In Silico Approach of Glycinin and Conglycinin Chains of Soybean By-Product (Okara) Using Papain and Bromelain
Abstract
:1. Introduction
2. Results and Discussion
2.1. Profile of Potential Biological Activity
2.2. In Silico Proteolysis
2.3. Physiochemical Properties of Peptides
2.4. Peptide Ranking of Antioxidant Peptides
2.5. Molecular Docking of the Peptide with the Antioxidant Enzyme In Silico (Binding Affinity and Interaction)
3. Material and Methods
3.1. Profiles of the Potential Biological Activity
3.2. Peptide Ranking
3.3. Sensory Characteristics Prediction
3.4. The Physicochemical Characteristics of the Antioxidant Peptides
3.5. Allergenicity Prediction
3.6. Molecular Docking against Peptide
3.7. Visualization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 2022, 807, 150741. [Google Scholar] [CrossRef]
- Šarčević, H.; Iljkić, D.; Andrijanić, Z.; Sudarić, A.; Gunjača, J.; Varnica, I.; Rastija, M.; Godena, S.; Maričević, M.; Stepinac, D.; et al. Stability of Protein and Oil Content in Soybean across Dry and. Agronomy 2022, 12, 915. [Google Scholar] [CrossRef]
- Colletti, A.; Attrovio, A.; Boffa, L.; Mantegna, S.; Cravotto, G. Valorisation of by-products from soybean (Glycine max (L.) Merr.) processing. Molecules 2020, 25, 2129. [Google Scholar] [CrossRef]
- Yang, L.C.; Fu, T.J.; Yang, F.C. Biovalorization of soybean residue (okara) via fermentation with Ganoderma lucidum and Lentinus edodes to attain products with high anti-osteoporotic effects. J. Biosci. Bioeng. 2020, 129, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Lu, J.; Zhang, Y.; Wang, J.; Wang, S.; Fan, H.; Zhang, J.; Dai, W.; Gao, J.; Yu, H. Structural properties, antioxidant and immune activities of low molecular weight peptides from soybean dregs (Okara). Food Chem. X 2021, 12, 100175. [Google Scholar] [CrossRef] [PubMed]
- Sbroggio, M.F.; Montilha, M.S.; de Figueiredo, V.R.G.; Georgetti, S.R.; Kurozawa, L.E. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Sci. Technol. 2016, 36, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.Y.; Thakur, K.; Ni, Z.J.; Zhu, Y.Y.; Hu, F.; Zhang, J.G.; Wei, Z.J. Effects of okara and vitamin B2 bioenrichment on the functional properties and in vitro digestion of fermented soy milk. Food Res. Int. 2021, 145, 110419. [Google Scholar] [CrossRef]
- Suleman, M.; Riaz, S. 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe3O4 magnetic nanoparticles. J. Therm. Biol. 2020, 91, 102635. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, X.; Huang, J.; Huang, M.; Zhou, G. Generation of bioactive peptides from duck meat during post-mortem aging. Food Chem. 2017, 237, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, Z.S.; Zarei, M.; Fath, M.K.; Ganji, M.; Farahani, M.S.; Afsharnouri, F.; Pourzardosht, N.; Khalesi, B.; Jahangiri, A.; Rahbar, M.R.; et al. In silico Approaches for the Design and Optimization of Interfering Peptides Against Protein–Protein Interactions. Front. Mol. Biosci. 2021, 8, 282. [Google Scholar] [CrossRef]
- Gu, Y.; Majumder, K.; Wu, J. QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Res. Int. 2011, 44, 2465–2474. [Google Scholar] [CrossRef]
- Iwaniak, A.; Dziuba, J. Animal and Plant Proteins as Precursors of Peptides with ACE Inhibitory Activity—An in silico Strategy of Protein Evaluation. Food Technol. Biotechnol. 2009, 47, 441–449. [Google Scholar]
- Minkiewicz, P.; Dziuba, J.; Iwaniak, A.; Dziuba, M.; Darewicz, M. BIOPEP database and other programs for processing bioactive peptide sequences. J. AOAC Int. 2008, 91, 965–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siti, H.; Munawaroh, H.; Gun, G.; Dea, J.; Aisyah, S.; Afina, V.; Ningrum, A.; Susanto, E.; Martha, L.; Kurniawan, I.; et al. In silico proteolysis and molecular interaction of tilapia (Oreochromis niloticus) skin collagen-derived peptides for environmental remediation. Environ. Res. 2022, 212, 113002. [Google Scholar]
- Ningrum, A.; Anggrahini, S.; Anggraeni, Z. In silico approach for identification of bioactive peptides in jack bean. Qual. Assur. Saf. Crops Foods 2018, 10, 20. [Google Scholar]
- López-Barrios, L.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bioactive Peptides and Hydrolysates from Pulses and Their Potential Use as Functional Ingredients. J. Food Sci. 2014, 79, R273–R283. [Google Scholar] [CrossRef] [PubMed]
- Tonolo, F.; Moretto, L.; Grinzato, A.; Fiorese, F.; Folda, A.; Scalcon, V.; Ferro, S.; Arrigoni, G.; Bellamio, M.; Feller, E.; et al. Fermented soy-derived bioactive peptides selected by a molecular docking approach show antioxidant properties involving the keap1/nrf2 pathway. Antioxidants 2020, 9, 1306. [Google Scholar] [CrossRef]
