Diversity of Volatile Compounds in Ten Varieties of Zingiberaceae
Abstract
:1. Introduction
2. Results
2.1. The Chemical Compositions of Volatiles from Ten Zingiberaceae Plants
2.2. Diversity of Chemical Characteristics of Ten Zingiberaceae Plants
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Extraction of Volatile Oil
4.3. Gas Chromatography–Mass Spectrometry Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rachkeeree, A.; Kantadoung, K.; Suksathan, R.; Puangpradab, R.; Page, P.A.; Sommano, S.R. Nutritional Compositions and Phytochemical Properties of the Edible Flowers from Selected Zingiberaceae Found in Thailand. Front. Nutr. 2018, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Alafiatayo, A.A.; Syahida, A.; Mahmood, M. Total anti-oxidant capacity, flavonoid, phenolic acid and polyphenol content in ten selected species of Zingiberaceae rhizomes. Afr. J. Tradit. Complement. Altern. Med. Ajtcam 2014, 11, 7. [Google Scholar]
- Kantayos, V.; Paisooksantivatana, Y. Antioxidant Activity and Selected Chemical Components of 10 Zingiber spp. in Thailand. J. Dev. Sustain. Agric. 2012, 7, 89–96. [Google Scholar]
- Laokor, N.; Juntachai, W. Exploring the antifungal activity and mechanism of action of Zingiberaceae rhizome extracts against Malassezia furfur. J. Ethnopharmacol. 2021, 279, 114354. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Panda, M.K.; Singh, M.C.; Jit, B.P.; Singh, Y.D.; Patra, J.K. Bioactive Molecules from the Alpinia Genus: A Comprehensive Review. Curr. Pharm. Biotechnol. 2020, 21, 1412–1421. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. and their antioxidant activity. Food Chem. 2007, 103, 486–494. [Google Scholar]
- Peng, S.; Xiong, Y. Costus comosus var. bakeri (K.Schum.) Maas. Flowers 2015, 2, 1. [Google Scholar]
- Wu, H.; Zhou, B.; Luo, X.; Ke, P. Technical Study on Tissue Culture of Alpinia zerumbet cv. Variegata. Trop. Agric. Eng. 2017, 41, 36–39. [Google Scholar]
- Kou, Y.; Zhang, S.; Xiong, Y.; Liu, N. Study on Tissue Culture and Rapid Propagation of Curcuma longa L. in Spring and Autumn Period. North. Hortic. 2012, 142–144. [Google Scholar]
- Ibrahim, F.W.; Aziz, N.A.A.; Ibrahim, L.; Jufri, N.F.; Hamid, A. Zingiber zerumbet (L.) Smith Hexane Crude Extract Caused DNA Damage on Leptospira spp. Sains Malays. 2021, 50, 3085–3094. [Google Scholar] [CrossRef]
- Deepika; Singh, A.; Chaudhari, A.K.; Das, S.; Dubey, N.K. Zingiber zerumbet L. essential oil-based chitosan nanoemulsion as an efficient green preservative against fungi and aflatoxin B-1 contamination. J. Food Sci. 2021, 86, 149–160. [Google Scholar] [CrossRef]
- Zhao, T.; Specht, C.D.; Dong, Z.C.; Ye, Y.S.; Liu, H.F.; Liao, J.P. Transcriptome analyses provide insights into development of the Zingiber zerumbet flower, revealing potential genes related to floral organ formation and patterning. Plant Growth Regul. 2020, 90, 331–345. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Wang, G.; Hu, Z.; Liu, R.; Liu, X.; Luo, S.; Liu, N. A new red flower Alpinia cultivar ‘Hongfengshou’. Acta Hortic. Sin. 2020, 47, 399–400. [Google Scholar]
- Yujian, Y.; Yali, N.; Yiqiang, X.; Man, X.; Xiaodan, H.; Mengyu, D. Implications of the gut microbiota in analyzing the progression of diabetic nephropathy treatment by Alpinia oxyphylla Miq. extract. Eur. J. Immunol. 2019, 49, 1299–1300. [Google Scholar]
- Aziz, J.A.; Saidi, N.B.; Ridzuan, R.; Mohammed, A.K.S.; Aziz, M.A.; Kadir, M.A.; Abdullah, N.A.P.; Hussein, S.; Yusoff, H. Chemical Profiling of Curcuma aeruginosa Roxb. Essential Oil and their Antimicrobial Activity against Pathogenic Microbes. J. Essent. Oil Bear. Plants 2021, 24, 1059–1071. [Google Scholar] [CrossRef]
