Maillard and Hydrolytic Reactions in Subcritical Water Extraction of Bioactive Compounds from Licorice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Subcritical Water Extraction
2.1.1. Effect of Extraction Temperature on the Content of Bioactive Compounds in the Extract
2.1.2. Effect of Extraction Temperature on the Total Antioxidant Activity of Licorice Extract
2.2. HPLC-ABTS+ Antioxidant Activity Evaluation and HPLC-MS/MS and UPLC-MS Identification of Bioactive Compounds in Licorice Extract
2.3. Analysis of Non-Specific Indicators of Maillard Reaction
2.3.1. Total Reducing Sugars and Total Free Amino Acid Content
2.3.2. Color Measurement
2.3.3. Absorbance Measurement
2.4. Analysis of Specific Indicators of Maillard Reaction
2.4.1. Determination of Fluorescent Advanced Glycated End Products
2.4.2. Determination of 5-Hydroxymethyl Furfural and Furfural
2.5. Thermal Hydrolysis of Glycyrrhizic Acid
2.6. Kinetic Analysis
3. Materials and Methods
3.1. Chemicals and Plant Material
3.1.1. Chemicals
3.1.2. Plant Material
3.2. Apparatus and Extraction Procedure
3.3. Determination of the Bioactive Compounds
3.3.1. The Total Phenolic and Total Flavonoid Content
3.3.2. Determination of Glycyrrhizic Acid and Its Hydrolytic Products
3.4. Evaluation of Radical Scavenging Capacity
3.5. HPLC-ABTS+ and Mass Spectrometric Analysis of Bioactive Compounds in the Extracts
3.6. Determination of Advanced Glycated End Products
3.7. Analysis of Non-Specific Indicators of Maillard Reaction
3.7.1. Determination of Total Reducing Sugar Content
3.7.2. Determination of Total Free Amino Acid Content
3.7.3. Measurement of Color
3.7.4. Absorbance Measurement
3.8. Analysis of Specific Indicators of Maillard Reaction
3.9. Kinetic Analysis of Subcritical Water Extraction for Glycyrrhizic Acid
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baek, S.Y.; Lee, E.H.; Oh, T.W.; Do, H.J.; Kim, K.-Y.; Park, K.-I.; Kim, Y.W. Network Pharmacology-Based Approaches of Rheum undulatum Linne and Glycyrriza uralensis Fischer Imply Their Regulation of Liver Failure with Hepatic Encephalopathy in Mice. Biomolecules 2020, 10, 437. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Ye, M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J. Chromatogr. A 2009, 1216, 1954–1969. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.D.P.; Pleite, N.; Herrero, M.; Cifuentes, A.; Ibáñez, E.; Gilbert-Lopez, B. New approaches for the selective extraction of bioactive compounds employing bio-based solvents and pressurized green processes. J. Supercrit. Fluids 2017, 128, 112–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Taha, A.A.; Ying, Y.; Li, X.; Chen, X.; Ma, C. Subcritical water extraction of bioactive components from ginseng roots (Panax ginseng CA Mey). Ind. Crop. Prod. 2018, 117, 118–127. [Google Scholar] [CrossRef]
- Marcet, I.; Álvarez, C.; Paredes, B.; Díaz, M. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters. Waste Manag. 2016, 49, 364–371. [Google Scholar] [CrossRef]
- Mukhopadhyay, M.; Panja, P. A novel process for extraction of natural sweetener from licorice (Glycyrrhiza glabra) roots. Sep. Purif. Technol. 2008, 63, 539–545. [Google Scholar] [CrossRef]
- Baek, J.Y.; Lee, J.M.; Lee, S.C. Extraction of nutraceutical compounds from licorice roots with subcritical water. Sep. Purif. Technol. 2008, 63, 661–664. [Google Scholar] [CrossRef]
- Song, B.; Buendia-Kandia, F.; Yu, Y.; Dufour, A.; Wu, H. Importance of lignin removal in enhancing biomass hydrolysis in hot-compressed water. Bioresour. Technol. 2019, 288, 121522. [Google Scholar] [CrossRef] [PubMed]
