ethylhexyl p-methoxy cinnamate | 2349 | 2339 F | 3122 F | tr b | tr ab | tr b | tr b | tr b | |
98. | 4,8,12,16-Tetramethyl heptadecan-4-olide | 2364 | 2364 E | 0.50 ± 0.01 d | 0.42 ± 0.02 c | 0.49 ± 0.01 d | 0.38 ± 0.02 b | 0.27 ± 0.00 a | ||
99. | (Z)-9-Octadecenamide | 2398 | 2397 E | 3265 E | 0.44 ± 0.04 a | 0.52 ± 0.02 b | 0.62 ± 0.01 c | 0.64 ± 0.03 c | 1.00 ± 0.06 d | |
100. | n-Tetracosane | 2400 | 2400 | 2400 | 0.27 ± 0.01 a | 0.37 ± 0.01 c | 0.43 ± 0.01 e | 0.40 ± 0.02 d | 0.35 ± 0.00 b | alkane |
101. | Heneicosanol | 2403 | 2402 E | 2995 E | 1.23 ± 0.04 c | 0.97 ± 0.05 a | 1.14 ± 0.02 b | 1.14 ± 0.06 b | 1.00 ± 0.02 a | |
102. | n-Pentacosane | 2500 | 2500 | 2500 | 6.13 ± 0.20 e | 4.80 ± 0.28 b | 5.63 ± 0.08 d | 5.11 ± 0.28 c | 4.18 ± 0.07 a | alkane |
103. | n-Hexacosane | 2600 | 2600 | 2600 | 0.43 ± 0.01 d | 0.36 ± 0.02 b | 0.40 ± 0.01 c | 0.37 ± 0.02 b | 0.32 ± 0.01 a | alkane |
104. | Benzoic acid hexadecyl ester | 2665 | 2664 F | 0.09 ± 0.00 a | 0.09 ± 0.01 a | 0.10 ± 0.00 a | 0.09 ± 0.02 a | 0.12 ± 0.01 b | ||
105. | n-Heptacosane | 2700 | 2700 | 2700 | 15.40 ± 0.40 c | 13.93 ± 0.79 b | 14.66 ± 0.17 bc | 13.90 ± 1.15 b | 11.21 ± 0.26 a | alkane |
106. | Benzyl oleate | 2757 | 2758 G | 0.10 ± 0.02 b | tr a | 0.05 ± 0.01 a | 0.14 ± 0.03 c | 0.16 ± 0.02 c | ||
107. | Benzyl linoleate | 2767 | 2764 E | 1.74 ± 0.02 a | 1.72 ± 0.08 ab | 1.85 ± 0.01 b | 2.09 ± 0.07 c | 2.17 ± 0.06 c | ||
108. | Benzyl linolenate | 2778 | 2775 E | 0.30 ± 0.00 a | 0.27 ± 0.01 a | 0.26 ± 0.04 a | 0.39 ± 0.01 b | 0.53 ± 0.02 c | ||
109. | n-Octacosane | 2800 | 2800 | 2800 | 0.14 ± 0.00 a | 0.39 ± 0.01 b | 0.41 ± 0.03 b | 0.59 ± 0.04 c | 0.54 ± 0.03 c | alkane |
110. | Squalene | 2835 | 2836 E | 2865 E | 0.10 ± 0.00 a | 0.14 ± 0.03 b | 0.15 ± 0.00 b | 0.35 ± 0.02 c | 0.88 ± 0.02 d | |
111. | n-Nonacosane | 2900 | 2900 | 2900 | 7.27 ± 0.11 c | 7.03 ± 0.31 c | 6.22 ± 0.08 b | 5.64 ± 0.20 a | 6.06 ± 0.18 b | alkane |
112. | 1-Hexacosanol | 2912 | 2906 | 0.08 ± 0.01 a | 0.16 ± 0.01 c | 0.14 ± 0.01 bc | 0.15 ± 0.02 bc | 0.15 ± 0.04 bc | ||
113. | n-Triacontane | 3000 | 3000 | 3000 | 0.17 ± 0.01 a | 0.32 ± 0.02 d | 0.24 ± 0.01 b | 0.23 ± 0.01 b | 0.27 ± 0.02 c | alkane |
114. | γ-Tocopherol | 3075 | 3074 | tr ab | tr a | 0.05 ± 0.01 b | 0.12 ± 0.01 c | |||