- Sholikhah, E.N.; Mustofa, M.; Nugrahaningsih, D.A.A.; Yuliani, F.S.; Purwono, S.; Sugiyono, S.; Widyarini, S.; Ngatidjan, N.; Jumina, J.; Santosa, D.; et al. Acute and Subchronic Oral Toxicity Study of Polyherbal Formulation Containing Allium sativum L., Terminalia bellirica (Gaertn.) Roxb., Curcuma aeruginosa Roxb., and Amomum compactum Sol. ex. Maton in Rats. BioMed Res. Int. 2020, 2020, 8609364. [Google Scholar] [CrossRef] [Green Version]
- Saensouk, P.; Theerakulpisut, P.; Thammathaworn, A.; Saensouk, S.; Maknoie, C.; Kohkaew, P. Pollen morphology of the genus Curcuma (Zingiberaceae) in Northeastern Thailand. Scienceasia 2015, 41, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.F.; Petro, R.R.; Almeida, R.N.; Cassel, E.; Vargas, R.M.F. On the production and release of Hedychium coronarium essential oil from nanoformulations. Ind. Crops Prod. 2021, 171, 113984. [Google Scholar] [CrossRef]
- Xiu, H.U.; Gao, L.X.; Liu, N. The Identification, Propagation and Landscape Use of Several Hedychiums with Cymbidium Fragrance. Guangdong Landsc. Archit. 2011, 33, 56–58. [Google Scholar]
- Liang, H.; Chen, J. Comparison and Phylogenetic Analyses of Nine Complete Chloroplast Genomes of Zingibereae. Forests 2021, 12, 710. [Google Scholar] [CrossRef]
- Yue, Y.C.; Wang, L.; Yu, R.C.; Chen, F.; He, J.L.; Li, X.Y.; Yu, Y.Y.; Fan, Y.P. Coordinated and High-Level Expression of Biosynthetic Pathway Genes Is Responsible for the Production of a Major Floral Scent Compound Methyl Benzoate in Hedychium coronarium. Front. Plant Sci. 2021, 12, 650582. [Google Scholar] [CrossRef]
- Manoharrao, K.V. Pharmacognostical and Pharmacological Investigations on Some Important Medicinal Plants from Zingiberaceae Family; Bharati Vidyapeeth Deemed University: Pune, India, 2015; 188p. [Google Scholar]
- Luo, G.; Wang, Y. Application status and development prospect of Zingiberaceae plants and flowers. North. Hortic. 2011, 10, 82–86. [Google Scholar]
- Chakrabartty, I.; Vijayasekhar, A.; Rangan, L. Therapeutic potential of labdane diterpene isolated from Alpinia nigra: Detailed hemato-compatibility and antimicrobial studies. Nat. Prod. Res. 2021, 35, 1000–1004. [Google Scholar] [CrossRef]
- Awin, T.; Mediani, A.; Maulidiani; Leong, S.W.; Faudzi, S.M.M.; Shaari, K.; Abas, F. Phytochemical and bioactivity alterations of Curcuma species harvested at different growth stages by NMR-based metabolomics. J. Food Compos. Anal. 2019, 77, 66–76. [Google Scholar] [CrossRef]
- Sundram, T.; Serm, L.G.; Malek, S.; Annuar, M.; Khalid, N. (E)-labda-8(17),12-diene-15,16-dial production from Curcuma mangga (Mango ginger) in vitro cultures. In Proceedings of the 4th Australasian Metabolomics Symposium and Workshop, Shah Alam, Malaysia, 4–7 September 2012. [Google Scholar]
- Fernandes, L.S.; Mandelli, D.; Carvalho, W.A.; Caytan, E.; Bruneau, C. Cross metathesis of (-)-β-pinene, (-)-limonene and terpenoids derived from limonene with internal olefins. Appl. Catal. A Gen. 2021, 623, 118284. [Google Scholar] [CrossRef]
- Ngamrayu, N.; Kornkanok, I.; Nattiya, C.; Krongkarn, C.; Nitra, N.; Neti, W. Development, Characterization, and Stability Evaluation of the Anti-Cellulite Emgel Containing Herbal Extracts and Essential Oils. Pharmaceuticals 2021, 14, 842. [Google Scholar]
- Srenscek-Nazzal, J.; Kaminska, A.; Miadlicki, P.; Wroblewska, A.; Kielbasa, K.; Wrobel, R.J.; Serafin, J.; Michalkiewicz, B. Activated Carbon Modification towards Efficient Catalyst for High Value-Added Products Synthesis from Alpha-Pinene. Materials 2021, 14, 7811. [Google Scholar] [CrossRef]
