Utilizing Nutritional and Polyphenolic Compounds in Underutilized Plant Seeds for Health Application
Abstract
:1. Introduction
2. Development of Sustainable Functional Ingredients and Functional Foods from Plant By-Products
3. Seeds: An Excellent Source of Polyphenolic Compounds
4. Seeds from Fibre Crops That Are Potential Sources of Polyphenolic Compounds
4.1. Okra (Hibiscus esculentus L.)
4.1.1. Origin, Cultivation, and Uses of Okra Plant
4.1.2. Utilization of Okra Seeds as Food Ingredients
4.1.3. Nutritional Properties and Polyphenolic Contents of Okra Seeds against Diseases
4.2. Cotton (Gossypium spp.)
4.2.1. Origin, Cultivation, and Uses of Cotton Plant
4.2.2. Utilization of Cotton Seeds as Food Ingredients
4.2.3. Nutritional Properties and Polyphenolic Contents of Cotton Seeds against Diseases
4.3. Hemp (Cannabis sativa L.)
4.3.1. Origin, Cultivation, and Uses of Hemp Plant
4.3.2. Utilization of Hemp Seeds as Food Ingredients
4.3.3. Nutritional Properties and Polyphenolic Contents of Hemp Seeds against Diseases
4.4. Kenaf (Hibiscus cannabinus L.)
4.4.1. Origin, Cultivation, and Uses of Kenaf Plant
4.4.2. Utilization of Kenaf Seeds as Food Ingredients
4.4.3. Nutritional Properties and Polyphenolic Contents of Kenaf Seeds against Diseases
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammad Fakhrul Islam, S.; Karim, Z. World’s Demand for Food and Water: The Consequences of Climate Change. In Desalination—Challenges and Opportunities; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Lai, W.T.; Khong, N.M.H.; Lim, S.S.; Hee, Y.Y.; Sim, B.I.; Lau, K.Y.; Lai, O.M. A Review: Modified Agricultural by-Products for the Development and Fortification of Food Products and Nutraceuticals. Trends Food Sci. Technol. 2017, 59. [Google Scholar] [CrossRef]
- FAO. Sustainable Food Systems. Concept and Framework. Available online: http://www.fao.org/3/ca2079en/CA2079EN.pdf (accessed on 12 November 2021).
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction. Available online: http://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 12 November 2021).
- Grosso, G. Dietary Antioxidants and Prevention of Non-Communicable Diseases. Antioxidants 2018, 7, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röös, E.; Patel, M.; Spångberg, J. Producing Oat Drink or Cow’s Milk on a Swedish Farm—Environmental Impacts Considering the Service of Grazing, the Opportunity Cost of Land and the Demand for Beef and Protein. Agric. Syst. 2016, 142, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Fresán, U.; Sabaté, J. Vegetarian Diets: Planetary Health and Its Alignment with Human Health. Adv. Nutr. 2019, 10 (Suppl. S4), S380–S388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fresán, U.; Craig, W.J.; Martínez-González, M.A.; Bes-Rastrollo, M. Nutritional Quality and Health Effects of Low Environmental Impact Diets: The “Seguimiento Universidad de Navarra” (SUN) Cohort. Nutrients 2020, 12, 2385. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Fresán, U.; Bes-Rastrollo, M.; Marventano, S.; Galvano, F. Environmental Impact of Dietary Choices: Role of the Mediterranean and Other Dietary Patterns in an Italian Cohort. Int. J. Environ. Res. Public Health 2020, 17, 1468. [Google Scholar] [CrossRef] [Green Version]
- Seves, S.M.; Verkaik-Kloosterman, J.; Biesbroek, S.; Temme, E.H. Are More Environmentally Sustainable Diets with Less Meat and Dairy Nutritionally Adequate? Public Health Nutr. 2017, 20, 2050–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 23 January 2021).
- Pal, R.; Bhadada, S.K. COVID-19 and Non-Communicable Diseases. Postgrad. Med. J. 2020, 96, 429–430. [Google Scholar] [CrossRef] [Green Version]
- Oreopoulou, V.; Tzia, C. Utilization of Plant By-Products for the Recovery of Proteins, Dietary Fibers, Antioxidants, and Colorants. In Utilization of By-Products and Treatment of Waste in the Food Industry; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Ros, E.; Hu, F.B. Consumption of Plant Seeds and Cardiovascular Health: Epidemiological and Clinical Trial Evidence. Circulation 2013, 128, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Billingsley, H.; Carbone, S.; Lavie, C. Dietary Fats and Chronic Noncommunicable Diseases. Nutrients 2018, 10, 1385. [Google Scholar] [CrossRef] [Green Version]
- de Melo Ribeiro, P.V.; Andrade, P.A.; Hermsdorff, H.H.M.; dos Santos, C.A.; Cotta, R.M.M.; Estanislau, J.D.A.S.G.; de Oliveira Campos, A.A.; de Oliveira Barbosa Rosa, C. Dietary Non-Nutrients in the Prevention of Non-Communicable Diseases: Potentially Related Mechanisms. Nutrition 2019, 66, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Thangaraju, S.; Pulivarthi, M.K.; Natarajan, V. Waste from Oil-Seed Industry: A Sustainable Approach. In Sustainable Food Waste Management; Springer: Singapore, 2020; pp. 177–190. [Google Scholar] [CrossRef]
- Sajid Arshad, M.; Khalid, W.; Shabir Ahmad, R.; Kamran Khan, M.; Haseeb Ahmad, M.; Safdar, S.; Kousar, S.; Munir, H.; Shabbir, U.; Zafarullah, M.; et al. Functional Foods and Human Health: An Overview. In Functional Foods; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Cherubim, D.J.; Martins, C.V.; Fariña, L.; Lucca, R.A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction of Polyphenols from Aromatic and Medicinal Plants: An Overview of the Methods and the Effect of Extraction Parameters. In Polyphenols in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 243–259. [Google Scholar] [CrossRef]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef] [Green Version]
- Rangaraj, V.M.; Rambabu, K.; Banat, F.; Mittal, V. Natural Antioxidants-Based Edible Active Food Packaging: An Overview of Current Advancements. Food Biosci. 2021, 43, 101251. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.-A. Synthetic Phenolic Antioxidants: Metabolism, Hazards and Mechanism of Action. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef] [PubMed]
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea Americana Mill.) Seeds Using Response Surface Methodology. J. Anal. Methods Chem. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Buszewski, B.; Rafińska, K.; Cvetanović, A.; Walczak, J.; Krakowska, A.; Rudnicka, J.; Zeković, Z. Phytochemical Analysis and Biological Activity of Lupinus luteus Seeds Extracts Obtained by Supercritical Fluid Extraction. Phytochem. Lett. 2019, 30, 338–348. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Z.; Li, S.; Wang, L.; Zhang, J. Eco-Friendly and High-Efficient Extraction of Natural Antioxidants from Polygonum aviculare Leaves Using Tailor-Made Deep Eutectic Solvents as Extractants. Sep. Purif. Technol. 2021, 262, 118339. [Google Scholar] [CrossRef]
