Mathematical Modelling of Glyphosate Molecularly Imprinted Polymer-Based Microsensor with Multiple Phenomena
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of the Microsensor
2.3. EIS detection Method
3. Modeling of the Microsensor
3.1. Mathematical Model
3.2. Numerical Simulation
4. Results and Discussions
4.1. Model Validation
4.2. Analysis of Theoretical Results
4.3. Comparison between MIPs and NIP
4.4. Effects of Differents Parameters on the Impedance Response of CS-MIPs/CMA/Au
4.4.1. Effect of Coefficient n
4.4.2. Effect of the Standard Rate Constant k°
4.4.3. Effect of Coefficient Q
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valavanidis, A. Glyphosate, the most widely used herbicide. In Health and Safety Issues. Why Scientists Differ in Their Evaluation of Its Adverse Health Effects; University Campus Zografou: Athens, Greece, 2018. [Google Scholar]
- Torretta, V.; Katsoyiannis, I.; Viotti, P.; Rada, E. Critical Review of the Effects of Glyphosate Exposure to the Environment and Humans through the Food Supply Chain. Sustainability 2018, 10, 950. [Google Scholar] [CrossRef] [Green Version]
- Krüger, M.; Schledorn, P.; Schrödl, W.; Hoppe, H.-W.; Lutz, W.; Shehata, A.A. Detection of Glyphosate Residues in Animals and Humans. J. Environ. Anal. Toxicol. 2014, 4, 1–5. [Google Scholar]
- Séralini, G.-E.; Clair, E.; Mesnage, R.; Gress, S.; Defarge, N.; Malatesta, M.; Hennequin, D.; de Vendômois, J.S. Republished Study: Long-Term Toxicity of a Roundup Herbicide and a Roundup-Tolerantgenetically Modified Maize. Environ. Sci. Eur. 2014, 26, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Herbert, L.T.; Vázquez, D.E.; Arenas, A.; Farina, W.M. Effects of Field-Realistic Doses of Glyphosate on Honeybee Appetitive Behaviour. J. Exp. Biol. 2014, 217, 3457–3464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G. Environmental and Health Effects of the Herbicide Glyphosate. Sci. Total Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Ohtonen, R.; Munson, A.; Brand, D. Soil Microbial Community Response to Silvicultural Intervention in Coniferous Plantation Ecosystems. Ecol. Appl. 1992, 2, 363–375. [Google Scholar] [CrossRef]
- IARC Monograph on Glyphosate. Available online: Https://Www.Iarc.Fr/En/Media-Center/Iarcnews/2016/Glyphosate_IARC2016.Ph (accessed on 9 December 2021).
- Xu, J.; Smith, S.; Smith, G.; Wang, W.; Li, Y. Glyphosate Contamination in Grains and Foods: An Overview. Food Control 2019, 106, 106710. [Google Scholar] [CrossRef]
- Cahuantzi-Muñoz, S.L.; González-Fuentes, M.A.; Ortiz-Frade, L.A.; Torres, E.; Ţălu, Ş.; Trejo, G.; Méndez-Albores, A. Electrochemical Biosensor for Sensitive Quantification of Glyphosate in Maize Kernels. Electroanalysis 2019, 31, 927–935. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Electrochemical Sensors Based on Magnetic Molecularly Imprinted Polymers: A Review. Anal. Chim. Acta 2017, 960, 1–17. [Google Scholar] [CrossRef]
- Scheller, F.W.; Zhang, X.; Yarman, A.; Wollenberger, U.; Gyurcsányi, R.E. Molecularly Imprinted Polymer-Based Electrochemical Sensors for Biopolymers. Curr. Opin. Electrochem. 2019, 14, 53–59. [Google Scholar] [CrossRef] [Green Version]
