The Evaluation of Meloxicam Nanocrystals by Oral Administration with Different Particle Sizes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Animals
2.3. Preparation of Meloxicam Nanoparticles
2.4. High-Performance Liquid Chromatography (HPLC) Analysis
2.5. In Vitro Characterization
2.5.1. Particle Size
2.5.2. Morphology
2.6. Crystalline Form
2.6.1. Differential Scanning Calorimetry
2.6.2. Powder X-ray Diffractometry
2.7. Molecular Simulations
2.8. Cytotoxicity of Caco-2 Cell
2.9. Transepithelial Penetration of Caco-2 Cells
2.10. In Vivo Pharmacokinetics of Meloxicam Nanocrystals in Rats
2.11. Statistical Analysis
3. Results and Discussion
3.1. Particle Diameter and Morphology Analysis
3.2. Molecular Simulation
3.3. Crystalline State Analysis
3.3.1. DSC
3.3.2. PXRD
3.4. Cytotoxicity of the Nanocrystals to Caco-2 Cells
3.5. In Vitro Transport Studies of the Caco-2 Cell Model
3.6. In Vivo Transdermal Delivery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cheney, M.L.; Weyna, D.R.; Shan, N.; Hanna, M.; Wojtas, L.; Zaworotko, M.J. Coformer selection in pharmaceutical cocrystal development: A case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J. Pharm. Sci. 2011, 100, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Mohammad, A.; Rajesh, D.; Ecevit, B.J.P. Nanomilling of Drugs for Bioavailability Enhancement: A Holistic Formulation-Process Perspective. Pharmaceutics 2016, 8, 17. [Google Scholar]
- Luger, P.; Daneck, K.; Engel, W.; Trummlitz, G.; Wagner, K.J.E. Structure and physicochemical properties of meloxicam, a new NSAID. Eur. J. Pharm. Sci. 1996, 4, 175–187. [Google Scholar] [CrossRef]
- Ambrus, R.; Kocbek, P.; Kristl, J.; Šibanc, R.; Rajkó, R.; Szabó-Révész, P. Investigation of preparation parameters to improve the dissolution of poorly water-soluble meloxicam. Int. J. Pharm. 2009, 381, 153–159. [Google Scholar] [CrossRef]
- Leuner, C.; Dressman, J.J.E. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000, 50, 47–60. [Google Scholar] [CrossRef]
- Suzuki, H.; Yakushiji, K.; Matsunaga, S.; Yamauchi, Y.; Seto, Y.; Sato, H.; Onoue, S.J. Amorphous solid dispersion of meloxicam enhanced oral absorption in rats with impaired gastric motility. J. Pharm. Sci. 2017, 107, 446–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltonen, L.; Hirvonen, J.J. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol. 2010, 62, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Elita, S.; Janaine, C.; Fernanda, T.; Juliana, A.; Gabriela, D.; Fátima, B.; Francisco, P.; Adriana, L.; Ana, H.; Drugs, C.L.J.I.N. Ketoprofen-loaded polymeric nanocapsules selectively inhibit cancer cell growth in vitro and in preclinical model of glioblastoma multiforme. Investig. New Drugs 2013, 31, 1424–1435. [Google Scholar]
- Raffin, R.P.; Lima, A.; Lorenzoni, R.; Antonow, M.B.; Turra, C.; Alves, M.P.; Fagan, S.B.J. Natural lipid nanoparticles containing nimesulide: Synthesis, characterization and in vivo antiedematogenic and antinociceptive activities. J. Biomed. Nanotechnol. 2012, 8, 309. [Google Scholar] [CrossRef]
