Application of Deep Eutectic Solvents in the Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-Ones: A Comparison of Selected Green Chemistry Methods
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials and Methods
3.2. Preparation of DESs
3.3. Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-Ones by Mixing and Heating Preparation of DESs
3.4. Microwave-Assisted Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-ones
3.5. Ultrasound-Assisted Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-ones
3.6. Recycling of DES
3.7. Characterization of Compounds
3.7.1. 2-Mercapto-3-methylquinazolin-4(3H)-one (6a)
3.7.2. 3-Ethyl-2-mercaptoquinazolin-4(3H)-one (6b)
3.7.3. 3-Allyl-2-mercaptoquinazolin-4(3H)-one (6c)
3.7.4. 2-Mercapto-3-phenylquinazolin-4(3H)-one (6d)
3.7.5. 3-Benzyl-2-mercaptoquinazolin-4(3H)-one (6e)
3.7.6. 2-Mercapto-3-(p-tolyl)quinazolin-4(3H)-one (6f)
3.7.7. 3-(4-Fluorophenyl)-2-mercaptoquinazolin-4(3H)-one (6g)
3.7.8. 3-(4-Chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (6h)
3.7.9. 3-(4-Bromophenyl)-2-mercaptoquinazolin-4(3H)-one (6i)
3.7.10. 2-Mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one (6j)
3.7.11. 3-(3-Chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (6k)
3.7.12. 6-Iodo-2-mercapto-3-methylquinazolin-4(3H)-one (7a)
3.7.13. 3-Ethyl-6-iodo-2-mercaptoquinazolin-4(3H)-one (7b)
3.7.14. 3-Allyl-6-iodo-2-mercaptoquinazolin-4(3H)-one (7c)
3.7.15. 6-Iodo-2-mercapto-3-phenylquinazolin-4(3H)-one (7d)
3.7.16. 3-Benzyl-6-iodo-2-mercaptoquinazolin-4(3H)-one (7e)
3.7.17. 6-Iodo-2-mercapto-3-(p-tolyl)quinazolin-4(3H)-one (7f)
3.7.18. 3-(4-Fluorophenyl)-6-iodo-2-mercaptoquinazolin-4(3H)-one (7g)
3.7.19. 3-(4-Chlorophenyl)-6-iodo-2-mercaptoquinazolin-4(3H)-one (7h)
3.7.20. 3-(4-Bromophenyl)-6-iodo-2-mercaptoquinazolin-4(3H)-one (7i)
3.7.21. 6-Iodo-2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one (7j)
3.7.22. 3-(3-Chlorophenyl)-6-iodo-2-mercaptoquinazolin-4(3H)-one (7k)
3.7.23. 6-Bromo-2-mercapto-3-methylquinazolin-4(3H)-one (8a)
3.7.24. 6-Bromo-3-ethyl-2-mercaptoquinazolin-4(3H)-one (8b)
3.7.25. 3-Allyl-6-bromo-2-mercaptoquinazolin-4(3H)-one (8c)
3.7.26. 6-Bromo-2-mercapto-3-phenylquinazolin-4(3H)-one (8d)
3.7.27. 3-Benzyl-6-bromo-2-mercaptoquinazolin-4(3H)-one (8e)
3.7.28. 6-Bromo-2-mercapto-3-(p-tolyl)quinazolin-4(3H)-one (8f)
3.7.29. 6-Bromo-3-(4-fluorophenyl)-2-mercaptoquinazolin-4(3H)-one (8g)
3.7.30. 6-Bromo-3-(4-chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (8h)
3.7.31. 6-Bromo-3-(4-bromophenyl)-2-mercaptoquinazolin-4(3H)-one (8i)
3.7.32. 6-Bromo-2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one (8j)
3.7.33. 6-Bromo-3-(3-chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (8k)
3.7.34. 7-Chloro-2-mercapto-3-methylquinazolin-4(3H)-one (9a)
3.7.35. 7-Chloro-3-ethyl-2-mercaptoquinazolin-4(3H)-one (9b)