- Zhou, F.; Hearne, Z.; Li, C.-J. Water—The Greenest Solvent Overall. Curr. Opin. Green Sustain. Chem. 2019, 18, 118–123. [Google Scholar] [CrossRef]
- Carpentieri, S.; Soltanipour, F.; Ferrari, G.; Pataro, G.; Donsì, F. Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food by-Products as Promising Ingredients for the Food Industry. Antioxidants 2021, 10, 1417. [Google Scholar] [CrossRef] [PubMed]
- Knez, Ž.; Pantić, M.; Cör, D.; Novak, Z.; Knez Hrnčič, M. Are Supercritical Fluids Solvents for the Future? Chem. Eng. Process. Process Intensif. 2019, 141, 107532. [Google Scholar] [CrossRef]
- Soria-Hernández, C.; Serna-Saldívar, S.; Chuck-Hernández, C. Physicochemical and Functional Properties of Vegetable and Cereal Proteins as Potential Sources of Novel Food Ingredients. Food Technol. Biotechnol. 2015, 53, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, S.K.; Arya, S.S. Plant Seed Proteins: Chemistry, Technology and Applications. Curr. Res. Nutr. Food Sci. 2018, 6, 461–469. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2018, 52. [Google Scholar] [CrossRef]
- Preedy, V.R.; Watson, R.R.; Patel, V.B. Nut and Seeds in Health and Disease Prevention, 1st ed.; Academic Press: Cambridge, MA, USA; Elsevier Inc.: San Diego, CA, USA, 2011. [Google Scholar]
- Tanase, C.; Bujor, O.-C.; Popa, V.I. Phenolic Natural Compounds and Their Influence on Physiological Processes in Plants. In Polyphenols in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–58. [Google Scholar] [CrossRef]
- Francenia Santos-Sánchez, N.; Salas-Coronado, R.; Hernández-Carlos, B.; Villanueva-Cañongo, C. Shikimic Acid Pathway in Biosynthesis of Phenolic Compounds. In Plant Physiological Aspects of Phenolic Compounds; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, S.; Horwitz, B.A. Plant Phenolic Compounds and Oxidative Stress: Integrated Signals in Fungal-Plant Interactions. Curr. Genet. 2015, 61, 347–357. [Google Scholar] [CrossRef]
- Scarano, A.; Chieppa, M.; Santino, A. Looking at Flavonoid Biodiversity in Horticultural Crops: A Colored Mine with Nutritional Benefits. Plants 2018, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Ouyang, W.; Lan, Y.; Xiao, H.; Tang, L.; Liu, G.; Feng, K.; Zhang, L.; Song, M.; Cao, Y. Anti-Hyperglycemic and Liver Protective Effects of Flavonoids from Psidium guajava L. (Guava) Leaf in Diabetic Mice. Food Biosci. 2020, 35, 100574. [Google Scholar] [CrossRef]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Francenia Santos-Sánchez, N.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic Acid: Pharmacological Activities and Molecular Mechanisms Involved in Inflammation-Related Diseases. Biomed. Pharmacother. 2021, 133, 110985. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tang, G.; Zhang, C.; Wang, N.; Feng, Y. Gallic Acid and Diabetes Mellitus: Its Association with Oxidative Stress. Molecules 2021, 26, 7115. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Caraci, F.; Micek, A.; Castellano, S.; D’Amico, E.; Paladino, N.; Ferri, R.; Galvano, F.; Grosso, G. Dietary Phenolic Acids and Their Major Food Sources Are Associated with Cognitive Status in Older Italian Adults. Antioxidants 2021, 10, 700. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Fernández-Fernández, A.M.; Dellacassa, E.; Medrano-Fernandez, A.; Castillo, M.D. Citrus Waste Recovery for Sustainable Nutrition and Health. In Food Wastes and By-Products: Nutraceutical and Health Potential; Campos-Vega, R., Oomah, B.D., Vergara-Castaneda, H.A., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2020; pp. 193–222. [Google Scholar] [CrossRef]
- Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food Waste: A Potential Bioresource for Extraction of Nutraceuticals and Bioactive Compounds. Bioresour. Bioprocess. 2017, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Tsanova-Savova, S.; Denev, P.; Ribarova, F. Flavonoids in Foods and Their Role in Healthy Nutrition. In Diet, Microbiome and Health; Elsevier: Amsterdam, The Netherlands, 2018; pp. 165–198. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Gaforio, J.J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- AL-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, Z.; Yang, G.; Yang, D.; Ding, J.; Chen, H.; Yuan, F.; Tian, H. Sesamin Alleviates Blood-Brain Barrier Disruption in Mice with Experimental Traumatic Brain Injury. Acta Pharmacol. Sin. 2017, 38, 1445–1455. [Google Scholar] [CrossRef]
- Thuy, T.D.; Phan, N.N.; Wang, C.-Y.; Yu, H.-G.; Wang, S.-Y.; Huang, P.-L.; Do, Y.-Y.; Lin, Y.-C. Novel Therapeutic Effects of Sesamin on Diabetes-Induced Cardiac Dysfunction. Mol. Med. Rep. 2017, 15, 2949–2956. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef]
- Andargie, M.; Vinas, M.; Rathgeb, A.; Möller, E.; Karlovsky, P. Lignans of Sesame (Sesamum indicum L.): A Comprehensive Review. Molecules 2021, 26, 883. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, J.; Kim, K.-H. The Therapeutic Potential of Piceatannol, a Natural Stilbene, in Metabolic Diseases: A Review. J. Med. Food 2017, 20, 427–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirerol, J.A.; Rodríguez, M.L.; Mena, S.; Asensi, M.A.; Estrela, J.M.; Ortega, A.L. Role of Natural Stilbenes in the Prevention of Cancer. Oxidative Med. Cell. Longev. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Lu, W.; Zhang, K.; Zhou, W. Pterostilbene Reduces Endothelial Cell Apoptosis by Regulation of the Nrf2-mediated TLR-4/MyD88/NF-κB Pathway in a Rat Model of Atherosclerosis. Exp. Ther. Med. 2020, 20, 2090–2098. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, G. The Role of Polyphenols in Modern Nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Bessa-Pereira, C.; Dias, R.; Brandão, E.; Mateus, N.; de Freitas, V.; Soares, S.; Pérez-Gregorio, R. Eat Tasty and Healthy: Role of Polyphenols in Functional Foods. In Functional Foods—Phytochemicals and Health Promoting Potential; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Alasalvar, C.; Chang, S.K.; Bolling, B.; Oh, W.Y.; Shahidi, F. Specialty Seeds: Nutrients, Bioactives, Bioavailability, and Health Benefits: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2382–2427. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (USDA); U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 8th ed.; Government Printing Office: Washington, DC, USA, 2015.