- Pavlovič, I.; Knez, Z.; Škerget, M. Hydrothermal Reactions of Agricultural and Food Processing Wastes in Sub- and Supercritical Water: A Review of Fundamentals, Mechanisms, and State of Research. J. Agric. Food Chem. 2013, 61, 8003–8025. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Xiang, J.; Li, N.; Jiang, X.; Gao, Y. Impact of extraction parameters on chemical composition and antioxidant activity of bioactive compounds from Chinese licorice (Glycyrrhiza uralensis Fisch.) by subcritical water. Sep. Sci. Technol. 2016, 51, 609–621. [Google Scholar] [CrossRef]
- He, L.; Zhang, X.; Xu, H.; Xu, C.; Yuan, F.; Knez, Ž.; Novak, Z.; Gao, Y. Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation in to their antioxidant activities with HPLC-ABTS·+ assay. Food Bioprod. Process. 2012, 2, 215–223. [Google Scholar] [CrossRef]
- Ho, C.H.; Cacace, J.E.; Mazza, G. Mass transfer during pressurized low polarity water extraction of lignans from flaxseed meal. J. Food Eng. 2008, 89, 64–71. [Google Scholar] [CrossRef]
- Carr, A.G.; Mammucari, R.; Foster, N. A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 2011, 172, 1–17. [Google Scholar] [CrossRef]
- Ko, M.-J.; Cheigh, C.-I.; Chung, M.-S. Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem. 2014, 143, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.Y.; Dutta, R.; Prasad, D.; Misra, K. Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chem. 2011, 127, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Wang, Q.H.; Kitagawa, T.; Kusano, K.; Nomura, T.; Iitaka, Y. Phenolic constituents of Glycyrrhiza. 2. Structure of 6 isoprenoid-substituted flavonoids, gancaoin-F, gancaonin-G, gancaonin-H, gancaonin-I, glycyrol, and isoglycyrol from Xibei licorice (Glycyrrhiza sp.). Heterocycles 1989, 29, 1761–1772. [Google Scholar]
- Fukai, T.; Sheng, C.-B.; Horikoshi, T.; Nomura, T. Isoprenylated flavonoids from underground parts of Glycyrrhiza glabra. Phytochemistry 1996, 43, 1119–1124. [Google Scholar] [CrossRef]
- Lin, Y.; Kuang, Y.; Li, K.; Wang, S.; Ji, S.; Chen, K.; Song, W.; Qiao, X.; Ye, M. Nrf2 activators from Glycyrrhiza inflata and their hepatoprotective activities against CCl4-induced liver injury in mice. Bioorganic Med. Chem. 2017, 25, 5522–5530. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.Z.; Lin, Q.; Gu, C.X.; Zhu, Y.; Jiang, N.; Zhao, B.; Wang, M.; Tian, P. Successive Extraction of Glycyrrhizic Acid and Liquiritin from Licorice with Cellulase and Pectinase. Asian J. Chem. 2012, 24, 4487–4493. [Google Scholar]
- Ong, E.S. Chemical assay of glycyrrhizin in medicinal plants by pressurized liquid extraction (PLE) with capillary zone electrophoresis (CZE). J. Sep. Sci. 2002, 25, 825–831. [Google Scholar] [CrossRef]
- Fan, R.; Li, N.; Xu, H.; Xiang, J.; Wang, L.; Gao, Y. The mechanism of hydrothermal hydrolysis for glycyrrhizic acid into glycyrrhetinic acid and glycyrrhetinic acid 3- O -mono-β- d -glucuronide in subcritical water. Food Chem. 2016, 190, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.K.; Ara, I.; Mondal, M.; Kabir, Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 2021, 7, e07240. [Google Scholar] [CrossRef] [PubMed]
- Echavarría, A.P.; Pagán, J.; Ibarz, A. Melanoidins Formed by Maillard Reaction in Food and Their Biological Activity. Food Eng. Rev. 2012, 4, 203–223. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Cai, Z. Chemical investigation on Sijunzi decoction and its two major herbsPanax ginseng and Glycyrrhizauralensis by LC/MS/MS. J. Pharmaceut. Biomed. 2006, 41, 1642–1647. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Yu, J.; Liu, C.; Li, L.; Zhang, Y. Isolation of Liquiritigenin-4′-Apiosyl-Glucoside and Liquiritin from the Root of Glycyrrhiza uralensis by High-Performance Centrifugal Partition Chromatography. J. Chromatogr. Sci. 2013, 52, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Shaw, L.-H.; Lin, L.-C.; Tsai, T.-H. HPLC–MS/MS Analysis of a Traditional Chinese Medical Formulation of Bu-Yang-Huan-Wu-Tang and Its Pharmacokinetics after Oral Administration to Rats. PLoS ONE 2012, 7, e43848. [Google Scholar] [CrossRef]