3.7.36. 3-Allyl-7-chloro-2-mercaptoquinazolin-4(3H)-one (9c)
3.7.37. 7-Chloro-2-mercapto-3-phenylquinazolin-4(3H)-one (9d)
3.7.38. 3-Benzyl-7-chloro-2-mercaptoquinazolin-4(3H)-one (9e)
3.7.39. 7-Chloro-2-mercapto-3-(p-tolyl)quinazolin-4(3H)-one (9f)
3.7.40. 7-Chloro-3-(4-fluorophenyl)-2-mercaptoquinazolin-4(3H)-one (9g)
3.7.41. 7-Chloro-3-(4-chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (9h)
3.7.42. 3-(4-Bromophenyl)-7-chloro-2-mercaptoquinazolin-4(3H)-one (9i)
3.7.43. 7-Chloro-2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one (9j)
3.7.44. 7-Chloro-3-(3-chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (9k)
3.7.45. 6,8-Dichloro-2-mercapto-3-methylquinazolin-4(3H)-one (10a)
3.7.46. 6,8-Dichloro-3-ethyl-2-mercaptoquinazolin-4(3H)-one (10b)
3.7.47. 3-Allyl-6,8-dichloro-2-mercaptoquinazolin-4(3H)-one (10c)
3.7.48. 6,8-Dichloro-2-mercapto-3-phenylquinazolin-4(3H)-one (10d)
3.7.49. 3-Benzyl-6,8-dichloro-2-mercaptoquinazolin-4(3H)-one (10e)
3.7.50. 6,8-Dichloro-2-mercapto-3-(p-tolyl)quinazolin-4(3H)-one (10f)
3.7.51. 6,8-Dichloro-3-(4-fluorophenyl)-2-mercaptoquinazolin-4(3H)-one (10g)
3.7.52. 6,8-Dichloro-3-(4-chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (10h)
3.7.53. 3-(4-Bromophenyl)-6,8-dichloro-2-mercaptoquinazolin-4(3H)-one (10i)
3.7.54. 6,8-Dichloro-2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one (10j)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Asif, M. Chemical Characteristics, Synthetic Methods, and Biological Potential of Quinazoline and Quinazolinone Derivatives. Int. J. Med. Chem. 2014, 2014, 395637. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, M.A.; Mokle, S.S.; Vibhute, Y.B. Synthesis of 6-Iodo / Bromo- 3-Amino-2-Methylquinazolin-4 (3H)-Ones by Direct Halogenation and Their Schiff Base Derivatives. ARKIVOC 2006, 2006, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.A.; Ayyad, R.R.; Shawer, T.Z.; Abdel-Aziz, A.A.-M.; El-Azab, A.S. Synthesis and Antitumor Evaluation of Trimethoxyanilides Based on 4(3H)-Quinazolinone Scaffolds. Eur. J. Med. Chem. 2016, 112, 106–113. [Google Scholar] [CrossRef]
- El-Azab, A.S.; Eltahir, K.E.H. Design and Synthesis of Novel 7-Aminoquinazoline Derivatives: Antitumor and Anticonvulsant Activities. Bioorg. Med. Chem. Lett. 2012, 22, 1879–1885. [Google Scholar] [CrossRef] [PubMed]
- Sakr, A.; Rezq, S.; Ibrahim, S.M.; Soliman, E.; Baraka, M.M.; Romero, D.G.; Kothayer, H. Design and Synthesis of Novel Quinazolinones Conjugated Ibuprofen, Indole Acetamide, or Thioacetohydrazide as Selective COX-2 Inhibitors: Anti-Inflammatory, Analgesic and Anticancer Activities. J. Enzym. Inhib. Med. Chem. 2021, 36, 1810–1828. [Google Scholar] [CrossRef]
- El-Subbagh, H.I.; Sabry, M.A. 2-Substituted-Mercapto-Quinazolin-4(3H)-Ones as DHFR Inhibitors. Mini Rev. Med. Chem. 2021, 21, 2249–2260. [Google Scholar] [CrossRef]