- National Health and Medical Research Council. The Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
- Supreme Council of Health. Qatar Dietary Guidelines; Supreme Council of Health: Doha, Qatar, 2015. [Google Scholar]
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Dantas, T.L.; Alonso Buriti, F.C.; Florentino, E.R. Okra (Abelmoschus esculentus L.) as a Potential Functional Food Source of Mucilage and Bioactive Compounds with Technological Applications and Health Benefits. Plants 2021, 10, 1683. [Google Scholar] [CrossRef]
- Arifuzzaman Khan, G.M.; Yilmaz, N.D.; Yilmaz, K. Okra Fibers: Potential Material for Green Biocomposites. In Green Biocomposites; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Lengsfeld, C.; Titgemeyer, F.; Faller, G.; Hensel, A. Glycosylated Compounds from Okra Inhibit Adhesion of Helicobacter pylori to Human Gastric Mucosa. J. Agric. Food Chem. 2004, 52, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P. Identification and Quantification of Polyphenolic Compounds from Okra Seeds and Skins. Food Chem. 2008, 110, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Datsomor, D.N.; Agbenorhevi, J.K.; Kpodo, F.M.; Oduro, I.N. Okra Pectin as Lecithin Substitute in Chocolate. Sci. Afr. 2019, 3, e00070. [Google Scholar] [CrossRef]
- Gerrano, A.S. Agronomic Performance, Nutritional Phenotyping and Trait Associations of Okra (Abelmoschus esculentus) Genotypes in South Africa. In Rediscovery of Landraces as a Resource for the Future; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Agbenorhevi, J.K.; Kpodo, F.M.; Banful, B.K.B.; Oduro, I.N.; Abe-Inge, V.; Datsomor, D.N.; Atongo, J.; Obeng, B. Survey and Evaluation of Okra Pectin Extracted at Different Maturity Stages. Cogent Food Agric. 2020, 6, 1760476. [Google Scholar] [CrossRef]
- Calisir, S.; Yildiz, M.U. A Study on Some Physicochemical Properties of Turkey Okra (Hibiscus esculenta) Seeds. J. Food Eng. 2005, 68, 73–78. [Google Scholar] [CrossRef]
- Olivia, P. Utilization of Okra (Abelmoschus esculentus) Seed as Coffee Substitute to Lower Caffeine Content of Coffee Drinks; Universitas Pelita Harapan: Tangerang, Indonesia, 2017. [Google Scholar]
- Ofori, J.; Tortoe, C.; Agbenorhevi, J.K. Physicochemical and Functional Properties of Dried Okra (Abelmoschus esculentus L.) Seed Flour. Food Sci. Nutr. 2020, 8, 4291–4296. [Google Scholar] [CrossRef] [PubMed]
- Rindiani, R.; Kumalasari, P. Steamed Cake with Okra Flour Substitution as an Alternative to Snack for a Fibre Source. IOP Conf. Ser. Earth Environ. Sci. 2021, 672, 012048. [Google Scholar] [CrossRef]
- Hu, L.; Guo, J.; Zhu, X.; Liu, R.; Wu, T.; Sui, W.; Zhang, M. Effect of Steam Explosion on Nutritional Composition and Antioxidative Activities of Okra Seed and Its Application in Gluten-free Cookies. Food Sci. Nutr. 2020, 8, 4409–4421. [Google Scholar] [CrossRef]
- Omoniyi, S.A.; Idowu, M.A.; Francis, P.N.; Adeola, A.A. Nutrient Composition and Functional Properties of Okra Seed Flour and Some Quality Attributes of Its Soups. J. Culin. Sci. Technol. 2021, 19, 285–293. [Google Scholar] [CrossRef]
- Nnamezie, A.A.; Famuwagun, A.A.; Gbadamosi, S.O. Characterization of Okra Seed Flours, Protein Concentrate, Protein Isolate and Enzymatic Hydrolysates. Food Prod. Process. Nutr. 2021, 3, 14. [Google Scholar] [CrossRef]
- Karakoltsidis, P.A.; Constantinides, S.M. Okra Seeds: New Protein Source. J. Agric. Food Chem. 1975, 23, 1204–1207. [Google Scholar] [CrossRef]
- Martin, F.W.; Telek, L.; Ruberte, R.; Santiago, A.G. Protein, Oil and Gossypol Contents of a Vegetable Curd Made from Okra Seeds. J. Food Sci. 1979, 44, 1517–1529. [Google Scholar] [CrossRef]
- Doreddula, S.K.; Bonam, S.R.; Gaddam, D.P.; Desu, B.S.R.; Ramarao, N.; Pandy, V. Phytochemical Analysis, Antioxidant, Antistress, and Nootropic Activities of Aqueous and Methanolic Seed Extracts of Ladies Finger (Abelmoschus esculentus L.) in Mice. Sci. World J. 2014, 2014, 519848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Demleitner, M.F.; Song, L.; Rychlik, M.; Huang, D. Oligomeric Proanthocyanidins Are the Active Compounds in Abelmoschus esculentus Moench for Its α-Amylase and α-Glucosidase Inhibition Activity. J. Funct. Foods 2016, 20, 463–471. [Google Scholar] [CrossRef]
- Xia, F.; Zhong, Y.; Li, M.; Chang, Q.; Liao, Y.; Liu, X.; Pan, R. Antioxidant and Anti-Fatigue Constituents of Okra. Nutrients 2015, 7, 8846–8858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaemsawang, W.; Prasongchean, W.; Papadopoulos, K.I.; Ritthidej, G.; Sukrong, S.; Wattanaarsakit, P. The Effect of Okra (Abelmoschus esculentus (L.) Moench) Seed Extract on Human Cancer Cell Lines Delivered in Its Native Form and Loaded in Polymeric Micelles. Int. J. Biomater. 2019, 2019, 9404383. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Li, C.; Li, M.; Liao, Y.; Liu, X.; Si, J.; Chang, Q.; Pan, R. Antidepressant Activity of an Aqueous Extract from Okra Seeds. RSC Adv. 2018, 8, 32814–32822. [Google Scholar] [CrossRef] [Green Version]
- Ong, E.S.; Oh, C.L.Y.; Tan, J.C.W.; Foo, S.Y.; Leo, C.H. Pressurized Hot Water Extraction of Okra Seeds Reveals Antioxidant, Antidiabetic and Vasoprotective Activities. Plants 2021, 10, 1645. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, C.; Guven, E.C.; Paoli, P.; Simal-Gandara, J.; Ramkumar, K.M.; Wang, S.; Buleu, F.; Pah, A.; Turi, V.; et al. Dietary Polyphenols as Antidiabetic Agents: Advances and Opportunities. Food Front. 2020, 1, 18–44. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Diao, P.; Shu, X.; Li, L.; Xiong, L. Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: In Vitro Assessment and a Theoretical Model. Biomed. Res. Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Elkhalifa, A.E.O.; Alshammari, E.; Adnan, M.; Alcantara, J.C.; Awadelkareem, A.M.; Eltoum, N.E.; Mehmood, K.; Panda, B.P.; Ashraf, S.A. Okra (Abelmoschus esculentus) as a Potential Dietary Medicine with Nutraceutical Importance for Sustainable Health Applications. Molecules 2021, 26, 696. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, H.-L.; Fang, J.; Yu, C.-H.; Xiong, Y.-K.; Yuan, K. Anti-Fatigue and Vasoprotective Effects of Quercetin-3-O-Gentiobiose on Oxidative Stress and Vascular Endothelial Dysfunction Induced by Endurance Swimming in Rats. Food Chem. Toxicol. 2014, 68, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liang, D.; Huang, Z.; Jia, G.; Zhao, H.; Liu, G. Anti-fatigue Effect of Quercetin on Enhancing Muscle Function and Antioxidant Capacity. J. Food Biochem. 2021, 45, e13968. [Google Scholar] [CrossRef] [PubMed]
