The Nutritional and Antioxidant Potential of Artisanal and Industrial Apple Vinegars and Their Ability to Inhibit Key Enzymes Related to Type 2 Diabetes In Vitro
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Parameters
2.2. Mineral Contents
2.3. Bioactive Molecules and Antioxidant Activity
2.4. α-Amylase and α-Glucosidase
3. Materials and Methods
3.1. Vinegar Preparation
3.2. Physicochemical Properties Evaluation
3.3. Bioactive Substances
3.3.1. Total Phenolic Content
3.3.2. Total Flavonoid Content
3.3.3. Ascorbic Acid
3.4. Antioxidant Activity
3.5. Identification and Quantification of Phenolic Compounds of Apple Vinegar Samples
3.6. α-Amylase Inhibition Assay
3.7. α-Glucosidase Inhibition Assay
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- MAPM Note de Veille “Pomme” | Département de l’agriculture—Ministère de l’Agriculture, de La Pêche Maritime, Du Développement Rural et Des Eaux et Forêts. Available online: http://www.agriculture.gov.ma/pages/veille/note-de-veille-pomme (accessed on 26 February 2020).
- Wadhwa, M.; Bakshi, M.P.S.; Makkar, H.P.S. Wastes to Worth: Value Added Products from Fruit and Vegetable Wastes. CAB Int. 2015, 43, 1–25. [Google Scholar] [CrossRef]
- Garcia-Parrilla, M.C.; Torija, M.J.; Mas, A.; Cerezo, A.B.; Troncoso, A.M. Vinegars and Other Fermented Condiments. In Fermented Foods in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2017; pp. 577–591. [Google Scholar]
- Es-safi, I.; Mechchate, H.; Amaghnouje, A.; Elbouzidi, A.; Bouhrim, M.; Bencheikh, N.; Hano, C.; Bousta, D. Assessment of Antidepressant-like, Anxiolytic Effects and Impact on Memory of Pimpinella anisum L. Total Extract on Swiss Albino Mice. Plants 2021, 10, 1573. [Google Scholar] [CrossRef]
- da Silva Fonseca, M.; Santos, V.A.Q.; Calegari, G.C.; Dekker, R.F.H.; de Melo Barbosa-Dekker, A.; da Cunha, M.A.A. Blueberry and Honey Vinegar: Successive Batch Production, Antioxidant Potential and Antimicrobial Ability. Braz. J. Food Technol. 2018, 21. [Google Scholar] [CrossRef]
- Ater, M.; Hmimsa, Y. Agrodiversité Des Agroécosystèmes Traditionnels Du Pays Jbala (Rif, Maroc) et Produits de Terroirs. In Indications Géographiques, Dynamiques Socio-Économiques et Patrimoine Bio-Culturel en Turquie et Dans les Pays Méditerranéens; CIHEAM: Montpellier, France, 2013; pp. 197–208. [Google Scholar]
- Hamimaz, R. Le Développement Des Produits Du Terroir Au Maroc: Quelques Préalables. Opt. Méditerranéennes Sér.-A 2009, 89, 271–279. [Google Scholar]
- Solieri, L.; Giudici, P. Vinegars of the World. In Vinegars of the World; Springer: Berlin, Germany, 2009; pp. 1–16. [Google Scholar]
- Mazza, S.; Murooka, Y. Vinegars through the Ages. In Vinegars of the World; Springer: Berlin, Germany, 2009; pp. 17–39. [Google Scholar]
- Ousaaid, D.; Mechchate, H.; Laaroussi, H.; Hano, C.; Bakour, M.; El Ghouizi, A.; Conte, R.; Lyoussi, B.; El Arabi, I. Fruits Vinegar: Quality Characteristics, Phytochemistry, and Functionality. Molecules 2021, 27, 222. [Google Scholar] [CrossRef] [PubMed]
- Budak, H.N.; Guzel-Seydim, Z.B. Antioxidant Activity and Phenolic Content of Wine Vinegars Produced by Two Different Techniques. J. Sci. Food Agric. 2010, 90, 2021–2026. [Google Scholar] [CrossRef]
- Tesfaye, W.; Morales, M.L.; Garcıa-Parrilla, M.C.; Troncoso, A.M. Wine Vinegar: Technology, Authenticity and Quality Evaluation. Trends Food Sci. Technol. 2002, 13, 12–21. [Google Scholar] [CrossRef]
- Chen, H.; Chen, T.; Giudici, P.; Chen, F. Vinegar Functions on Health: Constituents, Sources, and Formation Mechanisms. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1124–1138. [Google Scholar] [CrossRef]
