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Abstract: Stab-resistant body armor can effectively prevent sharp instruments from attacking the
protected parts and reduce the threat to human bodies. Shear thickening fluid (STF) is a kind of
smart material with variable viscosity and its viscosity can change significantly with external stimuli.
The soft and adaptive characteristics of STF provide a new idea for improving the performance of
stab-proof materials. In this work, three kinds of soft anti-stabbing materials were designed and
prepared with aramid, poly–p–phenylene benzodioxazole (PBO), and carbon fiber fabrics impreg-
nated with STF. Quasi-static puncture tests and dynamic impact tests were conducted to compare
the performance of different anti-stabbing structures. The results showed that the peak piercing
force of the STF-treated fabrics in the puncture testing was greatly increased than that of neat sam-
ples. Against the D2 knife, the maximum impact load of STF/PBO fiber fabric was increased from
55.8 N to 72.9 N, increasing by 30.6%. Against the D3 spike, the maximum impact load of STF/aramid
fabric was increased from 128.9 N to 254.7 N, increasing by 197.6%. The mechanical properties of
fibers were important factors for the resistance to knives, and the fabric structure was the key point
to bear the spike. Optical photographs of fabric fractures and scanning electron microscope analysis
indicated that the STF effectively limited the slip of the fiber bundle when the tool penetrated the
fabric, which played a positive role in maintaining the tightness and integrity of the fabric structure.

Keywords: soft body armor; shear thickening fluid; stab resistance; fabric composites

1. Introduction

In the modern world, with the imbalance of economic development, the gap between
rich and poor around the world is widening, social contradictions are increasingly intensi-
fied, and the activities of terrorism, separatism and extreme religious forces are rampant
in some regions, leading to political instability and frequent violent conflicts. The public
security forces are the main force in fighting crimes and maintaining social stability and
security. In order to effectively protect the life and safety of the police in the line of duty, the
public security organs will uniformly equip them with various protective equipment, such
as bullet proof armors, stab proof clothing, cut proof gloves, helmets, shields, and even
riot clothing and explosive disposal clothing. As many countries strictly control guns and
ammunition, the front-line police are threatened by piercing, hitting and chopping with
sharp objects, such as knives and spikes. A large number of facts have proved that most
of the injuries they suffered in violent incidents come from sharp objects, such as knives
and sharp cones, rather than firearms. Therefore, the development of human protective
equipment around the world focuses more on the design of stab-resistant armor.

Stab-resistant armor is a kind of equipment which can effectively prevent bladed
weapons from attacking the protected parts and reduce the threat of stabbing the human
body [1,2]. After years of research and development, clothing has gradually developed
from hard armor to soft clothing. At the same time, the performance and environmental

Molecules 2022, 27, 6799. https://doi.org/10.3390/molecules27206799 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27206799
https://doi.org/10.3390/molecules27206799
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27206799
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27206799?type=check_update&version=2


Molecules 2022, 27, 6799 2 of 12

adaptability have been taken into account [3–5]. According to the properties of the materials,
stab-proof clothing can be divided into metal stab-proof clothing and non-metal stab-proof
clothing. The core materials of metal stab-resistant armor are alloy steel sheet, titanium
alloy sheet, and high-strength aluminum alloy sheet. Metal stab-proof clothing has an
excellent stab-resistant performance. However, due to its high hardness, large weight,
and poor permeability, it is not conducive to the activities of the trunk muscles. The non-
metal, stab-proof suits were made from non-metallic materials, such as engineering plastic
sheets, high-strength and high-modulus polyethylene, aramid, and other fiber fabrics.
Fiber composites could reduce the hardness of the materials, but still cannot meet the
requirements of light-weight, low thickness, and softness in the military industry [6–8].
The stab-proof clothing is still a crucial problem affecting the office efficiency of police.