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2018, 119, 94–119. [Google Scholar] [CrossRef]
- Janczura, M.; Luliński, P.; Sobiech, M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. Materials 2021, 14, 1850. [Google Scholar] [CrossRef]
- Leibl, N.; Haupt, K.; Gonzato, C.; Duma, L. Molecularly Imprinted Polymers for Chemical Sensing: A Tutorial Review. Chemosensors 2021, 9, 123. [Google Scholar] [CrossRef]
- Spychalska, K.; Zając, D.; Baluta, S.; Halicka, K.; Cabaj, J. Functional Polymers Structures for (Bio) Sensing Application—A Review. Polymers 2020, 12, 1154. [Google Scholar] [CrossRef]
- Saylan, Y.; Akgönüllü, S.; Yavuz, H.; Ünal, S.; Denizli, A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors 2019, 19, 1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, B.B.; Jauhari, D.; Tiwari, M.P. Doubly Imprinted Polymer Nanofilm-Modified Electrochemical Sensor for Ultra-Trace Simultaneous Analysis of Glyphosate and Glufosinate. Biosens. Bioelectron. 2014, 59, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Mazouz, Z.; Rahali, S.; Fourati, N.; Zerrouki, C.; Aloui, N.; Seydou, M.; Yaakoubi, N.; Chehimi, M.; Othmane, A.; Kalfat, R. Highly Selective Polypyrrole MIP-Based Gravimetric and Electrochemical Sensors for Picomolar Detection of Glyphosate. Sensors 2017, 17, 2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Zhang, Y.; Wu, K.; Zhang, L.; Ge, S.; Yu, J. A Molecularly Imprinted Polypyrrole for Ultrasensitive Voltammetric Determination of Glyphosate. Microchim. Acta 2017, 184, 1959–1967. [Google Scholar] [CrossRef]
- Han, X.-J.; Ji, X.-F.; Zhang, Q.; Sun, J.-W.; Sun, P.-X.; Pan, W.-J.; Wang, J.; Yang, C. Giant “Molecular Capacitor” Arrays—Portable Sensors to Determine Ionizable Compounds. J. Electroanal. Chem. 2020, 865, 114108. [Google Scholar] [CrossRef]
- Turiel, E.; Martín-Esteban, A. Molecularly Imprinted Polymers for Sample Preparation: A Review. Anal. Chim. Acta 2010, 668, 87–99. [Google Scholar] [CrossRef]
- Dutta, P.K.; Dutta, J.; Tripathi, V. Chitin and Chitosan: Chemistry, Properties and Applications. J. Sci. Ind. Res. 2004, 63, 20–31. [Google Scholar]
- Wang, Y.; Wang, E.; Wu, Z.; Li, H.; Zhu, Z.; Zhu, X.; Dong, Y. Synthesis of Chitosan Molecularly Imprinted Polymers for Solid-Phase Extraction of Methandrostenolone. Carbohydr. Polym. 2014, 101, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, M.; Tang, W.; Zhu, Y.; Wang, L.; Wang, Q.; He, P.; Fang, Y. Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid Using a Palladium Nanoparticle/Graphene/Chitosan Modified Electrode. J. Electroanal. Chem. 2013, 695, 10–16. [Google Scholar] [CrossRef]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Abroa-Nemeir, I.; Ben Halima, H.; Gallardo-Gonzalez, J.; El Alami El Hassani, N.