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional Properties of Vinegar. J. Food Sci. 2014, 79, R757–R764. [Google Scholar] [CrossRef]
- Gu, X.; Zhao, H.-L.; Sui, Y.; Guan, J.; Chan, J.C.; Tong, P.C. White Rice Vinegar Improves Pancreatic Beta-Cell Function and Fatty Liver in Streptozotocin-Induced Diabetic Rats. Acta Diabetol. 2012, 49, 185–191. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Zhou, L.; Li, Z.; Zhang, B.; Saito, M.; Wang, X. Nutritional Composition and α-Glucosidase Inhibitory Activity of Five Chinese Vinegars. Jpn. Agric. Res. Q. JARQ 2011, 45, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Sengun, I.Y.; Kilic, G.; Ozturk, B. Screening Physicochemical, Microbiological and Bioactive Properties of Fruit Vinegars Produced from Various Raw Materials. Food Sci. Biotechnol. 2019, 29, 401–408. [Google Scholar] [CrossRef]
- Na, H.S.; Choi, G.C.; Yang, S.I.; Lee, J.H.; Cho, J.Y.; Ma, S.J.; Kim, J.Y. Comparison of Characteristics in Commercial Fermented Vinegars Made with Different Ingredients. Korean J. Food Preserv. 2013, 20, 482–487. [Google Scholar] [CrossRef]
- Siddeeg, A.; Zeng, X.-A.; Rahaman, A.; Manzoor, M.F.; Ahmed, Z.; Ammar, A.-F. Quality Characteristics of the Processed Dates Vinegar under Influence of Ultrasound and Pulsed Electric Field Treatments. J. Food Sci. Technol. 2019, 56, 4380–4389. [Google Scholar] [CrossRef]
- Jackson, J.E.; Palmer, J.W.; Perring, M.A.; Sharples, R.O. Effects of Shade on the Growth and Cropping of Apple Trees. III. Effects on Fruit Growth, Chemical Composition and Quality at Harvest and After Storage. J. Hortic. Sci. 1977, 52, 267–282. [Google Scholar] [CrossRef]
- No, K.-M.; Kang, K.-M.; Baek, S.-L.; Choi, H.; Park, S.-K.; Kim, D.-S. Monitoring of Heavy Metal Content in Alcoholic Beverages. J. Food Hyg. Saf. 2010, 25, 24–29. [Google Scholar]
- Lee, J.H.; Choi, K.H.; Kim, S.H.; Park, K.S.; Park, S.H.; Kim, J.S.; Kang, S.A.; Cheong, C.; Jang, K.H. Physicochemical Characteristics and Electric Conductivity of Various Fruit Wines. Int. Food Res. J. 2013, 20, 2987. [Google Scholar]
- Zhao, C.; Xia, T.; Du, P.; Duan, W.; Zhang, B.; Zhang, J.; Zhu, S.; Zheng, Y.; Wang, M.; Yu, Y. Chemical Composition and Antioxidant Characteristic of Traditional and Industrial Zhenjiang Aromatic Vinegars during the Aging Process. Molecules 2018, 23, 2949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakir, S.; Devecioglu, D.; Kayacan, S.; Toydemir, G.; Karbancioglu-Guler, F.; Capanoglu, E. Investigating the Antioxidant and Antimicrobial Activities of Different Vinegars. Eur. Food Res. Technol. 2017, 243, 2083–2094. [Google Scholar] [CrossRef]
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, Antimicrobial, Mineral, Volatile, Physicochemical and Microbiological Characteristics of Traditional Home-Made Turkish Vinegars. LWT-Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Bakir, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Capanoglu, E. Fruit Antioxidants during Vinegar Processing: Changes in Content and in Vitro Bio-Accessibility. Int. J. Mol. Sci. 2016, 17, 1658. [Google Scholar] [CrossRef] [PubMed]
- Beh, B.K.; Mohamad, N.E.; Yeap, S.K.; Ky, H.; Boo, S.Y.; Chua, J.Y.H.; Tan, S.W.; Ho, W.Y.; Sharifuddin, S.A.; Long, K. Anti-Obesity and Anti-Inflammatory Effects of Synthetic Acetic Acid Vinegar and Nipa Vinegar on High-Fat-Diet-Induced Obese Mice. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ousaaid, D.; Laaroussi, H.; Bakour, M.; El Ghouizi, A.; Aboulghazi, A.; Lyoussi, B.; ElArabi, I. Beneficial Effects of Apple Vinegar on Hyperglycemia and Hyperlipidemia in Hypercaloric-Fed Rats. Available online: https://www.hindawi.com/journals/jdr/2020/9284987/ (accessed on 4 November 2020).