- Song, Y.; Yao, Y.; Chen, C.; Kang, C.; Wang, L. Structural investigation of n-hexadecanoic acid multilayers on mica surface: Atomic force microscopy study. Appl. Surf. Sci. 2008, 254, 3306–3312. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-Inflammatory Property of n-Hexadecanoic Acid: Structural Evidence and Kinetic Assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef]
- Rout, D.; Dash, U.C.; Kanhar, S.; Swain, S.K.; Sahoo, A.K. Homalium zeylanicum attenuates streptozotocin-induced hyperglycemia and cellular stress in experimental rats via attenuation of oxidative stress imparts inflammation. J. Ethnopharmacol. 2022, 283, 114649. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Fang, B.; Ma, F.; Zheng, Q.; Deng, P.; Zhao, S.; Chen, M.; Yang, G.; He, G. Anti-tumor effect of germacrone on human hepatoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Eur. J. Pharmacol. 2013, 698, 95–102. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, X.; Tan, W.; Xu, Z.; Zhou, K.; Wu, T.; Cui, L.; Wang, Y. Germacrone inhibits the proliferation of breast cancer cell lines by inducing cell cycle arrest and promoting apoptosis. Eur. J. Pharmacol. 2011, 667, 50–55. [Google Scholar] [CrossRef]
- Zhu, J.; Majikina, M.; Tawata, S. Syntheses and Biological Activities of Pyranyl-substituted Cinnamates. Biosci. Biotechnol. Biochem. 2001, 65, 161–163. [Google Scholar] [CrossRef]
- Nanda, T.; Biswal, P.; Pati, B.V.; Banjare, S.K.; Ravikumar, P.C. Palladium-Catalyzed C-C Bond Activation of Cyclopropenone: Modular Access to Trisubstituted alpha,beta-Unsaturated Esters and Amides. J. Org. Chem. 2021, 86, 2682–2695. [Google Scholar] [CrossRef]
- Da Cruz, J.D.; Mpalantinos, M.A.; Ramos, A.D.; Ferreira, J.L.P.; de Oliveira, A.A.; Netto, N.L.; Silva, J.R.D.; Amaral, A.C.F. Chemical standardization, antioxidant activity and phenolic contents of cultivated Alpinia zerumbet preparations. Ind. Crops Prod. 2020, 151, 112495. [Google Scholar] [CrossRef]
- Haznedaroglu, M.Z.; Karabay, N.U.; Zeybek, U. Antibacterial activity of Salvia tomentosa essential oil. Fitoterapia 2001, 72, 829–831. [Google Scholar] [CrossRef]
- Waman, A.A.; Bohra, P.; Sounderarajan, A. Propagule size affects yield and quality of Curcuma mangga Val. et Zijp.: An important medicinal spice. Ind. Crops Prod. 2018, 124, 36–43. [Google Scholar] [CrossRef]
- Shiva, S.; Mari, S.; Amuthan, A.; Shanmugam, R. Repurposing Siddha mercurial drug for mild to moderate COVID-19—Case series and exploration of its chemical profile. J. Ayurveda Integr. Med. 2021, 13, 100469. [Google Scholar] [CrossRef]
- Rahman, M.S.; Ahad, A.; Saha, S.K.; Hong, J.; Kim, K.H. Antibacterial and phytochemical properties of Aphanamixis polystachya essential oil. Sci. Anal. 2017, 30, 113–121. [Google Scholar]
- Samling, B.A.; Assim, Z.; Tong, W.Y.; Leong, C.R.; Ab Rashid, S.; Kamal, N.; Muhamad, M.; Tan, W.N. Cynometra cauliflora L.: An indigenous tropical fruit tree in Malaysia bearing essential oils and their biological activities. Arab. J. Chem. 2021, 14, 103302. [Google Scholar] [CrossRef]
- Suharta, S.; Hunaefi, D.; Wijaya, C.H. Changes in volatiles and aroma profile of andaliman (Zanthoxylum acanthopodium DC.) upon various drying techniques. Food Chem. 2021, 365, 130483. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xi, Y.; Huang, X.; Song, S. Research progress on the main chemical constituents and pharmacological effects of Piper betle L. Tradit. Asian Med. 2021, 16, 15. [Google Scholar]
- Tu, B.; Chen, S.; Ma, Q.; Ye, L.; Feng, T. Effects of three drying methods on volatile components of Lentinus edodes. Food Sci. 2014, 5. [Google Scholar]
- Zhang, X.X.; Sun, X.D.; Yang, K.; Tao, Y.U.; Pharmacy, S.O.; University, C.P. Characteristics Analysis for Volatile Compounds of 18 Heat-Clearing Herbs. Chin. J. Exp. Tradit. Med. Formulae 2019, 25, 111–119. [Google Scholar]