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; et al. Electrochemical Impedance Spectroscopy Determination of Glyphosate Using a Molecularly Imprinted Chitosan. Sens. Actuators B Chem. 2020, 309, 127753. [Google Scholar] [CrossRef]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; Zine, N.; Errachid, A. Experimental Study and Mathematical Modeling of a Glyphosate Impedimetric Microsensor Based on Molecularly Imprinted Chitosan Film. Chemosensors 2020, 8, 104. [Google Scholar] [CrossRef]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Jaffrezic-Renault, N.; Zine, N.; Errachid, A. Electrochemical Sensors Based on Molecularly Imprinted Chitosan: A Review. TrAC Trends Anal. Chem. 2020, 130, 115982. [Google Scholar] [CrossRef]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; Zine, N.; Errachid, A. Electrochemical Impedance Spectroscopy Microsensor Based on Molecularly Imprinted Chitosan Film Grafted on a 4-Aminophenylacetic Acid (CMA) Modified Gold Electrode, for the Sensitive Detection of Glyphosate. Front. Chem. 2021, 9, 621057. [Google Scholar] [CrossRef] [PubMed]
- Lefrou, C.; Fabry, P.; Poignet, J.-C. Électrochimie: Concepts Fondamentaux Illustrés, Nouvelle Edition; Collection Grenoble Sciences; EDP Sciences: Les Ulis, France, 2013. [Google Scholar]
- Miomandre, F.; Sadki, S.; Audebert, P.; Méallet-Renault, R.; Amatore, C. Électrochimie: Des Concepts Aux Applications, 4th ed.; Sciences sup. Chimie; Dunod: Paris, France, 2019. [Google Scholar]
- Sakar, H.; Celik, I.; Balcik Canbolat, C.; Keskinler, B.; Karagunduz, A. Electro-Sorption of Ammonium by a Modified Membrane Capacitive Deionization Unit. Sep. Sci. Technol. 2017, 52, 2591–2599. [Google Scholar] [CrossRef]
- Jaffrezic-Renault, N.; Dzyadevych, S.V. Conductometric Microbiosensors for Environmental Monitoring. Sensors 2008, 8, 2569–2588. [Google Scholar] [CrossRef] [Green Version]
- Moreno, T.V.; Malacarne, L.C.; Baesso, M.L.; Qu, W.; Dy, E.; Xie, Z.; Fahlman, J.; Shen, J.; Astrath, N.G. Potentiometric Sensors with Chalcogenide Glasses as Sensitive Membranes: A Short Review. J. Non-Cryst. Solids 2018, 495, 8–18. [Google Scholar] [CrossRef]
- Kanyong, P.; Krampa, F.D.; Aniweh, Y.; Awandare, G.A. Enzyme-Based Amperometric Galactose Biosensors: A Review. Microchim. Acta 2017, 184, 3663–3671. [Google Scholar] [CrossRef] [Green Version]
- Farghaly, O.A.; Hameed, R.A.; Abu-Nawwas, A.-A.H. Analytical Application Using Modern Electrochemical Techniques. Int. J. Electrochem. Sci. 2014, 9, 3287–3318. [Google Scholar]
- Park, S.-M.; Yoo, J.-S. Peer Reviewed: Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements. Anal. Chem. 2003, 75, 455A–461A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacco, A. Electrochemical Impedance Spectroscopy: Fundamentals and Application in Dye-Sensitized Solar Cells. Renew. Sustain. Energy Rev. 2017, 79, 814–829. [Google Scholar] [CrossRef]
- Gao, M.; Hazelbaker, M.S.; Kong, R.; Orazem, M.E. Mathematical Model for the Electrochemical Impedance Response of a Continuous Glucose Monitor. Electrochim. Acta 2018, 275, 119–132. [Google Scholar] [CrossRef]
- Tkach, V.; de Oliveira, S.C.; de Oliveira, S.C.; Neves, V.S.; Ojani, R.; Yagodynets, P.I. The Electrochemical Oxidation of Procarbazine on Cobalt (III) Oxyhydroxide and Its Mathematical Evaluation. Anal. Bioanal. Electrochem 2016, 8, 432. [Google Scholar]