- Ousaaid, D.; Imtara, H.; Laaroussi, H.; Lyoussi, B.; Elarabi, I. An Investigation of Moroccan Vinegars: Their Physicochemical Properties and Antioxidant and Antibacterial Activities. Available online: https://www.hindawi.com/journals/jfq/2021/6618444/ (accessed on 10 February 2021).
- Omar, N.A.A.; Ayat, M.M.A.; Shafik, S.R.; Elshweikh, S.A.; Sayed, S.M.E. Apple Cider Vinegar (A Prophetic Medicine Remedy) Protects against Nicotine Hepatotoxicity: A Histopathological and Biochemical Report. Am. J. Cancer Prev. 2015, 3, 122–127. [Google Scholar]
- Nazıroğlu, M.; Güler, M.; Özgül, C.; Saydam, G.; Küçükayaz, M.; Sözbir, E. Apple Cider Vinegar Modulates Serum Lipid Profile, Erythrocyte, Kidney, and Liver Membrane Oxidative Stress in Ovariectomized Mice Fed High Cholesterol. J. Membr. Biol. 2014, 247, 667–673. [Google Scholar] [CrossRef]
- Naseem, E.; Shamim, M.; Khan, N.I. Cardioprotective Effects of Herbal Mixture (Ginger, Garlic, Lemon, Apple Cider Vinegar & Honey) in Experimental Animal Models of Hyperlipidemia. Int. J. Biol. Res. 2016, 4, 28–33. [Google Scholar]
- Kim, S.-H.; Jo, S.-H.; Kwon, Y.-I.; Hwang, J.-K. Effects of Onion (Allium cepa L.) Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model. Int. J. Mol. Sci. 2011, 12, 3757–3769. [Google Scholar] [CrossRef] [Green Version]
- Hirsh, A.J.; Yao, S.Y.; Young, J.D.; Cheeseman, C.I. Inhibition of Glucose Absorption in the Rat Jejunum: A Novel Action of Alpha-D-Glucosidase Inhibitors. Gastroenterology 1997, 113, 205–211. [Google Scholar] [CrossRef]
- Öztürk, A.; Özdemir, Y.; Göksel, Z. Apple Vinegar and Its Therapeutic Effects. TABAD Tarım Bilim. Aras Tail Tırma Derg. 2009, 2, 155–158. [Google Scholar]
- Mitrou, P.; Petsiou, E.; Papakonstantinou, E.; Maratou, E.; Lambadiari, V.; Dimitriadis, P.; Spanoudi, F.; Raptis, S.A.; Dimitriadis, G. Vinegar Consumption Increases Insulin-Stimulated Glucose Uptake by the Forearm Muscle in Humans with Type 2 Diabetes. J. Diabetes Res. 2015, 2015, 175204. [Google Scholar] [CrossRef]
- Johnston, C.S.; Quagliano, S.; White, S. Vinegar Ingestion at Mealtime Reduced Fasting Blood Glucose Concentrations in Healthy Adults at Risk for Type 2 Diabetes. J. Funct. Foods 2013, 5, 2007–2011. [Google Scholar] [CrossRef]
- Halima, B.H.; Sarra, K.; Houda, B.J.; Sonia, G.; Abdallah, A. Antihyperglycemic, Antihyperlipidemic and Modulatory Effects of Apple Cider Vinegar on Digestive Enzymes in Experimental Diabetic Rats. Int. J. Pharmacol. 2016, 12, 505–513. [Google Scholar] [CrossRef]
- Adhikari, B. Roles of Alkaloids from Medicinal Plants in the Management of Diabetes Mellitus. J. Chem. 2021, 2021, 2691525. [Google Scholar] [CrossRef]