The shear thickening fluid (STF) is a kind of smart material with variable viscosity.
Under the action of sudden shear, stretch, or impact force, the viscosity will change dramat-
ically. In equilibrium state, STF shows macroscopically soft liquid state with low viscosity.
Upon impact, its viscosity increases rapidly, and it behaves like a semisolid or even a
solid [9–13]. In the process of liquid-solid transition, the STF dissipates the kinetic energy
of impact to a larger area, so that it can resist impact effectively. The soft and adaptive char-
acteristics of STF provide a new idea for improving the performance of stab-proof materials.
Many attempts have been made to apply different kinds of STFs to composite with fibrous
fabrics to produce flexible stab-proof armor. It has been proved that the STF can improve
the stab-resistant performance of composites. Hassan et al. synthesized STF by dispersing
silica nanoparticles (40%) into liquid polyethylene glycol (60%) with ultrasound irradiation.
The Kevlar and Nylon fabrics were soaked in STF/ethanol solution to make STF/fabric
composite. Quasi-static penetration tests showed that after STF treatment, the force of
multiple layers of Kevlar fabrics was increased from 85 N to 573 N [14]. Hasanzadeh et al.
conducted the puncture resistance tests of high modulus polypropylene (HMPP) fabric
impregnated with STFs composed of fumed silica nanoparticles suspended in polyethylene
glycol. The quasi-static puncture test showed that against a rounded tip penetrator, the
maximum load of STF-HMPP fabric was increased from 1581.6 N to 2905.2 N, as compared
to neat fabric [15]. Kang et al. treated Kevlar plain fabric with fumed silica-based STF and
investigated the mechanical and stab-resistant properties. They found that 10 layers of
STF-impregnated Kevlar composite fabric target against a spike supported significantly
higher load ca. 350 N than neat target did ca. 100 N [16]. Yeh et al. quantitatively discussed
the enhancement effect of STF on the stab-proof performance of STF/Kevlar composites,
and the knife drop tower tests showed that the addition of the STF could improve the
energy absorption by 20% [17]. Meanwhile, numerous studies have shown that the com-
position of STF [18–20], solid content [21,22], dispersed phase particle [21–24], as well as
the molecular weight of dispersed medium [25] could influence the stab-resistant perfor-
mance of composites. In our previous work, the influence of silica particle morphology
on quasi-static and dynamic stab resistance of STF/fabrics was studied in detail, and the
spherical particles have been proved to have greater application advantages to improve the
material’s stabbing resistance [26].

Although there have already been many reports on the relationship between the
properties of STF and the stab-proof property of composites, the effects of fabric type and
weaving structure on the stab resistance of STF/fabric composites are rarely studied. In this
paper, three kinds of soft anti-stabbing materials were prepared with different types of fiber
fabric and shear thickening fluid, and the effects of the mechanical properties of fibers, as
well as fabric structures, on the stab-proof performance of STF-impregnated fabrics under
different knife and spike conditions were investigated.

2. Results and Discussion
2.1. Rheological Behavior of STF

The macroscopic performance of STF as a smart material is the variability of its viscos-
ity with external stimuli, and the viscosity variation can be characterized by rheological



Molecules 2022, 27, 6799 3 of 12

parameters. The viscosity of the STF placed in the center of the parallel plate of the rheome-
ter will change in real time when the shear rate changes. To measure the viscosity versus
shear rate, the steady-state rheological test in the shear rate range of 0.1 s−1–1000 s−1 was
conducted. The rheological property of STF was presented in Figure 1. As seen in Figure 1,
the curve contained a shear-thinning area, a shear-thickening area, and a rapid decline area
after reaching the peak viscosity within the testing limit. With the increase of the shear
rate, the viscosity of STF gradually decreased and reached the minimum value of 3 Pa·s
when the shear rate was 20.5 s−1. When the shear rate was higher than this critical value,
shear thickening occurred, and the viscosity increased sharply until the maximum value
of 270 Pa·s. After the viscosity exceeded this value, the STF became a macroscopic solid
due to shear thickening. The STF distributed in the parallel plates of the rheometer was
thrown out of the loading region by shear force, showing a rapid decrease in viscosity.
According to the rheological parameters, the maximum viscosity of the STF was 90 times
the minimum viscosity, showing an excellent thixotropic response effect.
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Figure 1. Viscosity versus shear rate of STF suspension.