- Los, P.; Laviron, E. The Ac Faradaic Impedance of a Redox System with Langmuirian Adsorption of the Reactants. J. Electroanal. Chem. 1997, 432, 85–99. [Google Scholar] [CrossRef]
- Lee, M.; Zine, N.; Baraket, A.; Zabala, M.; Campabadal, F.; Caruso, R.; Trivella, M.G.; Jaffrezic-Renault, N.; Errachid, A. A Novel Biosensor Based on Hafnium Oxide: Application for Early Stage Detection of Human Interleukin-10. Sens. Actuators B Chem. 2012, 175, 201–207. [Google Scholar] [CrossRef]
- Sapountzi, E. Développement de Nouveaux Supports Basés Sur Des Nanofibres de Matériaux Hybrides Électrofilées Pour Le Développement de Biocapteurs Électrochimiques; HAL Publisher: Lyon, France, 2015. [Google Scholar]
- Brug, G.; Van Den Eeden, A.; Sluyters-Rehbach, M.; Sluyters, J. The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element. J. Electroanal. Chem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Liaw, B.Y.; Zhang, J. Graphical Analysis of Electrochemical Impedance Spectroscopy Data in Bode and Nyquist Representations. J. Power Sources 2016, 309, 82–98. [Google Scholar] [CrossRef]
- Stoynov, Z.; Vladikova, D. Differential Impedance Analysis; Marin Drinov Academic Publishing House: Sofia, Bulgaria, 2005. [Google Scholar]
- Zoltowski, P. On the Electrical Capacitance of Interfaces Exhibiting Constant Phase Element Behaviour. J. Electroanal. Chem. 1998, 443, 149–154. [Google Scholar] [CrossRef]
- Jorcin, J.-B. Spectroscopie d’impédance Electrochimique Locale: Caracterisation de La Delamination Des Peintures et de La Corrosion Des Alliages Al-Cu. Ph.D. Thesis, University of Toulouse, Toulouse, France, 2007. [Google Scholar]
- Hinderliter, B.R.; Croll, S.G.; Tallman, D.E.; Su, Q.; Bierwagen, G.P. Interpretation of EIS Data from Accelerated Exposure of Coated Metals Based on Modeling of Coating Physical Properties. Electrochim. Acta 2006, 51, 4505–4515. [Google Scholar] [CrossRef]
- Terbouche, A.; Lameche, S.; Ait-Ramdane-Terbouche, C.; Guerniche, D.; Lerari, D.; Bachari, K.; Hauchard, D. A New Electrochemical Sensor Based on Carbon Paste Electrode/Ru(III) Complex for Determination of Nitrite: Electrochemical Impedance and Cyclic Voltammetry Measurements. Measurement 2016, 92, 524–533. [Google Scholar] [CrossRef]
- Tanujit, B.; Asokan, S. Electrochemical Impedance Spectroscopy Study of AgI-Ag2O-MoO3 Glasses: Understanding the Diffusion, Relaxation, Fragility and Power Law Behavior. arXiv 2019, arXiv:1906.07438. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Sellergren, B.; Shea, K.J. Influence of Polymer Morphology on the Ability of Imprinted Network Polymers to Resolve Enantiomers. J. Chromatogr. A 1993, 635, 31–49. [Google Scholar] [CrossRef]
- Fellner, P.; Matiašovský, K. On the Temperature Dependence of the Double-Layer Capacitance. Electrochim. Acta 1972, 17, 233–236. [Google Scholar] [CrossRef]
- Pangarov, N.; Christova, I.; Atanasov, M.; Kertov, V. Double-Layer Capacitance Measurements by a Pulse Potentiostatic Method. Electrochim. Acta 1967, 12, 717–721. [Google Scholar] [CrossRef]