- Rathore, K.S.; Pandeya, D.; Campbell, L.M.; Wedegaertner, T.C.; Puckhaber, L.; Stipanovic, R.D.; Thenell, J.S.; Hague, S.; Hake, K. Ultra-Low Gossypol Cottonseed: Selective Gene Silencing Opens up a Vast Resource of Plant-Based Protein to Improve Human Nutrition. CRC Crit. Rev. Plant Sci. 2020, 39, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Mushtaq, Z.; Ikram, A.; Faisal, M.; Wan-Li, Z.; Ahmad, M.I. Estimating the Economic Viability of Cotton Growers in Punjab Province, Pakistan. SAGE Open 2020, 10, 215824402092931. [Google Scholar] [CrossRef]
- Maboudou Alidou, G.; Niehof, A. Responses of Rural Households to the Cotton Crisis in Benin. Sustainability 2020, 12, 4207. [Google Scholar] [CrossRef]
- Egbuta, M.; McIntosh, S.; Waters, D.; Vancov, T.; Liu, L. Biological Importance of Cotton By-Products Relative to Chemical Constituents of the Cotton Plant. Molecules 2017, 22, 93. [Google Scholar] [CrossRef] [Green Version]
- Cao, H. Bioactive Compounds from Glanded and Glandless Cottonseed. In Proceedings of the 2019 Beltwide Cotton Conferences, New Orleans, LA, USA, 8–10 January 2019; National Cotton Council of America: New Orleans, LA, USA, 2019; pp. 559–571. [Google Scholar]
- Velmourougane, K.; Blaise, D.; Savitha, S.; Waghmare, V.N. Valorization of Cotton Wastes for Agricultural and Industrial Applications: Present Status and Future Prospects. In Valorization of Agri-Food Wastes and By-Products; Elsevier: Amsterdam, The Netherlands, 2021; pp. 665–692. [Google Scholar] [CrossRef]
- Satankar, V.; Singh, M.; Mageshwaran, V.; Jhodkar, D.; Changan, S.; Kumar, M.; Mekhemar, M. Cottonseed Kernel Powder as a Natural Health Supplement: An Approach to Reduce the Gossypol Content and Maximize the Nutritional Benefits. Appl. Sci. 2021, 11, 3901. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Grasso, S.; Arrutia, F.; Choudhary, J.; Singh, S.; Verma, P.; Mahapatra, A.; Patil, S.; et al. Cottonseed: A Sustainable Contributor to Global Protein Requirements. Trends Food Sci. Technol. 2021, 111, 100–113. [Google Scholar] [CrossRef]
- Kumar, M.; Potkule, J.; Patil, S.; Saxena, S.; Patil, P.G.; Mageshwaran, V.; Punia, S.; Varghese, E.; Mahapatra, A.; Ashtaputre, N.; et al. Extraction of Ultra-Low Gossypol Protein from Cottonseed: Characterization Based on Antioxidant Activity, Structural Morphology and Functional Group Analysis. LWT 2021, 140, 110692. [Google Scholar] [CrossRef]
- Wu, C.; Cheng, H.; Li, S.; Zuo, D.; Lin, Z.; Zhang, Y.; Lv, L.; Wang, Q.; Song, G. Molecular Cloning and Characterization of GhERF105, a Gene Contributing to the Regulation of Gland Formation in Upland Cotton (Gossypium hirsutum L.). BMC Plant Biol. 2021, 21, 102. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Pi, W.; Yang, W.; Nie, C.; Liang, J.; Ma, X.; Zhang, W. Optimization of the Process Parameters for Reduction of Gossypol Levels in Cottonseed Meal by Functional Recombinant NADPH-Cytochrome P450 Reductase and Cytochrome P450 CYP9A12 of Helicoverpa armigera. AMB Express 2019, 9, 98. [Google Scholar] [CrossRef]
- Wang, L.; Chen, M.; Luo, X.; Fan, Y.; Zheng, Z.; He, Z.; Yin, R.; Meng, T.; Xu, S.; Pan, Y.; et al. Intramolecular Annulation of Gossypol by Laccase to Produce Safe Cottonseed Protein. Front. Chem. 2020, 8, 583176. [Google Scholar] [CrossRef] [PubMed]
- Ghazani, S.M.; Marangoni, A.G. Healthy Fats and Oils. In Encyclopedia of Food Grains; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Kumar, M. Paruthi Paal, a Nutrient-Rich Healthy Drink from Cottonseed: An Indian Delicacy. J. Ethn. Foods 2019, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- List, G.R. Oilseed Composition and Modification for Health and Nutrition. In Functional Dietary Lipids; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Gadelha, I.C.N.; Rangel, A.H.d.N.; Silva, A.R.; Soto-Blanco, B. Efeitos Do Gossipol Na Reprodução Animal. Acta Vet. Bras. 2011, 5, 129–135. [Google Scholar]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. The Use of Cottonseed Meal as a Protein Source for Poultry: An Updated Review. World’s Poult. Sci. J. 2016, 72, 473–484. [Google Scholar] [CrossRef]
- Wang, W.-K.; Yang, H.-J.; Wang, Y.-L.; Yang, K.-L.; Jiang, L.-S.; Li, S.-L. Gossypol Detoxification in the Rumen and Helicoverpa armigera Larvae: A Review. Anim. Nutr. 2021, 7, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Potkule, J.; Patil, S.; Mageshwaran, V.; Radha; Satankar, V.; Berwal, M.K.; Mahapatra, A.; Saxena, S.; Ashtaputre, N.; et al. Evaluation of Detoxified Cottonseed Protein Isolate for Application as Food Supplement. Toxin Rev. 2021, 1–8. [Google Scholar] [CrossRef]
- Subramani, T.; Ganapathyswamy, H.; Sampathrajan, V.; Sundararajan, A. Optimization of Extraction Parameters to Improve Cottonseed Milk Yield and Reduce Gossypol Levels Using Response Surface Methodology (RSM). J. Food Process. Preserv. 2021, e15945. [Google Scholar] [CrossRef]
- Delgado, E.; Valverde-Quiroz, L.; Lopez, D.; Cooke, P.; Valles-Rosales, D.; Flores, N. Characterization of Soluble Glandless Cottonseed Meal Proteins Based on Electrophoresis, Functional Properties, and Microscopic Structure. J. Food Sci. 2019, 84, 2820–2830. [Google Scholar] [CrossRef]
- Gadelha, I.C.N.; Fonseca, N.B.S.; Oloris, S.C.S.; Melo, M.M.; Soto-Blanco, B. Gossypol Toxicity from Cottonseed Products. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Sethumadhavan, K. Cottonseed Ethanol Extracts and Gossypol Regulate Anti-Inflammatory Tristetraprolin Family Gene Expression in Mouse Cells. Curr. Dev. Nutr. 2020, 4 (Suppl. 2), 374. [Google Scholar] [CrossRef]