- El-Azab, A.S.; Abdel-Aziz, A.A.-M.; Bua, S.; Nocentini, A.; AlSaif, N.A.; Alanazi, M.M.; El-Gendy, M.A.; Ahmed, H.E.A.; Supuran, C.T. S-Substituted 2-Mercaptoquinazolin-4(3H)-One and 4-Ethylbenzensulfonamides Act as Potent and Selective Human Carbonic Anhydrase IX and XII Inhibitors. J. Enzym. Inhib. Med. Chem. 2020, 35, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Hour, M.J.; Huang, L.J.; Kuo, S.C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K.H. 6-Alkylamino- and 2,3-Dihydro-3’-Methoxy-2-Phenyl-4-Quinazolinones and Related Compounds: Their Synthesis, Cytotoxicity, and Inhibition of Tubulin Polymerization. J. Med. Chem. 2000, 43, 4479–4487. [Google Scholar] [CrossRef] [PubMed]
- Nerkar, A.; Saxena, A.; Ghone, S.; Thaker, A. In Silico Screening, Synthesis and In Vitro Evaluation of Some Quinazolinone and Pyridine Derivatives as Dihydrofolate Reductase Inhibitors for Anticancer Activity. Eur.-J. Chem. 2009, 6, S97–S102. [Google Scholar] [CrossRef]
- Cheng, C.; Yun, F.; He, J.; Ullah, S.; Yuan, Q. Design, Synthesis and Biological Evaluation of Novel Thioquinazolinone-Based 2-Aminobenzamide Derivatives as Potent Histone Deacetylase (HDAC) Inhibitors. Eur. J. Med. Chem. 2019, 173, 185–202. [Google Scholar] [CrossRef]
- Moussa, G.; Alaaeddine, R.; Alaeddine, L.M.; Nassra, R.; Belal, A.S.F.; Ismail, A.; El-Yazbi, A.F.; Abdel-Ghany, Y.S.; Hazzaa, A. Novel Click Modifiable Thioquinazolinones as Anti-Inflammatory Agents: Design, Synthesis, Biological Evaluation and Docking Study. Eur. J. Med. Chem. 2018, 144, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Auti, P.S.; George, G.; Paul, A.T. Recent Advances in the Pharmacological Diversification of Quinazoline/Quinazolinone Hybrids. RSC Adv. 2020, 10, 41353–41392. [Google Scholar] [CrossRef]
- Kumar Tiwary, B.; Pradhan, K.; Kumar Nanda, A.; Chakraborty, R. Implication of Quinazoline-4(3H)-Ones in Medicinal Chemistry: A Brief Review. J. Chem. Biol. Ther. 2015, 1, 104. [Google Scholar] [CrossRef]
- Converso, A.; Hartingh, T.; Garbaccio, R.M.; Tasber, E.; Rickert, K.; Fraley, M.E.; Yan, Y.; Kreatsoulas, C.; Stirdivant, S.; Drakas, B.; et al. Development of Thioquinazolinones, Allosteric Chk1 Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 1240–1244. [Google Scholar] [CrossRef]
- Cao, S.-L.; Zhang, M.; Feng, Y.-P.; Jiang, Y.-Y.; Zhang, N. Synthesis of 3-Aryl-4(3H)-Quinazolinones from Anthranilic Acids and Triethyl Orthoformate. Synth. Comm. 2008, 38, 2227–2236. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Molnar, M.; Damm, M.; Reidlinger, C.; Dabiri, M.; Kappe, C.O. Parallel Microwave Synthesis of 2-Styrylquinazolin-4(3H)-Ones in a High-Throughput Platform Using HPLC/GC Vials as Reaction Vessels. J. Comb. Chem. 2009, 11, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Komar, M.; Molnar, M.; Konjarević, A. Screening of Natural Deep Eutectic Solvents for Green Synthesis of 2-Methyl-3-Substituted Quinazolinones and Microwave-Assisted Synthesis of 3-Aryl Quinazolinones in Ethanol. Croat. Chem. Acta 2019, 92, 511–517. [Google Scholar] [CrossRef]