2.2. Quasi-Static Behaviors of the STF/Fabrics

In order to characterize the stab resistance of STF/fabrics to a bladed instrument, the
D2 tool was used to penetrate various fabric materials. The D2 tool was a standard knife
with a continuous cutting edge (100 mm in length, 15 mm in width, and 2 mm in thickness),
and the length of the cutting edge was 12 mm. The surface hardness of the tool body was
50–55 HRC. In the quasi-static impact test, the D2 tool penetrated into the fabrics at a speed
of 200 mm/min. During this process, the force–displacement curves of the materials were
recorded as shown in Figure 2.

The puncture force could be used to characterize the performance of the fabrics against
puncture. As the cutting depth increased, the blade cut the fiber gradually, and the force
between the fabric and the test tool was changed periodically with the destruction of the
fabric structure. It was observed that, against the D2 knife, the STF-treated fabrics exhibited
different protective behaviors compared with the neat targets. The peak piercing force,
average value, and standard deviation of the fabrics against the D2 knife are shown in
Table 1. The average peak piercing force of neat aramid fabrics was 44.2 N. The average
peak piercing force of aramid treated with STF, however, increased to 50.1 N, which was
13.3% higher than that of the neat aramid fabric. The change of the puncture force of PBO
fabrics before and after impregnating with STF also showed a similar pattern. After STF
treatment, the maximum impact load of PBO fiber fabric was increased from 55.8 N to
72.9 N, with an increase of 30.6%. The increase of puncture force in carbon fiber fabric,
however, was not obvious, and its puncture force was almost unchanged. In general, the
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puncture force of STF/PBO fabric composite was the largest after being impregnated with
STF, indicating that the STF/PBO fiber composite had the strongest stab resistance.
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Table 1. Peak piercing force of different fabrics when punctured by D2 knife.

Samples Tool Peak Piercing Force (N) Average (N) Standard Deviation

P-aramid fabric D2 45.1; 47.0; 40.5 44.2 3.3
STF/P-aramid fabric D2 56.6; 46.2; 47.4 50.1 5.7

PBO fabric D2 55.9; 63.2; 48.4 55.8 7.4
STF/PBO fabric D2 81.1; 65.8; 71.7 72.9 7.7

Carbon fabric D2 13.8; 14.3; 9.9 12.7 2.4
STF/Carbon fabric D2 13.9; 11.5; 12.5 12.6 1.2

Optical micrographs of the damaged part of the neat fabrics and STF/fabrics against
D2 tool are shown in Figure 3. Obvious damage was found in the neat fabric, where the
yarns were cut and fibrillated. The damage range of fabric structure at the fracture was
large and the broken fibers were dispersed. The fractures of STF/fabrics were relatively
neat, and the damage to fabric structure was not obvious. This might be attributed to the
thixotropic hardening of the STF, resulting in the increased friction between fiber bundles,
so that the broken fibers were bound in a smaller range, and the damage area was reduced.
It can also be seen that under the same area, the numbers of fiber bundles of the three fabrics
were not the same. Aramid fiber bundles were the densest, while carbon fiber bundles were
the loosest. By combining the knife resistance of different fabrics (Figure 2d) with the tensile
strength of the three fibers themselves, the STF/PBO fabric had the best knife-resistant
performance. It can be speculated that the stab resistance of STF/fabrics against the D2
knife was closely related to the mechanical properties of the fibers themselves, while the
fabric structure had no significant effect.
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In order to characterize the stab resistance of STF/fabrics to instruments with tips,
the D3 tool was used to penetrate various fabric materials. The D3 tool was a small, sharp
instrument with a tip and its shape was conical. The total length was 100 mm, the clamping
end diameter was 4 mm, the puncture end diameter was 3 mm, the tip length was about 3
mm, and the surface hardness of tool body was 50–55 HRC. In the quasi-static impact test,
the D3 tool penetrated into the fabrics at the same speed as the D2 tool. During this process,
the force–displacement curves of the materials were plotted in Figure 4. It was observed
that, against the spike impactor, all the STF-impregnated fabrics presented significantly
larger puncture resistance force than the neat targets.
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The peak piercing force, average value, and standard deviation of the fabrics against
the D3 spike are shown in Table 2. After STF treatment, the maximum impact load of
aramid fabric was increased from 128.9 N to 254.7 N, with an increase of 197.6%. The
maximum impact load of PBO fabric was increased from 25.9 N to 135.4 N, increasing by
522.8%, and the maximum impact load of C fabric was increased from 12.2 N to 19.6 N,
increasing by 60.7%. According to the maximum puncture force, the STF/aramid fabric had
the best spike resistance. It was also suggested that the deformation for STF-impregnated
fabrics was also greater than that of neat fabric. Taking aramid fabric as an example, the
deformation for the neat aramid to the peak force was 6.7 mm. However, for the STF-treated
sample, the value was increased up to 8.6 mm, presenting a better puncture resistance and
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deformation capacity. In addition, unlike the force–displacement curves of the D2 tool
puncture, the curve of the D3 tool puncture did not fluctuate periodically. The D3 tool
is a cylindrical spike with a pointed tip, which threatens the fabric only in the first few
millimeters of puncturing. When the tool tip was completely passed through the fabric,
only the smooth cylindrical part was left in contact with the fiber, and the friction force
was almost negligible. Therefore, the puncture force reached its maximum value and then
quickly dropped to zero.
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Table 2. Peak piercing force of different fabrics when punctured by D3 knife.