115. | n-Untriacontane | 3100 | 3100 | 3100 | 6.73 ± 0.20 c | 6.46 ± 0.38 b | 4.41 ± 0.13 a | 4.51 ± 0.08 a | 6.22 ± 0.24 b | alkane |
116. | Vitamin E (D-α-tocopherol) | 3154 | 3149 E | 0.14 ± 0.00 a | 0.50 ± 0.03 c | 0.25 ± 0.01 b | 0.99 ± 0.01 d | 1.76 ± 0.11 e | ||
Total compounds identified/representing % of total volatiles | 105/77.47 | 100/74.12 | 104/76.07 | 93/74.10 | 92/76.69 | |||||
Grouped compounds (%) | ||||||||||
Aromatics | 12.67 | 12.55 | 13.64 | 14.16 | 14.32 | |||||
Aliphatic hydrocarbons (alkanes) | 54.93 | 47.65 | 48.44 | 45.72 | 41.47 | |||||
Aromatic hydrocarbons | 0.04 | 0.04 | 0.04 | 0.18 | ||||||
Monoterpene hydrocarbons | 0.18 | 0.25 | 0.21 | 0.16 | 0.15 | |||||
Oxygenated monoterpenes | 1.34 | 2.35 | 2.39 | 2.81 | 3.97 | |||||
Oxygenated sesquiterpenes | 0.31 | 0.45 | 0.44 | 0.43 | 0.41 | |||||
Alcohols and esters | 2.30 | 2.66 | 2.37 | 3.02 | 5.58 | |||||
Aldehydes, ketones and lactones | 3.14 | 4.44 | 4.95 | 3.37 | 2.75 | |||||
Acids | 1.27 | 1.71 | 1.75 | 1.44 | 3.12 | |||||
Amides | 0.58 | 0.70 | 0.82 | 0.86 | 1.32 | |||||
Diterpenoids | 0.05 | 0.04 | 0.05 | 0.06 | 0.23 | |||||
Triterpenoids and tocopherols | 0.24 | 0.68 | 0.42 | 1.39 | 2.76 | |||||
Phenylpropanoids and phenols | 0.12 | 0.16 | 0.14 | 0.14 | 0.40 | |||||
Other (oxanes, heteroaromatics, etc.) | 0.35 | 0.48 | 0.46 | 0.42 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranauskienė, R.; Venskutonis, P.R. Supercritical CO2 Extraction of Narcissus poeticus L. Flowers for the Isolation of Volatile Fragrance Compounds. Molecules 2022, 27, 353. https://doi.org/10.3390/molecules27020353
Baranauskienė R, Venskutonis PR. Supercritical CO2 Extraction of Narcissus poeticus L. Flowers for the Isolation of Volatile Fragrance Compounds. Molecules. 2022; 27(2):353. https://doi.org/10.3390/molecules27020353
Chicago/Turabian StyleBaranauskienė, Renata, and Petras Rimantas Venskutonis. 2022. "Supercritical CO2 Extraction of Narcissus poeticus L. Flowers for the Isolation of Volatile Fragrance Compounds" Molecules 27, no. 2: 353. https://doi.org/10.3390/molecules27020353
APA StyleBaranauskienė, R., & Venskutonis, P. R. (2022). Supercritical CO2 Extraction of Narcissus poeticus L. Flowers for the Isolation of Volatile Fragrance Compounds. Molecules, 27(2), 353. https://doi.org/10.3390/molecules27020353