- Purkhosrow, A.; Khalili, A.; Chih Ho, A.; Mowlazadeh Haghighi, S.; Fakher, S.; Khalafi-Nezhad, A. Highly Efficient, One Pot, Solvent and Catalyst, Free Synthesis of Novel Quinazoline Derivatives under Ultrasonic Irradiation and Their Vasorelaxant Activity Isolated Thoracic Aorta of Rat. Iran. J. Pharm. Res. 2019, 18, 607–619. [Google Scholar] [CrossRef]
- Adib, M.; Ansari, S.; Mohammadi, A.; Bijanzadeh, H. A Novel, One-Pot, Solvent-, and Catalyst-Free Synthesis of 2-Aryl/Alkyl-4(3H)-Quinazolinones. Tetrahedron Lett. 2010, 51, 30–32. [Google Scholar] [CrossRef]
- Abbas, S.; Barsoum, F.; Georgey, H.; Raafat, E. Synthesis and Antitumor Activity of Certain 2,3,6-Trisubstituted Quinazolin-4(3H)-One Derivatives. Bull. Fac. Pharm. Cairo Univ. 2013, 51, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Ren, D.; Zhang, J.; Liu, J.; Zhao, J.; Wang, L.; Zhang, F. Synthesis, Antibacterial Activities Evaluation, and Docking Studies of Some 2-Substituted-3-(Phenylamino)-Dihydroquinazolin-4(1H)-Ones. Tetrahedron Lett. 2015, 56, 4076–4079. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, D.; Ma, Y.; Wang, W.; Wu, H. CuO Nanoparticles Catalyzed Simple and Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones and Quinazolin-4(3H)-Ones under Ultrasound Irradiation in Aqueous Ethanol under Ultrasound Irradiation in Aqueous Ethanol. Tetrahedron 2014, 70, 5274–5282. [Google Scholar] [CrossRef]
- Lobo, H.R.; Singh, B.S.; Shankarling, G.S. Bio-Compatible Eutectic Mixture for Multi-Component Synthesis: A Valuable Acidic Catalyst for Synthesis of Novel 2,3-Dihydroquinazolin-4(1H)-One Derivatives. Catal. Commun. 2012, 27, 179–183. [Google Scholar] [CrossRef]
- Jagani, C.; Sojitra, N.; Vanparia, S.; Patel, T.; Dixit, R.; Dixit, B. Microwave Promoted Synthesis and Antimicrobial Activity of 3-Thiazole Substituted 2-Styryl-4(3H)-Quinazolinone Derivatives. J. Saudi Chem. Soc. 2012, 16, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Komar, M.; Molnar, M.; Jukić, M.; Glavaš-Obrovac, L.; Opačak-Bernardi, T. Green Chemistry Approach to the Synthesis of 3-Substituted-Quinazolin-4(3H)-Ones and 2-Methyl-3-Substituted-Quinazolin-4(3H)-Ones and Biological Evaluation. Green Chem. Lett. Rev. 2020, 13, 93–101. [Google Scholar] [CrossRef]
- Li, X.; Lin, Q.; Wang, L. One-Pot Solvent-Free Synthesis of 2,3-Disubstituted 4(3H)-Quinazolinones Catalyzed by Long-Chain Double SO3H-Functionalized Brønsted Acidic Ionic Liquids under Microwave Irradiation. J. Iran. Chem. Soc. 2015, 12, 897–901. [Google Scholar] [CrossRef]