Samples Tool Peak Piercing Force (N) Average (N) Standard Deviation

P-aramid fabric D3 129.9; 142.1; 114.6 128.9 13.8
STF/P-aramid fabric D3 275.6; 254.4; 234.1 254.7 20.8

PBO fabric D3 30.9; 20.1; 26.8 25.9 5.5
STF/PBO fabric D3 142.7; 110.1; 153.4 135.4 22.6

Carbon fabric D3 16.6; 9.6; 10.5 12.2 3.8
STF/Carbon fabric D3 20.3; 18.5; 20.0 19.6 1.0

Optical micrographs of the damaged part of the neat fabrics and STF/fabrics against
the D3 tool are shown in Figure 5. For neat aramid and PBO fabrics, only a small number
of fibers were broken during contact with the D3 tool, due to the small diameter of the tip
of the tool, which moved forward along the fiber gap and pushed the fiber to one side.
For STF-treated aramid and PBO fabrics, however, the fibers in the damaged area of the
fabric were seriously broken and fibrillated, possibly due to the thixotropic hardening of
the STF that restricted fiber movement, so that more fibers were directly involved in the
stab resistance. The failure mode of carbon fiber fabric was slightly different with the above
two kinds of organic fiber, its damage fracture area did not appear as a circular hole but
there was some fiber fracture. This might be due to the brittleness of carbon fiber or the
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loose fabric structure, which decreased its stab-proof performance. The specific reasons
should be further analyzed and verified. By combining the spike resistance of different
fabrics (Figure 4d) with the tensile strength of the three fibers themselves, the STF/aramid
fabric with the tightest weave structure had the best spike resistance. It could be found
that the fabric structure was the critical factor influencing the stab-resistant performance
of STF/fabric against the D3 spike, while the mechanical property of the fiber itself was
not obvious.
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2.3. Dynamic Impact Behaviors of the STF/Fabrics

When making body armor, one layer of stab-proof material is difficult to meet the
needs of protection. Multiple layers of material are often assembled and applied to form
a protective unit. To characterize the stabbing resistance of the fabric’s unit, dynamic
drop tower stabbing impact tests of multilayer fabrics were performed at an energy of 6 J,
12 J, 18 J and 24 J, respectively. Aramid fabrics, with better quasi-static puncture resistance,
were selected to characterize the dynamic puncture performance. To achieve a comparable
weight, 11 layers of aramid fabric and eight layers of STF/aramid fabric were used to
conduct the tests. To perform the tests, the tool dropped freely from a certain height, and
the puncture energy could be controlled by adjusting the falling height. After the dynamic
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impact test, the puncture resistance of multilayer fabric was quantitatively characterized
by the number of penetration layers.