- Zhong, S.; Leong, J.; Ye, W.; Xu, P.; Lin, S.-H.; Liu, J.-Y.; Lin, Y.C. (−)-Gossypol-Enriched Cottonseed Oil Inhibits Proliferation and Adipogenesis of Human Breast Pre-Adipocytes. Anticancer Res. 2013, 33, 949–955. [Google Scholar] [PubMed]
- Mellon, J.E.; Zelaya, C.A.; Dowd, M.K.; Beltz, S.B.; Klich, M.A. Inhibitory Effects of Gossypol, Gossypolone, and Apogossypolone on a Collection of Economically Important Filamentous Fungi. J. Agric. Food Chem. 2012, 60, 2740–2745. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Sethumadhavan, K.; Cao, F.; Wang, T.T.Y. Gossypol Decreased Cell Viability and Down-Regulated the Expression of a Number of Genes in Human Colon Cancer Cells. Sci. Rep. 2021, 11, 5922. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Wang, L.-S.; Dowd, M.K.; Wan, P.J.; Lin, Y.C. (−)-Gossypol Reduces Invasiveness in Metastatic Prostate Cancer Cells. Anticancer Res. 2009, 29, 2179–2188. [Google Scholar]
- Yuan, Y.; Tang, A.J.; Castoreno, A.B.; Kuo, S.-Y.; Wang, Q.; Kuballa, P.; Xavier, R.; Shamji, A.F.; Schreiber, S.L.; Wagner, B.K. Gossypol and an HMT G9a Inhibitor Act in Synergy to Induce Cell Death in Pancreatic Cancer Cells. Cell Death Dis. 2013, 4, e690. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Chitcharoenthum, M.; Rikihisa, Y. Effect of Gossypol on Thyroid Hormones in Young Female Rats. Contraception 1990, 41, 431–440. [Google Scholar] [CrossRef]
- Li, H.; Piao, L.; Xu, P.; Ye, W.; Zhong, S.; Lin, S.-H.; Kulp, S.K.; Mao, Y.; Cho, Y.; Lee, L.J.; et al. Liposomes Containing (−)-Gossypol-Enriched Cottonseed Oil Suppress Bcl-2 and Bcl-XL Expression in Breast Cancer Cells. Pharm. Res. 2011, 28, 3256–3264. [Google Scholar] [CrossRef]
- Hu, Y.F.; Chang, C.J.G.; Brueggemeier, R.W.; Lin, Y.C. Gossypol Inhibits Basal and Estrogen-Stimulated DNA Synthesis in Human Breast Carcinoma Cells. Life Sci. 1993, 53, PL433–PL438. [Google Scholar] [CrossRef]
- Callaway, J.C. Hempseed as a Nutritional Resource: An Overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Semwogerere, F.; Katiyatiya, C.L.F.; Chikwanha, O.C.; Marufu, M.C.; Mapiye, C. Bioavailability and Bioefficacy of Hemp By-Products in Ruminant Meat Production and Preservation: A Review. Front. Vet. Sci. 2020, 7, 572906. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Global Hempseed Production. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 14 December 2021).
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Hempseed in Food Industry: Nutritional Value, Health Benefits, and Industrial Applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 282–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aluko, R.E. Hemp Seed (Cannabis sativa L.) Proteins: Composition, Structure, Enzymatic Modification, and Functional or Bioactive Properties. In Sustainable Protein Sources; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 121–132. [Google Scholar] [CrossRef]
- Liang, J.; Appukuttan Aachary, A.; Thiyam-Holländer, U. Hemp Seed Oil: Minor Components and Oil Quality. Lipid Technol. 2015, 27, 231–233. [Google Scholar] [CrossRef]
- Schluttenhofer, C.; Yuan, L. Challenges towards Revitalizing Hemp: A Multifaceted Crop. Trends Plant Sci. 2017, 22, 917–929. [Google Scholar] [CrossRef] [Green Version]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Iannone, M.; Cinque, G.; Marianelli, A.; Pistelli, L.; Flamini, G. “Hemping” the Drinks: Aromatizing Alcoholic Beverages with a Blend of Cannabis sativa L. Flowers. Food Chem. 2020, 325, 126909. [Google Scholar] [CrossRef]
- Bamikole, M.A.; Ikhatua, U.J. Compilation and Adoption of Ethno-Veterinary Medicine, Traditional and Other Management Practices by Small Ruminant Farmers in Edo State Nigeria. Trop. Anim. Health Prod. 2009, 41, 1549–1561. [Google Scholar] [CrossRef]
- Chandra, S.; Lata, H.; ElSohly, M.A. Cannabis sativa L.—Botany and Biotechnology; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Clarke, R.C. Traditional Cannabis Cultivation in Darchula District, Nepal - Seed, Resin and Textiles. J. Ind. Hemp 2007, 12, 19–42. [Google Scholar] [CrossRef]
- Nissen, L.; di Carlo, E.; Gianotti, A. Prebiotic Potential of Hemp Blended Drinks Fermented by Probiotics. Food Res. Int. 2020, 131, 109029. [Google Scholar] [CrossRef]
- Deferne, J.; Pate, D. Hemp Seed Oil: A Source of Valuable Essential Fatty Acids. J. Int. Hemp Assoc. 1996, 3, 1–7. [Google Scholar]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. Hemp (Cannabis sativa subsp. sativa) Flour and Protein Preparation as Natural Nutrients and Structure Forming Agents in Starch Based Gluten-Free Bread. LWT 2017, 84, 143–150. [Google Scholar] [CrossRef]
- Antun, J.; Đurđica, A.; Stela, J.; Jurislav, B.; Jelena Panak, B.; Marija, B.; Drago, Š. Optimisation of Extrusion Variables for the Production of Corn Snack Products Enriched with Defatted Hemp Cake. Czech J. Food Sci. 2017, 35, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Małecki, J.; Tomasevic, I.; Djekic, I.; Sołowiej, B.G. The Effect of Protein Source on the Physicochemical, Nutritional Properties and Microstructure of High-Protein Bars Intended for Physically Active People. Foods 2020, 9, 1467. [Google Scholar] [CrossRef]
- Devi, V.; Khanam, S. Study of ω-6 Linoleic and ω-3 α-Linolenic Acids of Hemp (Cannabis sativa) Seed Oil Extracted by Supercritical CO2 Extraction: CCD Optimization. J. Environ. Chem. Eng. 2019, 7, 102818. [Google Scholar] [CrossRef]
- Callaway, J.; Schwab, U.; Harvima, I.; Halonen, P.; Mykkänen, O.; Hyvönen, P.; Järvinen, T. Efficacy of Dietary Hempseed Oil in Patients with Atopic Dermatitis. J. Dermatolog. Treat. 2005, 16, 87–94. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, J.; Xiong, Y.L. High Pressure Homogenization Combined with pH Shift Treatment: A Process to Produce Physically and Oxidatively Stable Hemp Milk. Food Res. Int. 2018, 106, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Chichłowska, J.; Kliber, A.; Kozłowska, J.; Biskupski, M.; Grygorowicz, Z. Insulin, Thyroid Hormone Levels and Metabolic Changes after Treated Rats with Hemp Milk. Available online: http://www.hempreport.com/pdf/HempMilkStudy%5B1%5D.pdf (accessed on 12 November 2021).