- Arafa, W. Deep Eutectic Solvent for an Expeditious Sono-Synthesis of Novel Series of Bis-Quinazolin- 4-One Derivatives as Potential Anti-Cancer Agents. R. Soc. Open Sci. 2019, 6, 182046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larksarp, C.; Alper, H. Palladium-Catalyzed Cyclocarbonylation of o-Iodoanilines with Heterocumulenes: Regioselective Preparation of 4(3H)-Quinazolinone Derivatives. J. Org. Chem. 2000, 65, 2773–2777. [Google Scholar] [CrossRef]
- El-Azab, A.S. Synthesis of Some New Substituted 2-Mercaptoquinazoline Analogs as Potential Antimicrobial Agents. Phosphorus Sulfur Silicon Relat. Elem. 2007, 182, 333–348. [Google Scholar] [CrossRef]
- Alafeefy, A. Some New Quinazolin-4(3H)-One Derivatives, Synthesis and Antitumor Activity. J. Saudi Chem. Soc. 2011, 15, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Al-Khuzaie, M.; Al-Majidi, S. Synthesis, Characterization and Evaluation Antimicrobial Activity of Some New Substituted 2-Mercapto-3-Phenyl-4(3H)-Quinazolinone. Iraqi J. Sci. 2014, 55, 582–593. [Google Scholar]
- Ramadan, S.K.; Elrazaz, E.Z.; Abouzid, K.A.M.; El-Naggar, A.M. Design, Synthesis and in Silico Studies of New Quinazolinone Derivatives as Antitumor PARP-1 Inhibitors. RSC Adv. 2020, 10, 29475–29492. [Google Scholar] [CrossRef]
- Molnar, M.; Klenkar, J.; Tarnai, T. Eco-Friendly Rapid Synthesis of 3-Substituted-2-Thioxo-2,3-Dihydroquinazolin-4(1H)-Ones in Choline Chloride Based Deep Eutectic Solvent. Synt. Commun. 2017, 47, 1040–1045. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Nagarajan, R. Deep Eutectic Solvent Mediated Synthesis of Quinazolinones and Dihydroquinazolinones: Synthesis of Natural Products and Drugs. RSC Adv. 2016, 6, 27378–27387. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 2003, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelkovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rew. 2020, 121, 1232–1285. [Google Scholar] [CrossRef]
- Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep Eutectic Solvents: The Organic Reaction Medium of the Century. Eur. J. Org. Chem. 2016, 2016, 612–632. [Google Scholar] [CrossRef] [Green Version]
- Inaloo, I.D.; Majnooni, S. Carbon Dioxide Utilization in the Efficient Synthesis of Carbamates by Deep Eutectic Solvents (DES) as Green and Attractive Solvent/Catalyst Systems. New J. Chem. 2019, 43, 11275–11281. [Google Scholar] [CrossRef]
- Dindarloo Inaloo, I.; Majnooni, S. Ureas as Safe Carbonyl Sources for the Synthesis of Carbamates with Deep Eutectic Solvents (DESs) as Efficient and Recyclable Solvent/Catalyst Systems. New J. Chem. 2018, 42, 13249–13255. [Google Scholar] [CrossRef]
- Wazeer, I.; Hayyan, M.; Hadj-Kali, M. Deep Eutectic Solvents: Designer Fluids for Chemical Processes. J. Chem. Technol. Biotechnol. 2018, 93, 945–958. [Google Scholar] [CrossRef]