The impact test results are summarized in Figure 6. It can be seen that the number of
layers of all the penetrated fabrics was increased with the increase of puncture energy for
both D2 and D3 tools. The fabrics treated with STF had less penetration layers than neat
fabric, showing better stab resistance. With the increase of impact energy, this advantage
was more significant. When the puncture energy was 24 J, the D2 tool penetrated eight
layers of the neat aramid fabric, while only four layers of the STF/aramid fabric was
penetrated. In addition, both the neat aramid fabrics and STF/aramid fabrics showed
different dynamic impact resistance for different tools, and their protection against D3 tools
was significantly better than D2 tools. According to the quasi-static puncture results of
single-layer fabric, the maximum puncture force of neat aramid and STF/aramid on the D2
tool was 44.2 N and 50.1 N, and the maximum puncture force of neat fabric and STF/fabric
on the D3 tool was 128.9 N and 254.7 N, respectively. The material showed better protection
ability against the D3 tool under the quasi-static puncture condition. The dynamic impact
test results of the multi-layer material further verified the conclusion.
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2.4. Microstructures of the Neat and STF-Treated Fabrics

The microstructures of the neat and STF-impregnated fabrics were determined by
scanning electron microscope (SEM), which was shown in Figure 7. The filaments in the neat
yarns showed a smooth surface and the fibers were neatly packed together (Figure 7a,d,g).
However, in filaments impregnated with STF, a large number of particles from the STF
were found to be distributed in the gaps of the fiber bundles and on the fabric surface
(Figure 7b,e,h). Further evidence from the higher magnification (Figure 7c,f,i) showed
that these particles not only filled the surface of the fiber monofilaments but were also
embedded in the gaps and fabric surfaces as blocks. Yarn pull-out and fabric windowing
were two typical failure modes of the fabric in the process of puncture. When the knife
penetrated the neat fabric, it first squeezed the bundle to one side and then passed through
the fabric through the gap, where the protective properties of the fabric were not fully
utilized. However, in the fabrics treated with STF, the composites had better continuity and
integrity due to the relatively complete liquid phase structure formed by STF embedded in
the gaps and fabric surfaces. The addition of STF effectively limited the slip of the fiber
bundle when the tool penetrated the fabric, which played a positive role in maintaining
the tightness of the fabric structure. This limitation was very helpful in improving the
stab-proof performance of the fiber material. This might be the reason for the enhanced
stab resistance of the above STF/fabrics.
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Figure 7. SEM images of neat and STF-treated fabrics. (a) Neat aramid fabric (1000×); (b) STF/aramid
(1000×); (c) STF/aramid (5000×); (d) neat PBO fabric (1000×); (e) STF/PBO (1000×); (f) STF/PBO
(5000×); (g) neat C fabric (1000×); (h) STF/C (1000×); (i) STF/C (5000×).

3. Materials and Methods
3.1. Materials

The main materials used in this study were high-performance fiber fabrics and STF. The
STF was a colloidal suspension composed of dispersed medium (polyethylene glycol with
molecular weight of 200 g/mol, PEG200, Aladdin, Shanghai, China) and silica nanoparticles.
The silica particles were mono-disperse spherical, with a particle size of about 200–300 nm,
which were prepared using the Stöber method, through the hydrolyzation and condensation
of tetraethylorthosilicate (TEOS, Aladdin, Shanghai, China) in an alkaline environment [27].
The fabrics used in this work were plain-woven fabrics comprised of p-aramid, poly-p-
phenylene benzobisoxazole (PBO) and carbon yarns. The details of the fabrics are given in
Table 3.

Table 3. Specification of the fabrics.