- Ianiski, F.R.; Alves, C.B.; Souza, A.; Pinton, S.; Luchese, C.J. Protective effect of meloxicam-loaded nanocapsules against amyloid-β peptide-induced damage in mice. Behav. Brain Res. 2012, 230, 100–107. [Google Scholar] [CrossRef]
- Bernardi, A.; Frozza, R.L.; Horn, A.P.; Campos, M.M.; Battastini, A.J.N.I. Protective effects of indomethacin-loaded nanocapsules against oxygen-glucose deprivation in organotypic hippocampal slice cultures: Involvement of neuroinflammation. Neurochem. Int. 2010, 57, 629–636. [Google Scholar] [CrossRef]
- Bernardi, A.; Zilberstein, A.; Jger, E.; Campos, M.M.; Morrone, F.B.; Calixto, J.B.; Pohlmann, A.R.; Guterres, S.S.; Battastini, A.J.B. Effects of indomethacin-loaded nanocapsules in experimental models of inflammation in rats. Br. J. Pharmacol. 2009, 158, 1104–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Qi, J.; Dong, X.; Zhao, W.; Wu, W.J. The in vivo fate of nanocrystals. Drug Discov. Today 2017, 22, 744–750. [Google Scholar] [CrossRef]
- Pawar, V.K.; Singh, Y.; Meher, J.G.; Gupta, S.; Chourasia, M.K.J. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. J. Control. Release 2014, 183, 51–66. [Google Scholar] [CrossRef]
- Gujar, K.; Wairkar, S.J.P. Nanocrystal technology for improving therapeutic efficacy of flavonoids. Phytomedicine 2020, 71, 153240. [Google Scholar] [CrossRef]
- Van Eerdenbrugh, B.; Vermant, J.; Martens, J.A.; Froyen, L.; Van Humbeeck, J.; Augustijns, P.; Mooter, G.V.D. A screening study of surface stabilization during the production of drug nanocrystals. J. Pharm. Sci. 2009, 98, 2091–2103. [Google Scholar] [CrossRef]
- Keck, C.M.; Muller, R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm. 2006, 62, 3–16. [Google Scholar] [CrossRef]
- Langguth, P.; Hanafy, A.; Frenzel, D.; Grenier, P.; Nhamias, A.; Ohlig, T.; Vergnault, G.; Spahn-Langguth, H.J. Nanosuspension Formulations for Low-Soluble Drugs: Pharmacokinetic Evaluation Using Spironolactone as Model Compound. Drug Dev. Ind. Pharm. 2005, 31, 319–329. [Google Scholar] [CrossRef]
- Malamatari, M.; Taylor, K.M.; Malamataris, S.; Douroumis, D.; Kachrimanis, K. Pharmaceutical nanocrystals: Production by wet milling and applications. Drug Discov. Today 2018, 23, 534–547. [Google Scholar] [CrossRef] [PubMed]
- Ochi, M.; Kawachi, T.; Toita, E.; Hashimoto, I.; Yuminoki, K.; Onoue, S.; Hashimoto, N.J. Development of nanocrystal formulation of meloxicam with improved dissolution and pharmacokinetic behaviors. Int. J. Pharm. 2014, 474, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Bolourchian, N.; Nili, M.; Foroutan, S.M.; Mahboubi, A.; Nokhodchi, A.J. The use of cooling and anti-solvent precipitation technique to tailor dissolution and physicochemical properties of meloxicam for better performance. J. Drug Deliv. Sci. Technol. 2019, 55, 101485. [Google Scholar] [CrossRef]
- Mauludin, R.; Müller, R.H.; Keck, C.M.J.E. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur. J. Pharm. Sci. 2009, 36, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Cui, F.; Piao, H.; Cun, D.; Piao, H.; Jiang, Y.; Mei, O.; Quan, P.J. Effect of Crystal Size on the In Vitro Dissolution and Oral Absorption of Nitrendipine in Rats. Pharm. Res. 2010, 27, 1965–1976. [Google Scholar] [CrossRef]