- Kappe, C.O. Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6284. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Myers, E.J.; Rydahl, S.A.; Wang, X. Ultrasonic-Assisted Synthesis, Characterization, and Application of a Metal–Organic Framework: A Green General Chemistry Laboratory Project. J. Chem. Educ. 2019, 96, 2286–2291. [Google Scholar] [CrossRef]
- Molnar, M.; Periš, I.; Komar, M. Choline Chloride Based Deep Eutectic Solvents as a Tuneable Medium for Synthesis of Coumarinyl 1,2,4-Triazoles: Effect of Solvent Type and Temperature. Eur. J. Org. Chem. 2019, 2019, 2688–2694. [Google Scholar] [CrossRef]
- Molnar, M.; Jakovljević, M.; Jokić, S. Optimization of the Process Conditions for the Extraction of Rutin from Ruta graveolens L. by Choline Chloride Based Deep Eutectic Solvents. Solvent Extr. Res. Dev. Jpn. 2018, 25, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Cunha, S.C.; Fernandes, J.O. Extraction Techniques with Deep Eutectic Solvents. Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Mjalli, F.S.; Ahmed, O.U. Characteristics and Intermolecular Interaction of Eutectic Binary Mixtures: Reline and Glyceline. Korean J. Chem. Eng. 2016, 33, 337–343. [Google Scholar] [CrossRef]
- Castro, A.; Jerez, M.J.; Gil, C.; Calderón, F.; Doménech, T.; Nueda, A.; Martínez, A. CODES, a Novel Procedure for Ligand-Based Virtual Screening: PDE7 Inhibitors as an Application Example. Eur. J. Med. Chem. 2008, 43, 1349–1359. [Google Scholar] [CrossRef]
- El-Sharief, A.; Ammar, Y.; Mohamed, Y.; El-Gaby, M. A Comparative Study of the Behavior of Cyanothioformamide and Oxazolidine (Thiones or Iminothiones) Towards Some Binucleophiles. Heteroat. Chem. 2002, 13, 291–298. [Google Scholar] [CrossRef]
- Yavari, I.; Beheshti, S. Reaction of Primary Alkylamines, Heterocumulenes, and Isatoic Anhydride, Catalyzed by Magnetic Fe3O4 Nanoparticles in H2O. Helv. Chim. Acta 2011, 94, 1825–1830. [Google Scholar] [CrossRef]
- Dou, G.; Wang, M.; Shi, D. One-Pot Synthesis of Quinazolinone Derivatives from Nitro-Compounds with the Aid of Low-Valent Titanium. J. Comb. Chem. 2009, 11, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Lakhan, R.; Srivastava, M. A Convenient Preparation of 2-Thioxo-4(3H)-Quinazolinones. Proc. Indian Acad. Sci. (Chem. Sci.) 1993, 105, 11–17. [Google Scholar] [CrossRef]
- Wang, M.; Dou, G.; Shi, D.-Q. One-pot Synthesis of 2,3-dihydro-2-thioxoquinazolin-4(1H)-ones from Nitro-compounds with the Aid of Tin(II) Chloride. J. Heterocycl. Chem. 2010, 47, 939–943. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Q.; Gong, F.; Cao, Z.; Huo, Y. A Convenient and Efficient Synthesis of 2-Thioxoquinazolinone Derivatives via Microwave Irradiation. J. Heterocycl. Chem. 2014, 52, 317–321. [Google Scholar] [CrossRef]
- El-Gaby, M.S.A.; Ammar, Y.A.; El-Sharief, A.M.S.; Zahran, M.A.; Khames, A.A. Reactivity of Cyanothioformamides and 3-(4-Bromophenyl)-5-Imino-4-Oxazolidinethione toward Ortho-Substituted Nucleophiles. Heteroat. Chem. 2002, 13, 611–616. [Google Scholar] [CrossRef]