- Golub, V.; Reddy, D.S. Cannabidiol Therapy for Refractory Epilepsy and Seizure Disorders. In Cannabinoids and Neuropsychiatric Disorders; Springer: Berlin/Heidelberg, Germany, 2021; pp. 93–110. [Google Scholar] [CrossRef]
- Gray, R.A.; Whalley, B.J. The Proposed Mechanisms of Action of CBD in Epilepsy. Epileptic Disord. 2020, 22 (Suppl. S1), S10–S15. [Google Scholar]
- Mattila, P.H.; Pihlava, J.-M.; Hellström, J.; Nurmi, M.; Eurola, M.; Mäkinen, S.; Jalava, T.; Pihlanto, A. Contents of Phytochemicals and Antinutritional Factors in Commercial Protein-Rich Plant Products. Food Qual. Saf. 2018, 2, 213–219. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Lou, H.; Fan, P. Chemical Constituents of Hemp (Cannabis sativa L.) Seed with Potential Anti-Neuroinflammatory Activity. Phytochem. Lett. 2018, 23, 57–61. [Google Scholar] [CrossRef]
- Yan, X.; Tang, J.; dos Santos Passos, C.; Nurisso, A.; Simões-Pires, C.A.; Ji, M.; Lou, H.; Fan, P. Characterization of Lignanamides from Hemp (Cannabis sativa L.) Seed and Their Antioxidant and Acetylcholinesterase Inhibitory Activities. J. Agric. Food Chem. 2015, 63, 10611–10619. [Google Scholar] [CrossRef]
- Aluko, R.E. Food-Derived Acetylcholinesterase Inhibitors as Potential Agents against Alzheimer’s Disease. eFood 2021, 2, 49. [Google Scholar] [CrossRef]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect Of Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, B.; Suzuta, I. On the Term of Hibiscus cannabinus L. Formos. Agric. Rev. 1937, 368, 591–597. [Google Scholar]
- Xu, J.; Tao, A.; Qi, J.; Wang, Y. Bast Fibres. In Handbook of Natural Fibres; Kozłowski, R.M., Maria Mackiewicz-Talarczyk, M., Eds.; Woodhead Publishing: Sawston, UK, 2020; Volume 1, pp. 71–92. [Google Scholar] [CrossRef]
- Sen, T.; Reddy, H.N.J. Various Industrial Applications of Hemp, Kinaf, Flax and Ramie Natural Fibres. Int. J. Innov. Manag. Technol. 2011, 2, 192–198. [Google Scholar]
- Odetola, O.M.; Eruvbetine, D. Nutritional Evaluation of Whole Kenaf (Hibiscus cannabinus L.) Seed Meal in Rats. J. Adv. Lab. Res. Biol. 2012, 3, 152–157. [Google Scholar]
- Sulochanamma, G.P.R.P.G.; Madhusudhan, R.D.; Prabhakara, R.P.G.; Balaswamy, K. Development of a Low Calorie Ready-to-Serve Beverage from Hibiscus cannabinus L. Biomed. J. Sci. Tech. Res. 2018, 11, 8418–8423. [Google Scholar] [CrossRef]
- Lim, P.Y.; Sim, Y.Y.; Nyam, K.L. Influence of Kenaf (Hibiscus cannabinus L.) Leaves Powder on the Physico-Chemical, Antioxidant and Sensorial Properties of Wheat Bread. J. Food Meas. Charact. 2020, 14, 2425–2432. [Google Scholar] [CrossRef]
- Ayadi, R.; Hanana, M.; Mzid, R.; Hamrouni, L.; Khouja, M.L.; Salhi Hanachi, A. Hibiscus cannabinus L.— Kenaf: A Review Paper. J. Nat. Fibers 2016, 14, 466–484. [Google Scholar] [CrossRef]
- Birhanie, Z.M.; Xiao, A.; Yang, D.; Huang, S.; Zhang, C.; Zhao, L.; Liu, L.; Li, J.; Chen, A.; Tang, H.; et al. Polysaccharides, Total Phenolic, and Flavonoid Content from Different Kenaf (Hibiscus cannabinus L.) Genotypes and Their Antioxidants and Antibacterial Properties. Plants 2021, 10, 1900. [Google Scholar] [CrossRef]
- Mohammad Yusoff, M.; Nasarudin, N.S.; Mohd Daud, M.D. Manual Teknologi Pengeluaran Biji Benih Kenaf Di Kawasan Tropika; Institut Penyelidikan dan Kemajuan Pertanian Malaysia (MARDI): Kuala Lumpur, Malaysia, 2015. [Google Scholar]
- Sim, Y.Y.; Nyam, K.L. Hibiscus cannabinus L. (Kenaf) Studies: Nutritional Composition, Phytochemistry, Pharmacology, and Potential Applications. Food Chem. 2020, 344, 128582. [Google Scholar] [CrossRef]
- Chan, K.W. Cholesterol-Lowering Properties of Defatted Kenaf Seed Meal and Its Phenolics-Saponins-Rich Extract in a Rat Model; Universiti Putra Malaysia: Serdang, Malaysia, 2019. [Google Scholar]
- Karim, R.; Mat Noh, N.A.; Ibrahim, S.G.; Wan Ibadullah, W.Z.; Zawawi, N.; Saari, N. Kenaf (Hibiscus cannabinus L.) Seed Extract as a New Plant-Based Milk Alternative and Its Potential Food Uses. In Milk Substitutes—Selected Aspects; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Foo, J.B.; Saiful Yazan, L.; Mansor, S.M.; Ismail, N.; Md Tahir, P.; Ismail, M. Kenaf Seed Oil from Supercritical Carbon Dioxide Fluid Extraction Inhibits the Proliferation of WEHI-3B Leukemia Cells In Vivo. J. Med. Plants Res. 2012, 6, 1429–1436. [Google Scholar] [CrossRef]
- Chan, K.W.; Khong, N.M.H.; Iqbal, S.; Mansor, S.M.; Ismail, M. Defatted Kenaf Seed Meal (DKSM): Prospective Edible Flour from Agricultural Waste with High Antioxidant Activity. LWT Food Sci. Technol. 2013, 53, 308–313. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- Cheng, W.-Y.; Haque Akanda, J.M.; Nyam, K.-L. Kenaf Seed Oil: A Potential New Source of Edible Oil. Trends Food Sci. Technol. 2016, 52, 57–65. [Google Scholar] [CrossRef]
- Omenna, E.C.; Uzuegbu, D.C.; Okeleye, D.D. Functional and Nutritional Properties of Kenaf Seed. EC Nutr. 2017, 11, 166–172. [Google Scholar]