Samples Areal Density (g/m2) Fibre Specification Fiber Tensile Strength (GPa)

P-aramid fabric 200 840 D 3.4
PBO fabric 206 1000 D 5.8

Carbon fabric 200 3 K 2.3

3.2. Preparation and Rheological Characterization of STF

The STFs were generated by intensive mixing of silica nanoparticles (70 wt. %) in
PEG200 by mechanical agitation. In order to eliminate the bubbles introduced during
the stirring process, the STF was vacuumed before use to ensure uniformity and stability.
Rheological characterization of the STF was performed on a rheometer (TA, DISCOVERY
HR-2, New Castle, DE, USA) with parallel plate principle, the shear rate was increased
from 0.01 s−1 to 1000 s−1, and the corresponding viscosity was recorded. All measurements
in this study were conducted at 25 ◦C.
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3.3. Treatment of Fabrics with STF

To fabricate the STF/fabric composites, the STF was first diluted with anhydrous
ethanol at 1:2 volume ratio of STF:ethanol to reduce the surface tension of the STF. The
fabrics were cut into squares with sides of 10 cm and soaked in anhydrous ethanol to
remove sizing agent before use. The impregnation of the fabrics was done by immersing
the fabric specimens into the diluent for 10 min and then squeezing the excess liquid under
a certain pressure. Finally, the drying process was carried out in an oven at 65 ◦C until the
total weights of the fabric/STF assembly were unchanged. The details of the fabrics with
STF are given in Table 4.

Table 4. Specification of the fabrics with STF.

Samples STF Content (wt.%) Areal Density (g/m2)

STF/P-aramid fabric 24.8 266
STF/PBO fabric 24.5 273

STF/Carbon fabric 27.0 274

3.4. Quasi-Static Impact Tests

The quasi-static impact tests were performed on a universal tester (Instron 5966). Two
typical test tools (D2, D3) were used in the quasi-static impact experiments. The D2 tool
was a standard knife and the D3 tool was a spike, of which the size and shapes were
made according to the Chinese Ministry of Public Security Standard, GA68-2019 “Stabbing
Resistance of Personal Body Armor”. The tools and test fixture are shown in Figure 8. The
fabric was tightly fixed by a ring-shaped clamp with an outer diameter of 150 mm and
an inner diameter of 50 mm, and a layer of silicone rubber was covered on the upper and
lower surfaces of the fabric to increase sliding resistance. Before the test, the tool was fixed
on the universal testing machine. Then, the test tool impacted into the center of the fabric at
a rate of 200 mm/min and the load-displacement diagram during the impact process was
obtained. To improve the data consistency, three samples were tested for each material.
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3.5. Dynamic Impact Tests

The dynamic impact tests were conducted on a drop tower puncture tester also
according to the Chinese Standard, GA68-2019. The stab targets were placed on a multi-
layer foam backing, as specified by the GA68 standard. The backing was laminated from
the following materials: four layers of 6-mm-thick neoprene sponge, followed by one layer
of 30-mm-thick polyethylene foam, and the bottom were two 6.5-mm-thick layers of rubber.
In the dynamic impact test, the test tools were loaded to the drop mass and lifted to a fixed
height. Then, the tool dropped freely into the sample, and the number of penetration layers
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was used to characterize the stab-resistant performance. In this work, the dropping energy
was 6 J, 12 J, 18 J and 24 J, respectively.

4. Conclusions

In summary, the STF-treated fabrics presented much larger puncture resistance force
than the neat targets in quasi-static puncture tests. Against the D2 tool, the maximum
impact load of STF/PBO fiber fabric increased from 55.8 N to 72.9 N, increasing by 30.6%,
which demonstrated an optimum knife resistance. Against the D3 tool, the maximum
impact load of STF/aramid fabric increased from 128.9 N to 254.7 N, increasing by 197.6%,
which was the best spike resistance material. The mechanical property of fibers was an
important factor for the resistance to knife, and the fabric structure was the key point of the
resistance to spike. The dynamic impact tests of the multiple layers of material showed
that the number of penetrating layers decreased obviously after the addition of STF, which
further confirmed the improvement of STF’s anti-stabbing performance.
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B.D. and W.Z.; formal analysis, R.W.; investigation, B.D.; writing—original draft preparation, R.W.;
writing—review and editing, H.L. All authors have read and agreed to the published version of
the manuscript.
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