- Al Alshaikh, M.; Danah, A.-S.; Fatima, E.-B. Synthesis of Some-2-Thioxo-3-Substituted-2,3-Dihydro-1H-Quinazolin-4-One Derivatives as Potential Antibacterial and Antifungal Agents. Res. J. Chem. Environ. 2013, 17, 48–52. [Google Scholar]
- Mayoral, J.; Melendez, E.; Merchán, F.; Sanchez, J. Preparation of 3-Aryl-4-Oxo-2-Thioxo-1,2,3,4-Tetrahydroquinazolines from Methyl N-Aryldithiocarbamates and Anthranilic Acid. Synthesis 1981, 1981, 962. [Google Scholar] [CrossRef]
Entry | DES | Molar Ratio | Yield ** (%) |
---|---|---|---|
1 | ChCl:Urea | 1:2 | 63 |
2 | ChCl:N-methylurea | 1:3 | 59 |
3 | ChCl:1,3-Dimethylurea | 1:2 | 24 |
4 | ChCl:Thiourea | 1:2 | 20 |
5 | ChCl:Acetamide | 1:2 | 33 |
6 | ChCl:Butane-1,4-diol | 1:2 | 47 |
7 | ChCl:Ethane-1,2-diol | 1:2 | 24 |
8 | ChCl:Glycerol | 1:2 | 21 |
9 | ChCl:Xylitol | 1:1 | 14 |
10 | ChCl:Sorbitol | 1:1 | 10 |
11 | ChCl:Glucose | 2:1 | * |
12 | ChCl:Fructose | 2:1 | * |
13 | ChCl:Citric acid | 1:1 | * |
14 | ChCl:Tartaric acid | 1:1 | * |
15 | ChCl:Oxalic acid | 1:1 | * |
16 | ChCl:Levulinic acid | 1:2 | * |
17 | ChCl:Lactic acid | 1:2 | * |
18 | ChCl:Malic acid | 1:1 | * |
19 | ChCl:Malonic acid | 1:1 | * |
20 | ChCl:Maleic acid | 1:1 | * |
Compounds | R 1 | Ar/R 2 | Ystirring (%) 2 | YMW (%) 3 | YUS 4 (%) | YLit. (%) | Mp (°C) |
---|---|---|---|---|---|---|---|
6a | H | Me | 42 | 39 | 17 | 46 [48]; 68 [33]; 60 [49] | 264–265 |
6b | H | Et | 40 | 18 | 36 | 72 [33]; 95 [50] | 255 |
6c | H | Allyl | 24 | 15 | 21 | 35 [33] | 206–208 |
6d | H | Ph | 63 | 22 | 34 | 35 [48]; 90 [33]; 92 [50]; 73 (82) [51]; 61 [49]; 75 (60) [52] | 304–305 |
6e | H | Bn | 62 | 41 | 64 | 50 [48]; 83 [53] | 248–250 |
6f | H | 4-MePh | 27 | 47 | 38 | 94 [50]; 79 (78) [51]; 88 [54], 75 (62) [52] | 312–313 |
6g | H | 4-FPh | 48 | 32 | 25 | 88 [3]; 88 [54] | 336–337 |
6h | H | 4-ClPh | 55 | 49 | 41 | 75 [33]; 89 [50]; 94 [51] | 331–332 |
6i | H | 4-BrPh | 66 | 24 | 58 | 84 [55]; 70 [52] | 330–331 |
6j | H | 3-OMePh | 64 | 21 | 57 | 91 [54]; 65 (50) [52] | 285 |
6k | H | 3-ClPh | 41 | 12 | 25 | 86 [54] | 300–301 |
7a | 6-I | Me | 31 | 20 | 40 | 73 [33] | 307–308 |
7b | 6-I | Et | 25 | 14 | 18 | 10 [33] | 290–292 |
7c | 6-I | Allyl | 22 | 13 | 21 | 20 [33] | 234–235 |
7d | 6-I | Ph | 32 | 16 | 22 | 91 [33]; 70 [52] | 350–352 |
7e | 6-I | Bn | 45 | 10 | 28 | 352 | |
7f | 6-I | 4-MePh | 49 | 29 | 47 | 350–351 | |
7g | 6-I | 4-FPh | 43 | 22 | 18 | 349–350 | |
7h | 6-I | 4-ClPh | 39 | 31 | 38 | 75 [29] | 337–339 |
7i | 6-I | 4-BrPh | 49 | 30 | 51 | 355–357 | |
7j | 6-I | 3-OMePh | 53 | 25 | 58 | 314–315 | |
7k | 6-I | 3-ClPh | 50 | 25 | 44 | 313–315 | |
8a | 6-Br | Me | 21 | 14 | 23 | 64 [49] | 280–281 |
8b | 6-Br | Et | 25 | 13 | 17 | 243–244 | |
8c | 6-Br | Allyl | 40 | 14 | 40 | 242–243 | |