- De Levie, R. On Porous Electrodes in Electrolyte Solutions: I. Capacitance Effects. Electrochim. Acta 1963, 8, 751–780. [Google Scholar] [CrossRef]
Parameters | Variation Range | Unit |
---|---|---|
l | [10−3,10−5] | cm |
k1° | [10−3,10−5] | cm·s−1 |
Q1 | [10−5,10−8] | sn·Ω−1 |
n1 | [−1,1] | / |
k2° | [10−3,10−5] | cm·s−1 |
Q2 | [10−5,10−8] | sn·Ω−1 |
n2 | [−1,1] | / |
[GLY] | (μm) | Rs (Ω) | k1° (μm/s) | Rct1 (Ω) | Q1·107 (Sn Ω−1) | n1 | k2° (μm/s) | Rct2 (Ω) | Q2·105 (Sn Ω−1) | n2 | e1 × 104 | e2 × 104 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Blank | 36 | 151.14 | 5.5 | 15,132 | 5.60 | 0.79 | 1.92 | 43,348 | 1.07 | 0.96 | 4.20 | 3.59 |
0.31 pg/mL | 36 | 151.14 | 3.5 | 23,779 | 5.45 | 0.79 | 2.25 | 32,638 | 1.40 | 0.96 | 7.04 | 3.88 |
6.25 pg/mL | 36 | 151.14 | 3.1 | 26,848 | 5.17 | 0.79 | 2.87 | 28,999 | 1.65 | 0.96 | 6.52 | 6.84 |
125 pg/mL | 36 | 151.14 | 2.7 | 30,825 | 5.02 | 0.79 | 3.58 | 23,248 | 1.77 | 0.96 | 7.50 | 9.94 |
2.5 ng/mL | 36 | 151.14 | 2.4 | 34,678 | 4.86 | 0.79 | 4.17 | 19,959 | 2.08 | 0.96 | 0.98 | 0.38 |
50 ng/mL | 36 | 151.14 | 2.0 | 41,614 | 4.56 | 0.79 | 5.21 | 14,083 | 2.30 | 0.96 | 2.88 | 9.57 |
[GLY] | (μm) | Rs (Ω) | k1° (μm/s) | Rct1 (Ω) | Q1·107 (Sn Ω−1) | n1 | k2° (μm/s) | Rct2 (Ω) | Q2·107 (Sn Ω−1) | n2 | e1 × 104 | e2 × 104 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Blank | 56.8 | 238.5 | 1.39 | 59,563 | 4.92 | 0.85 | 17.02 | 4885 | 3.56 | 0.98 | 2.22 | 4.96 |
0.31 pg/mL | 56.8 | 238.5 | 1.41 | 58,850 | 4.65 | 0.85 | 18.60 | 4469 | 3.81 | 0.98 | 4.15 | 3.58 |
6.25 pg/mL | 56.8 | 238.5 | 1.36 | 61,271 | 4.71 | 0.85 | 13.09 | 6349 | 4.02 | 0.98 | 3.54 | 5.51 |
125 pg/mL | 56.8 | 238.5 | 1.45 | 57,234 | 4.44 | 0.85 | 8.98 | 9257 | 4.21 | 0.98 | 5.63 | 8.36 |
2.5 ng/mL | 56.8 | 238.5 | 1.39 | 59,571 | 4.86 | 0.85 | 9.28 | 8953 | 3.85 | 0.98 | 5.45 | 4.48 |
50 ng/mL | 56.8 | 238.5 | 1.43 | 58,223 | 4.64 | 0.85 | 9.50 | 8742 | 3.66 | 0.98 | 4.48 | 4.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Zine, N.; Errachid, A.; Jaffrezic-Renault, N. Mathematical Modelling of Glyphosate Molecularly Imprinted Polymer-Based Microsensor with Multiple Phenomena. Molecules 2022, 27, 493. https://doi.org/10.3390/molecules27020493
Zouaoui F, Bourouina-Bacha S, Bourouina M, Zine N, Errachid A, Jaffrezic-Renault N. Mathematical Modelling of Glyphosate Molecularly Imprinted Polymer-Based Microsensor with Multiple Phenomena. Molecules. 2022; 27(2):493. https://doi.org/10.3390/molecules27020493
Chicago/Turabian StyleZouaoui, Fares, Saliha Bourouina-Bacha, Mustapha Bourouina, Nadia Zine, Abdelhamid Errachid, and Nicole Jaffrezic-Renault. 2022. "Mathematical Modelling of Glyphosate Molecularly Imprinted Polymer-Based Microsensor with Multiple Phenomena" Molecules 27, no. 2: 493. https://doi.org/10.3390/molecules27020493
APA StyleZouaoui, F., Bourouina-Bacha, S., Bourouina, M., Zine, N., Errachid, A., & Jaffrezic-Renault, N. (2022). Mathematical Modelling of Glyphosate Molecularly Imprinted Polymer-Based Microsensor with Multiple Phenomena. Molecules, 27(2), 493. https://doi.org/10.3390/molecules27020493