- Tu, L.; Yi, Y.; Wu, W.; Hu, F.; Hu, K.; Feng, J.J. Effects of particle size on the pharmacokinetics of puerarin nanocrystals and microcrystals after oral administration to rat. Int. J. Pharm. 2013, 458, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, F.; Sui, Y.; She, Z.; Zhai, W.; Wang, C.; Deng, Y. Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals. Int. J. Nanomed. 2012, 2012, 5733–5744. [Google Scholar]
- Jinno, J.I.; Kamada, N.; Miyake, M.; Yamada, K.; Mukai, T.; Odomi, M.; Toguchi, H.; Liversidge, G.G.; Higaki, K.; Kimura, T. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release 2006, 111, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; William, B.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- Cui, Y.J. Using molecular simulations to probe pharmaceutical materials. J. Pharm. Sci. 2011, 100, 2000–2019. [Google Scholar] [CrossRef]
- Yani, Y.; Chow, P.S.; Tan, R.B.H.J. Molecular simulation study of the effect of various additives on salbutamol sulfate crystal habit. Mol. Pharm. 2011, 8, 1910–1918. [Google Scholar] [CrossRef]
- Price, D.J.; Iii, C.J. Modern protein force fields behave comparably in molecular dynamics simulations. J. Comput. Chem. 2002, 23, 1045–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, J.; Viana, O.; Bonfilio, R.; Doriguetto, A.C.; Sciences, M.A. Analysis of polymorphic contamination in meloxicam raw materials and its effects on the physicochemical quality of drug product. Eur. J. Pharm. Sci. 2017, 109, 347–358. [Google Scholar] [CrossRef]
- Freag, M.S.; Elnaggar, Y.; Abdallah, O.Y.J. Development of novel polymer-stabilized diosmin nanosuspensions: In vitro appraisal and ex vivo permeation. Int. J. Pharm. 2013, 454, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; Jacobs, C.; Kayser, O.J. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 2001, 47, 3–19. [Google Scholar] [CrossRef]
- Coppi, L.; Sanmarti, M.B.; Clavo, M.C. Crystalline Forms of Meloxicam and Processes for Their Preparation and Interconversion. U.S. Patent US6967248B2, 22 November 2005. [Google Scholar]
- Monteiro, A.; Afolabi, A.; Bilgili, E. Continuous production of drug nanoparticle suspensions via wet stirred media milling: A fresh look at the Rehbinder effect. Drug Dev. Ind. Pharm. 2012, 39, 266–283. [Google Scholar]
- Di, J.; Gao, X.; Du, Y.; Zhang, H.; Zheng, A.J.A. Size, shape, charge and stealthy surface: Carrier properties affect the drug circulation time in vivo. Asian J. Pharm. Sci. 2020, 16, 444–458. [Google Scholar] [CrossRef]
- Bi, C.; Miao, X.Q.; Chow, S.F.; Wu, W.J.; Yan, R.; Liao, Y.H.; Chow, A.H.; Zheng, Y. Particle size effect of curcumin nanosuspensions on cytotoxicity, cellular internalization, in vivo pharmacokinetics and biodistribution. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 943–953. [Google Scholar] [CrossRef]
- Dausend, J.; Musyanovych, A.; Dass, M.; Walther, P.; Schrezenmeier, H.; Landfester, K.; Bioscience, V.M.J.M. Uptake Mechanism of Oppositely Charged Fluorescent Nanoparticles in HeLa Cells. Macromol. Biosci. 2008, 8, 1135–1143. [Google Scholar] [CrossRef]