- Abd Ghafar, S.A.; Ismail, M.; Saiful Yazan, L.; Fakurazi, S.; Ismail, N.; Chan, K.W.; Md Tahir, P. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.W.; Ismail, M.; Mohd Esa, N.; Mohamed Alitheen, N.B.; Imam, M.U.; Ooi, D.J.; Khong, N.M.H. Defatted Kenaf (Hibiscus cannabinus L.) Seed Meal and Its Phenolic-Saponin-Rich Extract Protect Hypercholesterolemic Rats against Oxidative Stress and Systemic Inflammation via Transcriptional Modulation of Hepatic Antioxidant Genes. Oxidative Med. Cell. Longev. 2018, 2018, 6742571. [Google Scholar] [CrossRef] [Green Version]
- Mariod, A.A.; Fathy, S.F.; Ismail, M. Preparation and Characterisation of Protein Concentrates from Defatted Kenaf Seed. Food Chem. 2010, 123, 747–752. [Google Scholar] [CrossRef]
- Giwa Ibrahim, S.; Karim, R.; Saari, N.; Wan Abdullah, W.Z.; Zawawi, N.; Ab Razak, A.F.; Hamim, N.A.; Umar, R.A. Kenaf (Hibiscus cannabinus L.) Seed and Its Potential Food Applications: A Review. J. Food Sci. 2019, 84, 2015–2023. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.G.; Mat Noh, N.A.; Wan Ibadullah, W.Z.; Saari, N.; Karim, R. Water Soaking Temperature of Kenaf (Hibiscus cannabinus L.) Seed, Coagulant Types, and Their Concentrations Affected the Production of Kenaf-based Tofu. J. Food Process. Preserv. 2020, 44, e14549. [Google Scholar] [CrossRef]
- Olawepo, K.D.; Banjo, O.T.; Jimoh, W.A.; Fawole, W.O.; Orisasona, O.; Ojo-Daniel, A.H. Effect of Cooking and Roasting on Nutritional and Anti-Nutritional Factors in Kenaf (Hibiscus cannabinus L.) Seed Meal. Food Sci. Qual. Manag. 2014, 24, 1–5. [Google Scholar]
- Mohamed, A.; Bhardwaj, H.; Hamama, A.; Webber, C. Chemical Composition of Kenaf (Hibiscus cannabinus L.) Seed Oil. Ind. Crop. Prod. 1995, 4, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Nevara, G.A.; Muhammad, S.K.S.; Zawawi, N.; Mustapha, N.A.; Karim, R. Dietary Fiber: Fractionation, Characterization and Potential Sources from Defatted Oilseeds. Foods 2021, 10, 754. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulou, E.; Papatheohari, Y.; Christou, M.; Monti, A. Origin, Description, Importance, and Cultivation Area of Kenaf. In Green Energy and Technology; Springer: London, UK, 2013. [Google Scholar] [CrossRef]
- Ryu, J.; Kwon, S.-J.; Ahn, J.-W.; Jo, Y.D.; Kim, S.H.; Jeong, S.W.; Lee, M.K.; Kim, J.-B.; Kang, S.-Y. Phytochemicals and Antioxidant Activity in the Kenaf Plant (Hibiscus cannabinus L.). J. Plant Biotechnol. 2017, 44, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Yusri, N.; Chan, K.; Iqbal, S.; Ismail, M. Phenolic Content and Antioxidant Activity of Hibiscus cannabinus L. Seed Extracts after Sequential Solvent Extraction. Molecules 2012, 17, 12612–12621. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Oh, K.K.; Azad, M.O.K.; Shin, M.H.; Wang, M.-H.; Cho, D.H. Kenaf (Hibiscus cannabinus L.) Leaves and Seed as a Potential Source of the Bioactive Compounds: Effects of Various Extraction Solvents on Biological Properties. Life 2020, 10, 223. [Google Scholar] [CrossRef]
- Kai, N.S.; Nee, T.A.; Ling, E.L.C.; Ping, T.C.; Kamariah, L.; Lin, N.K. Anti-Hypercholesterolemic Effect of Kenaf (Hibiscus cannabinus L.) Seed on High–Fat Diet Sprague Dawley Rats. Asian Pac. J. Trop. Med. 2015, 8, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, P.; Xue, Y.; Liang, Y.; Shi, J.; Han, X.; Zhang, J.; Chu, X.; Chu, L. Tannic Acid Attenuates Hepatic Oxidative Stress, Apoptosis and Inflammation by Activating the Keap1-Nrf2/ARE Signaling Pathway in Arsenic Trioxide-toxicated Rats. Oncol. Rep. 2020, 44, 2306–2316. [Google Scholar] [CrossRef]
- Lou, W.; Chen, Y.; Ma, H.; Liang, G.; Liu, B. Antioxidant and α-Amylase Inhibitory Activities of Tannic Acid. J. Food Sci. Technol. 2018, 55, 3640–3646. [Google Scholar] [CrossRef]
- Singh, A.P.; Kumar, S. Applications of Tannins in Industry. In Tannins—Structural Properties, Biological Properties and Current Knowledge; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxidative Med. Cell. Longev. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Peungvicha, P.; Thirawarapan, S.S.; Watanabe, H. Possible Mechanism of Hypoglycemic Effect of 4-Hydroxybenzoic Acid, a Constituent of Pandanus odorus Root. Jpn. J. Pharmacol. 1998, 78, 395–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, S.-M.; Kim, H.K.; Kim, H.-J.; Do, G.-M.; Jeong, T.-S.; Park, Y.B.; Choi, M.-S. Hypocholesterolemic and Antioxidative Effects of Naringenin and Its Two Metabolites in High-Cholesterol Fed Rats. Transl. Res. 2007, 149, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Nyam, K.L.; Tan, C.P.; Lai, O.M.; Long, K.; Che Man, Y.B. Physicochemical Properties and Bioactive Compounds of Selected Seed Oils. LWT Food Sci. Technol. 2009, 42, 1396–1403. [Google Scholar] [CrossRef]
- Nyam, K.L.; Sin, L.N.; Kamariah, L. Phytochemical Analysis and Anti-Inflammatory Effect of Kenaf and Roselle Seeds. Malays. J. Nutr. 2016, 22, 245–254. [Google Scholar]
- Wong, Y.H.; Tan, W.Y.; Tan, C.P.; Long, K.; Nyam, K.L. Cytotoxic Activity of Kenaf (Hibiscus cannabinus L.) Seed Extract and Oil against Human Cancer Cell Lines. Asian Pac. J. Trop. Biomed. 2014, 4 (Suppl. S1), 510–515. [Google Scholar] [CrossRef]