- Shah, M.; Bashir, S.; Jaan, S.; Nawaz, H.; Nishan, U.; Abbasi, S.W.; Jamal, S.B.; Khan, A.; Afridi, S.G.; Iqbal, A. Computational Analysis of Plant-Derived Terpenes as α-Glucosidase Inhibitors for the Discovery of Therapeutic Agents against Type 2 Diabetes Mellitus. S. Afr. J. Bot. 2021, 143, 462–473. [Google Scholar] [CrossRef]
- Etsassala, N.G.; Badmus, J.A.; Marnewick, J.L.; Iwuoha, E.I.; Nchu, F.; Hussein, A.A. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Salvia Aurita Constituents. Antioxidants 2020, 9, 1149. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Chang, S.K.; Zhang, Y. Comparison of α-Amylase, α-Glucosidase and Lipase Inhibitory Activity of the Phenolic Substances in Two Black Legumes of Different Genera. Food Chem. 2017, 214, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, F.; Mahjoub, S.; Pouramir, M.; Khadir, F. Hypoglycemic Activity of Pyrus Biossieriana Buhse Leaf Extract and Arbutin: Inhibitory Effects on Alpha Amylase and Alpha Glucosidase. Casp. J. Intern. Med. 2013, 4, 763. [Google Scholar]
- Li, H.; Cao, W.; Wei, L.-F.; Xia, J.-Q.; Gu, Y.; Gu, L.-M.; Pan, C.-Y.; Liu, Y.-Q.; Tian, Y.-Z.; Lu, M. Arbutin Alleviates Diabetic Symptoms by Attenuating Oxidative Stress in a Mouse Model of Type 1 Diabetes. Int. J. Diabetes Dev. Ctries. 2021, 41, 586–592. [Google Scholar] [CrossRef]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding Phenolic Acids Inhibition of α-Amylase and α-Glucosidase and Influence of Reaction Conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, N.; Satsu, H.; Watanabe, H.; Fukaya, M.; Tsukamoto, Y.; Miyamoto, Y.; Shimizu, M. Acetic Acid Suppresses the Increase in Disaccharidase Activity That Occurs during Culture of Caco-2 Cells. J. Nutr. 2000, 130, 507–513. [Google Scholar] [CrossRef]
- Marunaka, Y. The Proposal of Molecular Mechanisms of Weak Organic Acids Intake-Induced Improvement of Insulin Resistance in Diabetes Mellitus via Elevation of Interstitial Fluid PH. Int. J. Mol. Sci. 2018, 19, 3244. [Google Scholar] [CrossRef] [Green Version]
- Noh, Y.-H.; Lee, D.-B.; Lee, Y.-W.; Pyo, Y.-H. In Vitro Inhibitory Effects of Organic Acids Identified in Commercial Vinegars on α-Amylase and α-Glucosidase. Prev. Nutr. Food Sci. 2020, 25, 319. [Google Scholar] [CrossRef]
- Salahuddin, M.A.H.; Ismail, A.; Kassim, N.K.; Hamid, M.; Ali, M.S.M. Phenolic Profiling and Evaluation of in Vitro Antioxidant, α-Glucosidase and α-Amylase Inhibitory Activities of Lepisanthes fruticosa (Roxb) Leenh Fruit Extracts. Food Chem. 2020, 331, 127240. [Google Scholar] [CrossRef]