- Huang, H.; Yu, H.; Zhang, J.; Kang, L.; Feng, B.; Song, X.; Ma, B. Biotransformation of glycyrrhizin by Aspergillus niger. Biocatal. Biotransformation 2009, 27, 90–95. [Google Scholar] [CrossRef]
- Zhou, S.; Cao, J.; Qiu, F.; Kong, W.; Yang, S.; Yang, M. Simultaneous Determination of Five Bioactive Components in Radix Glycyrrhizae by Pressurised Liquid Extraction Combined with UPLC-PDA and UPLC/ESI-QTOF-MS Confirmation. Phytochem. Anal. 2013, 24, 527–533. [Google Scholar] [CrossRef]
- Herrero, M.; Castro-Puyana, M.; Rocamora-Reverte, L.; Ferragut, J.; Cifuentes, A.; Ibáñez, E. Formation and relevance of 5-hydroxymethylfurfural in bioactive subcritical water extracts from olive leaves. Food Res. Int. 2012, 47, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Lvarez-Vias, M.; Rodríguez-Seoane, P.; Flórez-Fernández, N.; Torres, M.D.; Díaz-Reinoso, B.; Moure, A.; Domínguez, H. Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: A Review. Food Bioprocess Technol. 2021, 14, 373–387. [Google Scholar] [CrossRef]
- Farroni, A.; Buera Mdel, P. Colour and surface fluorescence development and their relationship with Maillard reaction markers as influenced by structural changes during cornflakes production. Food Chem. 2012, 135, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Andrade, C.; Seiquer, I.; Haro, A.; Castellano, R.; Navarro, M.P. Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds. Food Chem. 2010, 122, 145–153. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, Y.-S. Study of Maillard reaction products derived from aqueous model systems with different peptide chain lengths. Food Chem. 2009, 116, 846–853. [Google Scholar] [CrossRef]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibáñez, E.; Herrero, M. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef] [Green Version]
- Aalaei, K.; Rayner, M.; Sjöholm, I. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review. Crit. Rev. Food Sci. Nutr. 2018, 59, 1829–1839. [Google Scholar] [CrossRef] [Green Version]
- Morales, F.; van Boekel, M. A study on advanced Maillard reaction in heated casein/sugar solutions: Fluorescence accumulation. Int. Dairy J. 1997, 7, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Abdelmoez, W.; Ashour, E.; Naguib, S.M.; Hilal, A.; Al Mahdy, D.A.; Mahrous, E.A.; Abdel-Sattar, E. Kinetic and Thermodynamics studies for Castor Oil Extraction Using Subcritical Water Technology. J. Oleo Sci. 2016, 65, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Fan, R.; Li, N.; Jiang, X.; Yuan, F.; Gao, Y. HPLC–DAD–MS/MS identification and HPLC–ABTS·+ on-line antioxidant activity evaluation of bioactive compounds in liquorice (Glycyrrhiza uralensis Fisch.) extract. Eur. Food Res. Technol. 2015, 240, 1035–1048. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.; Lester, P. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Kroh, L.W.; Mörsel, J.T. Radical scavenging activity of black Cumin (Nigella sativa L), Coriander (Coriandrum sativum L), and Niger (Guizotia abyssinica Cass.) crude seed oils and oilfractions. J. Agric. Food Chem. 2003, 51, 6961–6969. [Google Scholar] [CrossRef]
- Pellegrini, N.; Visioli, F.; Buratti, S.; Brighenti, F. Direct Analysis of Total Antioxidant Activity of Olive Oil and Studies on the Influence of Heating. J. Agric. Food Chem. 2001, 49, 2532–2538. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Q.; Zhang, Z.; Wan, X. A novel colorimetric determination of free amino acids content in tea infusions with 2,4-dinitrofluorobenzene. J. Food Compos. Anal. 2009, 22, 137–141. [Google Scholar] [CrossRef]