8d | 6-Br | Ph | 36 | 13 | 19 | 63 [49]; 75 [52] | 351–353 |
8e | 6-Br | Bn | 58 | 27 | 60 | 244 | |
8f | 6-Br | 4-MePh | 76 | 31 | 41 | 60 [56] | 341–342 |
8g | 6-Br | 4-FPh | 57 | 19 | 28 | 354–355 | |
8h | 6-Br | 4-ClPh | 62 | 27 | 48 | 344–346 | |
8i | 6-Br | 4-BrPh | 65 | 33 | 56 | 349–350 | |
8j | 6-Br | 3-OMePh | 49 | 28 | 30 | 312–313 | |
8k | 6-Br | 3-ClPh | 57 | 18 | 33 | 305–307 | |
9a | 7-Cl | Me | 58 | 19 | 18 | 327–328 | |
9b | 7-Cl | Et | 22 | 15 | 21 | 265 | |
9c | 7-Cl | Allyl | 47 | 13 | 26 | 248–249 | |
9d | 7-Cl | Ph | 67 | 19 | 36 | 71 (90) [51] | 313–314 |
9e | 7-Cl | Bn | 26 | 17 | 34 | 270–272 | |
9f | 7-Cl | 4-MePh | 42 | 13 | 24 | 73 [51] | 307–309 |
9g | 7-Cl | 4-FPh | 34 | 18 | 18 | 314–315 | |
9h | 7-Cl | 4-ClPh | 50 | 14 | 27 | 76 [53] | 302–303 |
9i | 7-Cl | 4-BrPh | 50 | 16 | 38 | 320–322 | |
9j | 7-Cl | 3-OMePh | 40 | 25 | 44 | 256–257 | |
9k | 7-Cl | 3-ClPh | 39 | 19 | 54 | 248–249 | |
10a | 6,8-(Cl)2 | Me | 36 | 15 | 41 | 246–247 | |
10b | 6,8-(Cl)2 | Et | 19 | 119 | 15 | 184 | |
10c | 6,8-(Cl)2 | Allyl | 21 | 23 | 30 | 179 | |
10d | 6,8-(Cl)2 | Ph | 20 | 18 | 19 | 65 [52] | 283–285 |
10e | 6,8-(Cl)2 | Bn | 51 | 14 | 27 | 206–208 | |
10f | 6,8-(Cl)2 | 4-MePh | 25 | 27 | 40 | 70 [52] | 244 |
10g | 6,8-(Cl)2 | 4-FPh | 33 | 22 | 24 | 268–269 | |
10h | 6,8-(Cl)2 | 4-ClPh | 34 | 30 | 30 | 259–260 | |
10i | 6,8-(Cl)2 | 4-BrPh | 60 | 37 | 48 | 280–282 | |
10j | 6,8-(Cl)2 | 3-OMePh | 33 | 14 | 24 | 219–220 | |
10k | 6,8-(Cl)2 | 3-ClPh | 38 | 24 | 43 | 214–216 |
Solvent | Yield of 8f (%) |
---|---|
ChCl:Urea | 76 |
1st recycle | 72 |
2nd recycle | 77 |
3rd recycle | 80 |
4th recycle | 77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komar, M.; Kraljević, T.G.; Jerković, I.; Molnar, M. Application of Deep Eutectic Solvents in the Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-Ones: A Comparison of Selected Green Chemistry Methods. Molecules 2022, 27, 558. https://doi.org/10.3390/molecules27020558
Komar M, Kraljević TG, Jerković I, Molnar M. Application of Deep Eutectic Solvents in the Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-Ones: A Comparison of Selected Green Chemistry Methods. Molecules. 2022; 27(2):558. https://doi.org/10.3390/molecules27020558
Chicago/Turabian StyleKomar, Mario, Tatjana Gazivoda Kraljević, Igor Jerković, and Maja Molnar. 2022. "Application of Deep Eutectic Solvents in the Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-Ones: A Comparison of Selected Green Chemistry Methods" Molecules 27, no. 2: 558. https://doi.org/10.3390/molecules27020558
APA StyleKomar, M., Kraljević, T. G., Jerković, I., & Molnar, M. (2022). Application of Deep Eutectic Solvents in the Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-Ones: A Comparison of Selected Green Chemistry Methods. Molecules, 27(2), 558. https://doi.org/10.3390/molecules27020558