- Figueiredo-González, M.; Reboredo-Rodríguez, P.; González-Barreiro, C.; Carrasco-Pancorbo, A.; Cancho-Grande, B.; Simal-Gándara, J. The Involvement of Phenolic-Rich Extracts from Galician Autochthonous Extra-Virgin Olive Oils against the α-Glucosidase and α-Amylase Inhibition. Food Res. Int. 2019, 116, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Abdelli, I.; Benariba, N.; Adjdir, S.; Fekhikher, Z.; Daoud, I.; Terki, M.; Benramdane, H.; Ghalem, S. In Silico Evaluation of Phenolic Compounds as Inhibitors of A-Amylase and A-Glucosidase. J. Biomol. Struct. Dyn. 2021, 39, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Laaroussi, H.; Bouddine, T.; Bakour, M.; Ousaaid, D.; Lyoussi, B. Physicochemical Properties, Mineral Content, Antioxidant Activities, and Microbiological Quality of Bupleurum Spinosum Gouan Honey from the Middle Atlas in Morocco. J. Food Qual. 2020, 2020, 7609454. [Google Scholar] [CrossRef] [Green Version]
- Kong, K.W.; Mat-Junit, S.; Aminudin, N.; Ismail, A.; Abdul-Aziz, A. Antioxidant Activities and Polyphenolics from the Shoots of Barringtonia racemosa (L.) Spreng in a Polar to Apolar Medium System. Food Chem. 2012, 134, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Nweze, C.C.; Abdulganiyu, M.G.; Erhabor, O.G. Comparative Analysis of Vitamin C in Fresh Fruits Juice of Malus Domestica, Citrus Sinensi, Ananas Comosus and Citrullus Lanatus by Iodometric Titration. Int. J. Sci. Environ. Technol. 2015, 4, 17–22. [Google Scholar]
- Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the Biological Potential of Pinus Pinaster Bark Extracts. Antioxidants 2020, 9, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Samples | pH | Electrical Conductivity | Titratable Acidity | °Brix | Density |
---|---|---|---|---|---|
AAV | 3.69 ± 0.00 *** | 2.81 ± 0.01 | 3.60 ± 0.21 | 6.37 ± 0.04 ** | 1.02 ± 0.00 |
IAV | 3.19 ± 0.02 | 2.79 ± 0.00 | 5.40 ± 0.14 ** | 5.20 ± 0.14 | 1.02 ± 0.00 |
Samples | K mg/L | Na mg/L | Ca mg/L | Mg mg/L | P mg/L | Fe mg/L | Zn mg/L | Mn mg/L | Cu mg/L | Pb mg/L | Cr mg/L | Cd mg/L |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AAV | 39.15 ± 0.07 *** | 6.12 ± 0.10 *** | 4.05 ± 0.06 *** | 5.33 ± 0.11 *** | 1.33 ± 0.02 | 0.032 ± 0.01 ** | 1.34 ± 0.06 *** | ND | ND | ND | ND | ND |
IAV | 32.90 ± 0.05 | 3.44 ± 0.01 | 2.63 ± 0.07 | 3.71 ± 0.17 | 1.36 ± 0.03 ** | 0.023 ± 0.01 | 0.24 ± 0.02 | ND | ND | ND | ND | ND |
Samples | TPC mgGAE/100 mL | TFC mgQE/100 mL | Vit C mg/100 mL | TAC mg AAE/100 mL | DPPH IC50 (µL/mL) |
---|---|---|---|---|---|
AAV | 106.91 ± 1.64 *** | 11.36 ± 0.06 *** | 15.4 ± 0.01 *** | 9.17 ± 0.86 *** | 0.31 ± 0.01 |
IAV | 68.08 ± 0.23 | 3.47 ± 0.25 | 13.64 ± 0.01 | 4.22 ± 0.26 | 0.90 ± 0.03 *** |
Trolox | - | - | - | - | 10.81 ± 0.10 |
Samples | α-Amylase IC50 (µg/mL) | α-Glucosidase IC50 (µg/mL) |
---|---|---|
AAV | 16.32 ± 0.01 | 156.53 ± 0.07 *** |
IAV | 152.86 ± 0.06 | 4024.28 ± 5.12 *** |
Acarbose | 35.42 ± 1.00 | 1100 ± 1.00 |
Phenolic Compounds | Concentration (%) | |
---|---|---|
AAV | IAV | |
Quercetin | 1.38 | ND |
P-coumaric | 2.30 | 4.56 |
Oleochantal | 1.15 | 0.91 |