- Fattah, R.A.; Mostafa, N.A.; Mahmoud, M.S.; Abdelmoez, W. Recovery of oil and free fatty acids from spent bleaching earth using sub-critical water technology supported with kinetic and thermodynamic study. Adv. Biosci. Biotechnol. 2014, 5, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Reza, M.T.; Yan, W.; Uddin, M.H.; Lynam, J.G.; Hoekman, S.K.; Coronella, C.J.; Vásquez, V.R. Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour. Technol. 2013, 139, 161–169. [Google Scholar] [CrossRef]
Temperature (°C) | Fluorescence | Color | Absorbance | ||||||
---|---|---|---|---|---|---|---|---|---|
λEx 360 nm, λEm 460 nm | λEx 360 nm, λEm 528 nm | L* | a* | b* | Yellowing Index | A280nm | A 360nm | A 420nm | |
80 | 22.021 ± 1.410 a | 2.512 ± 0.722 a | 21.992 ± 0.290 d | 1.981 ± 0.283 a | 10.345 ± 1.202 a | 67.301 ± 8.721 a | 0.126 ± 0.010 a | 0.032 ± 0.009 a | 0.003 ± 0.001 a |
100 | 22.200 ± 0.720 a | 2.521 ± 0.720 a | 20.991 ± 1.401 c | 3.502 ± 1.412 ab | 11.333 ± 0.472 ab | 77.182 ± 1.972 a | 0.132 ± 0.009 a | 0.039 ± 0.005 a | 0.004 ± 0.001 a |
120 | 20.801 ± 0.710 a | 2.503 ± 0.711 a | 17.923 ± 1.942 c | 3.740 ± 0.713 abc | 11.511 ± 0.012 abc | 92.292 ± 9.871 b | 0.466 ± 0.001 c | 0.154 ± 0.009 e | 0.019 ± 0.002 b |
140 | 51.201 ± 1.411 b | 12.512 ± 0.722 b | 13.362 ± 0.511 b | 5.090 ± 1.410 bcd | 11.201 ± 0.711 ab | 119.702 ± 3.002 c | 0.901 ± 0.008 f | 0.348 ± 0.003 h | 0.068 ± 0.002 c |
160 | 79.402 ± 1.401 c | 26.512 ± 0.714 c | 13.411 ± 0.582 b | 5.751 ± 0.851 cd | 11.923 ± 0.410 abcd | 127.302 ± 9.723 c | 1.309 ± 0.002 h | 0.463 ± 0.003 j | 0.145 ± 0.002 d |
180 | 115.300 ± 1.412 d | 41.221 ± 1.421 d | 11.770 ± 1.073 ab | 6.071 ± 1.362 d | 11.682 ± 1.122 abcd | 141.801 ± 0.711 d | 1.766 ± 0.005 m | 0.569 ± 0.001 k | 0.178 ± 0.001 e |
200 | 244.511 ± 2.111 e | 90.011 ± 1.412 g | 11.593 ± 0.423 ab | 6.522 ± 0.422 d | 12.061 ± 0.272 bcd | 148.811 ± 8.762 de | 1.704 ± 0.013 l | 0.571 ± 0.004 k | 0.201 ± 0.001 f |
220 | 346.012 ± 1.422 h | 120.012 ± 1.423 h | 10.692 ± 1.402 a | 6.331 ± 1.703 d | 11.881 ± 1.072 abcd | 159.192 ± 6.491 ef | 1.611 ± 0.008 k | 0.576 ± 0.009 k | 0.221 ± 0.009 g |
240 | 532.512 ± 3.513 j | 164.311 ± 2.82 j | 10.942 ± 0.733 a | 6.332 ± 0.621 d | 11.662 ± 0.801 abcd | 152.263 ± 0.110 def | 1.324 ± 0.002 i | 0.432 ± 0.011 i | 0.224 ± 0.011 g |
260 | 581.812 ± 1.423 k | 180.211 ± 1.401 k | 10.941 ± 0.361 a | 6.542 ± 2.020 d | 12.472 ± 0.662 bcd | 162.782 ± 3.211 f | 1.343 ± 0.001 j | 0.2875 ± 0.007 g | 0.230 ± 0.009 g |
280 | 684.502 ± 3.512 l | 202.012 ± 2.812 l | 12.050 ± 1.202 ab | 7.071 ± 1.232 d | 13.231 ± 0.181 d | 157.522 ± 13.532 ef | 1.101 ± 0.001 g | 0.233 ± 0.003 f | 0.222 ± 0.009 g |
300 | 484.311 ± 5.621 i | 134.212 ± 2.800 i | 11.223 ± 0.132 a | 7.282 ± 1.531 d | 12.682 ± 0.681 bcd | 161.701 ± 6.822 ef | 0.543 ± 0.003 e | 0.137 ± 0.004 d | 0.169 ± 0.015 e |
320 | 281.221 ± 1.415 g | 75.524 ± 0.712 e | 11.041 ± 0.131 a | 7.011 ± 1.423 d | 12.412 ± 1.833 bcd | 160.312 ± 4.712 ef | 0.399 ± 0.001 b | 0.099 ± 0.003 b | 0.138 ± 0.010 d |
340 | 264.502 ± 0.732 f | 70.511 ± 0.712 f | 11.692 ± 0.742 ab | 7.132 ± 0.183 d | 13.112 ± 0.331 cd | 160.412 ± 6.110 ef | 0.483 ± 0.005 d | 0.112 ± 0.009 c | 0.062 ± 0.002 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, R.; Gao, Y. Maillard and Hydrolytic Reactions in Subcritical Water Extraction of Bioactive Compounds from Licorice. Molecules 2022, 27, 6851. https://doi.org/10.3390/molecules27206851
Fan R, Gao Y. Maillard and Hydrolytic Reactions in Subcritical Water Extraction of Bioactive Compounds from Licorice. Molecules. 2022; 27(20):6851. https://doi.org/10.3390/molecules27206851
Chicago/Turabian StyleFan, Rui, and Yanxiang Gao. 2022. "Maillard and Hydrolytic Reactions in Subcritical Water Extraction of Bioactive Compounds from Licorice" Molecules 27, no. 20: 6851. https://doi.org/10.3390/molecules27206851
APA StyleFan, R., & Gao, Y. (2022). Maillard and Hydrolytic Reactions in Subcritical Water Extraction of Bioactive Compounds from Licorice. Molecules, 27(20), 6851. https://doi.org/10.3390/molecules27206851