- Adjei, I.M.; Sharma, B.; Labhasetwar, V.J.S.N. Nanoparticles: Cellular uptake and cytotoxicity. Adv. Exp. Med. Biol. 2014, 811, 73–91. [Google Scholar]
- Bailey, C.A.; Piotr, B.; Malick Waseem, A. The use of the intestinal epithelial cell culture model, Caco-2, in pharmaceutical development. Adv. Drug Deliv. Rev. 1996, 22, 85–103. [Google Scholar] [CrossRef]
- Senem, K.; Esra, C.; Charlotte, G.; John, V.C.J.I. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review. Int. J. Molec. Sci. 2015, 16, 21555–21574. [Google Scholar]
- Sun, H.; Chow, E.C.; Liu, S.; Du, Y.; Pang, K.S. The Caco-2 cell monolayer: Usefulness and limitations. Expert Opin. Drug Metab. Toxicol. 2008, 4, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Win, K.Y.; Feng, S.S.J. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005, 26, 2713–2722. [Google Scholar] [CrossRef] [PubMed]
- Rabinow, B.E.J. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 2005, 3, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Imono, M.; Uchiyama, H.; Yoshida, S.; Miyazaki, S.; Tozuka, Y.J.E. The elucidation of key factors for oral absorption enhancement of nanocrystal formulations: In vitro—in vivo correlation of nanocrystals. Eur. J. Pharm. Biopharm. 2019, 146, 84–92. [Google Scholar] [CrossRef] [PubMed]
Pure MLX Material | Physical Mixture | PVP-k17 | MLX-NCs-A | MLX-NCs-B | MLX-NCs-C | |
---|---|---|---|---|---|---|
Enthalpy (J/g) | 129.0 | 71.5 | 41.8 | 13.8 | 12.9 | 12.3 |
MLX-NCs-A | MLX-NCs-B | MLX-NCs-C | |
---|---|---|---|
AUC0–∞ (μg h/mL) | 55.20 ± 16.53 ΔΔΔ | 67.72 ± 9.34 *** | 197.58 ± 30.90 |
t1/2 (1/h) | 23.32 ± 10.45 Δ | 20.00 ± 2.10 *** | 44.78 ± 8.18 |
Cmax (μg/mL) | 1.90 ± 0.17 ΔΔΔ | 2.20 ± 0.60 *** | 3.97 ± 0.32 |
Tmax (h) | 4.67 ± 1.50 | 5.33 ± 0.94 *** | 5.67 ± 0.75 |
Ka (1/h) | 1.22 ± 1.03 ΔΔ | 2.35 ± 1.93 *** | 6.80 ± 1.07 |
MRT (h) | 33.64 ± 15.07 ΔΔΔ | 28.85 ± 3.03 *** | 60.98 ± 11.64 |
AUMC (h2 μg/mL) | 2591.33 ± 1607.43 ΔΔΔ | 1998.97 ± 318.74 *** | 14234.53 ± 4810.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Tian, Y.; Zhang, H.; Jia, Q.; Chen, X.; Kang, D.; Du, Y.; Song, S.; Zheng, A. The Evaluation of Meloxicam Nanocrystals by Oral Administration with Different Particle Sizes. Molecules 2022, 27, 421. https://doi.org/10.3390/molecules27020421
Yu Y, Tian Y, Zhang H, Jia Q, Chen X, Kang D, Du Y, Song S, Zheng A. The Evaluation of Meloxicam Nanocrystals by Oral Administration with Different Particle Sizes. Molecules. 2022; 27(2):421. https://doi.org/10.3390/molecules27020421
Chicago/Turabian StyleYu, Yao, Yang Tian, Hui Zhang, Qingxian Jia, Xuejun Chen, Dongzhou Kang, Yimeng Du, Shenghan Song, and Aiping Zheng. 2022. "The Evaluation of Meloxicam Nanocrystals by Oral Administration with Different Particle Sizes" Molecules 27, no. 2: 421. https://doi.org/10.3390/molecules27020421
APA StyleYu, Y., Tian, Y., Zhang, H., Jia, Q., Chen, X., Kang, D., Du, Y., Song, S., & Zheng, A. (2022). The Evaluation of Meloxicam Nanocrystals by Oral Administration with Different Particle Sizes. Molecules, 27(2), 421. https://doi.org/10.3390/molecules27020421