Polyphenolic Class | Polyphenolic Compound | Molecular Formulae | Beneficial Health Effects | Sources | References |
---|---|---|---|---|---|
Phenolic acids | Gallic acid | C7H6O5 | Anti-inflammatory, antidiabetic, anti-obesity, antimicrobial, antineurodegenerative, anti-myocardial ischemia, hepaprotective | Grape seed, raspberry seed, flaxseed, date seed, corn seed, lime seed, guava seed | [43,44,45,46,47,48] |
Syringic acid | C9H10O5 | Antibacterial, hepatoprotective | Date seed, grape seed | ||
Vanillic acid | C8H8O4 | Anti-ulcer, anthelmintic, hepaprotective, neuroprotective, wound healing | Date seed, pumpkin seed, papaya seed, orange seed, grape seed | ||
Chlorogenic acid | C16H18O9 | Anti-obesity, antidiabetic, antimicrobial, anticarcinogenic | Apple seed, sunflower seed, chia seed, coffee bean, date seed, lime seed, orange seed | ||
Caffeic acid | C9H8O4 | Anti-inflammatory, anticarcinogenic, antidiabetic, antineurodegenerative | Chia seed, date seed, lime seed, orange seed, guava seed | ||
Ferulic acid | C10H10O4 | Anti-ageing, antidiabetic, antimicrobial | Oat seed, corn seed, date seed, lime seed, orange seed, grape seed | ||
p-hydroxybenzoic acid | C7H6O3 | Antimicrobial, antimutagenic | Papaya seed, grape seed | ||
p-coumaric acid | C9H8O3 | Anti-inflammatory, antineoplastic, antimicrobial, anti-platelet aggregation, antidiabetic, neuroprotective | Grape seed, lime seed, orange seed | ||
Protocatechuic acid | C7H6O4 | Antibacterial, anticancer, anti-ulcer, anti-ageing, analgesic | Apple seed, berry seed, date seed, lime seed, orange seed, grape seed | ||
Caffeoylquinic acid | C16H18O9 | Anti-inflammatory, antidiabetic | Date seed | ||
Caffeoylshikimic acid | C16H16O8 | Anticancer | Date seed | ||
Flavonoids | Catechin | C15H14O6 | Anti-allergic, anti-ageing, anticancer, antimicrobial | Avocado seed, lime seed | [47,48,49,50,51] |
Quercetin | C15H10O7 | Anti-arthritic, anti-inflammatory, antihypertensive, anticancer, antineurodegenerative, cardioprotective, wound healing | Quinoa seed, chia seed, lime seed, grape seed | ||
Cyanidin | C15H11O6+ | Anti-inflammatory, antidiabetic | Black soybean, purple corn seed, mulberry seed, guava seed | ||
Kaempferol | C15H10O6 | Anticancer, antimicrobial, cardioprotective, neuroprotective | Red bean, pinto bean, quinoa seed, lime seed | ||
Rutin | C27H30O16 | Anti-allergic, antiproliferative | Tomato seed, orange seed | ||
Apigenin | C15H10O5 | Antidiabetic | Celery seed | ||
Luteolin | C15H10O6 | Anti-inflammatory, antidiabetic | Celery seed | ||
Naringenin | C15H12O5 | Anticancer, antidiabetic, antimutagenic | Celery seed, grapefruit seed, tomato seed, lime seed, orange seed | ||
Hyperin | C21H20O12 | Antihyperglycemic, antiviral, anti-ulcer, antinociceptive, anticancer, hepatoprotective, myocardial protection | Apple seed | ||
Phloridzin | C21H24O10 | Antidiabetic, antimicrobial | Apple seed, pumpkin seed | ||
Lignans | Arctigenin | C21H24O6 | Anti-inflammatory, anticancer, antimicrobial, antiviral | Greater burdock seed | [52,53,54,55] |
Secoisolariciresinol | C20H26O6 | Anticancer, anti-estrogenic, cardioprotective | Flaxseed, sunflower seed, pumpkin seed, sesame seed | ||
Matairesinol | C20H22O6 | Anti-inflammatory | Flaxseed, sesame seed, grape seed | ||
Sesamin | C20H18O6 | Anti-inflammatory, anti-ageing, anti-estrogenic, anticancer, antimicrobial, neuroprotective | Sesame seed, cashew nut | ||
Sesaminol | C20H18O7 | ||||
Sesamol | C7H6O3 | ||||
Sesamolinol | C20H20O7 | ||||
Stillbenes | Resveratrol | C14H12O3 | Antihyperglycemic, antihypercholesterolemic, anticancer, anti-obesity, antimutagenic | Grape seed, passion fruit seed | [56,57,58] |
Pterostilbene | C16H16O3 | Anticancer, cardioprotective, antimicrobial | Grape seed | ||
Piceatannol | C14H12O4 | Anti-obesity, antihyperglycemic, anticancer, skin protective | Passion fruit seed | ||
Pinosylvin | C14H12O2 | Anti-inflammatory, antimicrobial, anticancer | Grape seed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaini, N.S.; Karim, R.; Abdull Razis, A.F.; Zawawi, N. Utilizing Nutritional and Polyphenolic Compounds in Underutilized Plant Seeds for Health Application. Molecules 2022, 27, 6813. https://doi.org/10.3390/molecules27206813
Zaini NS, Karim R, Abdull Razis AF, Zawawi N. Utilizing Nutritional and Polyphenolic Compounds in Underutilized Plant Seeds for Health Application. Molecules. 2022; 27(20):6813. https://doi.org/10.3390/molecules27206813
Chicago/Turabian StyleZaini, Nur Syamimi, Roselina Karim, Ahmad Faizal Abdull Razis, and Norhasnida Zawawi. 2022. "Utilizing Nutritional and Polyphenolic Compounds in Underutilized Plant Seeds for Health Application" Molecules 27, no. 20: 6813. https://doi.org/10.3390/molecules27206813
APA StyleZaini, N. S., Karim, R., Abdull Razis, A. F., & Zawawi, N. (2022). Utilizing Nutritional and Polyphenolic Compounds in Underutilized Plant Seeds for Health Application. Molecules, 27(20), 6813. https://doi.org/10.3390/molecules27206813