- Freitas, T.P.; Taver, I.B.; Spricigo, P.C.; Amaral, L.; Jacomino, A.P. Volatile Compounds and Physicochemical Quality of Four Jabuticabas (Plinia sp.). Molecules 2020, 25, 4543. [Google Scholar] [CrossRef]
- Nasir, W.; Ibrahim, N.N.A.; Hao, W.K.; Sajak, A.A.; Sofian-Seng, N.S.; Mustapha, W.A.W.; Rahman, H.A. Effects of Different Drying Methods and Solvents on Biological Activities of Curcuma aeruginosa Leaves Extract. Sains Malays. 2021, 50, 2207–2218. [Google Scholar] [CrossRef]
- Kou, Y.; Ma, G.; Silva, J.A.T.D.; Liu, N. Callus induction and shoot organogenesis from anther cultures of Curcuma attenuata Wall. Plant Cell Tissue Organ Cult. 2013, 112, 1–7. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Wei, J.; Su, P.; Chen, D.; Pan, W.; Zhou, W.; Zhang, K.; Zheng, X.; Lin, L. Contrastive analysis of chemical composition of essential oil from twelve Curcuma species distributed in China. Ind. Crops Prod. 2017, 108, 17–25. [Google Scholar] [CrossRef]
- Sui, J.; Li, F.; Guo, Y.; Wei, B.; Jiang, L. Research progress on chemical constituents, pharmacological effects and quality markers of the fruit of Alpinia oxyphylla Miq. Drug Eval. Res. 2020, 43, 2120–2126. [Google Scholar] [CrossRef]
- Munir, I.; Mehmood, M.H.; Faisal, N.; Hanif, M.; Naseer, D. Pharmacological evaluation of Vitis vinifera and Zingiber zerumbet on electrocardiographic, biochemical alterations and antioxidant status in isoproterenol-induced myocardial infarction in rats. Pak. J. Pharm. 2021, 34, 1929–1937. [Google Scholar] [CrossRef]
- Li, D.M.; Zhu, G.F.; Xu, Y.C.; Ye, Y.J.; Liu, J.M. Complete Chloroplast Genomes of Three Medicinal Alpinia Species: Genome Organization, Comparative Analyses and Phylogenetic Relationships in Family Zingiberaceae. Plants 2020, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [Green Version]
- Semwal, D.K.; Chauhan, A.; Kumar, A.; Aswal, S.; Semwal, R.B.; Kumar, A. Status of Indian medicinal plants in the International Union for Conservation of Nature and the future of Ayurvedic drugs: Shouldn’t think about Ayurvedic fundamentals? J. Integr. Med. 2019, 17, 238–243. [Google Scholar] [CrossRef]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Indian Traditional Ayurvedic System of Medicine and Nutritional Supplementation. Evid.-Based Complement. Altern. Med. 2013, 2013, 376327. [Google Scholar] [CrossRef] [Green Version]
- Hummel, J.; Selbig, J.; Walther, D.; Kopka, J. The Golm Metabolome Database: A database for GC-MS based metabolite profiling. Top. Curr. Genet. 2007, 1, 75–96. [Google Scholar]
- Liang, S.; Li, Y.; Zhao, C.; Liang, Y. Qualitative analysis of volatile oil in traditional Chinese medicine by GC-MS combined with retention index. J. Instrum. Anal. 2008, 27, 84–87. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Li, P.; Ling, R.; Wang, Z.; Feng, X.; Liu, J.; Yang, Q.; Yan, J. Diversity of Volatile Compounds in Ten Varieties of Zingiberaceae. Molecules 2022, 27, 565. https://doi.org/10.3390/molecules27020565
Peng W, Li P, Ling R, Wang Z, Feng X, Liu J, Yang Q, Yan J. Diversity of Volatile Compounds in Ten Varieties of Zingiberaceae. Molecules. 2022; 27(2):565. https://doi.org/10.3390/molecules27020565
Chicago/Turabian StylePeng, Weiyao, Ping Li, Ruimei Ling, Zhenzhen Wang, Xianhui Feng, Ju Liu, Quan Yang, and Jian Yan. 2022. "Diversity of Volatile Compounds in Ten Varieties of Zingiberaceae" Molecules 27, no. 2: 565. https://doi.org/10.3390/molecules27020565
APA StylePeng, W., Li, P., Ling, R., Wang, Z., Feng, X., Liu, J., Yang, Q., & Yan, J. (2022). Diversity of Volatile Compounds in Ten Varieties of Zingiberaceae. Molecules, 27(2), 565. https://doi.org/10.3390/molecules27020565