Hydroxytyrosol | 0.18 | ND |
Transferulic acid | 11.94 | 4.32 |
Oleuropein | 0.48 | 0.85 |
Hesperetin | 0.55 | 0.40 |
Trimethoxyflavone | 0.64 | 0.71 |
Arbutin | 32.60 | 45.59 |
Rosmarinic acid | 1.38 | 3.14 |
Ursolic acid | 0.90 | 0.88 |
Apigenin | 16.48 | 2.54 |
Amentoflavone | 0.45 | 0.70 |
Luteolin | 1.54 | 1.52 |
Quercetin-3-O-glucoside | 0.64 | 0.58 |
Quercetin-3-O-glucuronic acid | 0.81 | 0.85 |
Kaempferol-3-O-glucose | ND | 0.48 |
Quercetin-3-O-hexose deoxyhexose | 0.05 | 0.52 |
Isorhamnetin-3-O-rutinoside | 0.04 | 0.62 |
Isorhamnetin-7-O-Pentose/luteoilin 7-O-glucoside | 0.63 | 1.89 |
Kaempferol-3-O-glucuronic acid | 0.80 | ND |
Kaempferol-3-O-pentose | ND | 0.76 |
Kaempferol-3-O-hexose deohyhexose | ND | 0.35 |
Protocathecoic acid | 0.12 | 0.38 |
Vanillic acid | 0.39 | 0.68 |
Syringic acid | 4.07 | 3.22 |
P-hydroxybenzoic\salicilic acid | 0.37 | ND |
Gentisic acid | 0.11 | 0.47 |
Caffeic acid | ND | 1.73 |
Sinapic acid | 5.73 | 2.92 |
Trans-cinnamic acid | 5.71 | 4.99 |
Chlorogenic acid | 2.19 | 4.26 |
-Catechin gallate | 1.27 | 1.26 |
Procianidin | 0.62 | 0.96 |
Myricetin | 1.03 | 1.51 |
Kaempferol | 1.56 | 2.26 |
Rutin | 0.41 | 0.75 |
Narigin | 0.59 | 1.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ousaaid, D.; Laaroussi, H.; Mechchate, H.; Bakour, M.; El Ghouizi, A.; Mothana, R.A.; Noman, O.; Es-safi, I.; Lyoussi, B.; El Arabi, I. The Nutritional and Antioxidant Potential of Artisanal and Industrial Apple Vinegars and Their Ability to Inhibit Key Enzymes Related to Type 2 Diabetes In Vitro. Molecules 2022, 27, 567. https://doi.org/10.3390/molecules27020567
Ousaaid D, Laaroussi H, Mechchate H, Bakour M, El Ghouizi A, Mothana RA, Noman O, Es-safi I, Lyoussi B, El Arabi I. The Nutritional and Antioxidant Potential of Artisanal and Industrial Apple Vinegars and Their Ability to Inhibit Key Enzymes Related to Type 2 Diabetes In Vitro. Molecules. 2022; 27(2):567. https://doi.org/10.3390/molecules27020567
Chicago/Turabian StyleOusaaid, Driss, Hassan Laaroussi, Hamza Mechchate, Meryem Bakour, Asmae El Ghouizi, Ramzi A. Mothana, Omar Noman, Imane Es-safi, Badiaa Lyoussi, and Ilham El Arabi. 2022. "The Nutritional and Antioxidant Potential of Artisanal and Industrial Apple Vinegars and Their Ability to Inhibit Key Enzymes Related to Type 2 Diabetes In Vitro" Molecules 27, no. 2: 567. https://doi.org/10.3390/molecules27020567
APA StyleOusaaid, D., Laaroussi, H., Mechchate, H., Bakour, M., El Ghouizi, A., Mothana, R. A., Noman, O., Es-safi, I., Lyoussi, B., & El Arabi, I. (2022). The Nutritional and Antioxidant Potential of Artisanal and Industrial Apple Vinegars and Their Ability to Inhibit Key Enzymes Related to Type 2 Diabetes In Vitro. Molecules, 27(2), 567. https://doi.org/10.3390/molecules27020567