- Yokomizo, A.; Takenaka, Y.; Takenaka, T. Antioxidative Activity of Peptides Prepared from Okara Protein. Food Sci. Technol. Res. 2002, 8, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Maestri, E.; Marmiroli, M.; Marmiroli, N. Bioactive peptides in plant-derived foodstuffs. J. Proteom. 2016, 147, 140–155. [Google Scholar] [CrossRef]
- Wang, R.; Thakur, K.; Feng, J.Y.; Zhu, Y.Y.; Zhang, F.; Russo, P.; Spano, G.; Zhang, J.G.; Wei, Z.J. Functionalization of soy residue (okara) by enzymatic hydrolysis and LAB fermentation for B2 bio-enrichment and improved in vitro digestion. Food Chem. 2022, 387, 132947. [Google Scholar] [CrossRef]
- Montserrat-de la Paz, S.; Villanueva, A.; Pedroche, J.; Millan, F.; Martin, M.E.; Millan-Linares, M.C. Antioxidant and anti-inflammatory properties of bioavailable protein hydrolysates from lupin-derived agri-waste. Biomolecules 2021, 11, 1458. [Google Scholar] [CrossRef]
- Han, R.; Álvarez, A.J.H.; Maycock, J.; Murray, B.S.; Boesch, C. Comparison of alcalase- and pepsin-treated oilseed protein hydrolysates—Experimental validation of predicted antioxidant, antihypertensive and antidiabetic properties. Curr. Res. Food Sci. 2021, 4, 141–149. [Google Scholar] [CrossRef]
- Stanojevic, S.P.; Barac, M.B.; Pesic, M.B.; Jankovic, V.S.; Vucelic-Radovic, B.V. Bioactive proteins and energy value of okara as a byproduct in hydrothermal processing of soy milk. J. Agric. Food Chem. 2013, 61, 9210–9219. [Google Scholar] [CrossRef]
- Ahmad Nadzri, F.N.; Tawalbeh, D.; Sarbon, N.M. Physicochemical properties and antioxidant activity of enzymatic hydrolysed chickpea (Cicer arietinum L.) protein as influence by alcalase and papain enzyme. Biocatal. Agric. Biotechnol. 2021, 36, 102131. [Google Scholar] [CrossRef]
- Firmansyah, M.; Abduh, M.Y. Production of protein hydrolysate containing antioxidant activity from Hermetia illucens. Heliyon 2019, 5, e02005. [Google Scholar] [CrossRef] [Green Version]
- Atef, M.; Ojagh, S.M. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J. Funct. Foods 2017, 35, 673–681. [Google Scholar] [CrossRef]
- Baehaki, A.; Nopianti, R.; Anggraeni, S. Antioxidant activity of skin and bone collagen hydrolyzed from striped catfish (Pangasius pangasius) with papain enzyme. J. Chem. Pharm. Res. 2015, 7, 131–135. [Google Scholar]
- Udenigwe, C.C. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci. Technol. 2014, 36, 137–143. [Google Scholar] [CrossRef]
- Garg, S.; Apostolopoulos, V.; Nurgali, K.; Mishra, V.K. Evaluation of in silico approach for prediction of presence of opioid peptides in wheat. J. Funct. Foods 2018, 41, 34–40. [Google Scholar] [CrossRef]
- Fu, Y.; Young, J.F.; Løkke, M.M.; Lametsch, R.; Aluko, R.E.; Therkildsen, M. Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. J. Funct. Foods 2016, 24, 196–206. [Google Scholar] [CrossRef]
- Lo, W.M.Y.; Li-Chan, E.C.Y. Angiotensin I Converting Enzyme Inhibitory Peptides from In Vitro Pepsin−Pancreatin Digestion of Soy Protein. J. Agric. Food Chem. 2005, 53, 3369–3376. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Nair, S.; Sen, N.; Soni, N.; Madhusudhan, M.S. In silico methods for design of biological therapeutics. Methods 2017, 131, 33–65. [Google Scholar] [CrossRef] [PubMed]
- Barati, M.; Javanmardi, F.; Jabbari, M.; Mokari-Yamchi, A.; Farahmand, F.; Eş, I.; Farhadnejad, H.; Davoodi, S.H.; Mousavi Khaneghah, A. An in silico model to predict and estimate digestion-resistant and bioactive peptide content of dairy products: A primarily study of a time-saving and affordable method for practical research purposes. LWT 2020, 130, 109616. [Google Scholar] [CrossRef]
- Gao, J.; Li, T.; Chen, D.; Gu, H.; Mao, X. Identification and molecular docking of antioxidant peptides from hemp seed protein hydrolysates. LWT 2021, 147, 111453. [Google Scholar] [CrossRef]
- Herowati, R.; Widodo, G.P. Molecular Docking Studies of Chemical Constituents of Tinospora cordifolia on Glycogen Phosphorylase. Procedia Chem. 2014, 13, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Nongonierma, A.B.; FitzGerald, R.J. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Anal. Bioanal. Chem. 2018, 410, 3407–3423. [Google Scholar] [CrossRef]
- Kallenberg, C.G.M. Antineutrophil Cytoplasmic Autoantibodies with Specificity for Myeloperoxidase, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780444563781. [Google Scholar]
No | Precursor | Activity | A | B |
---|---|---|---|---|
1 | Glycinin | antioxidative | 0.0543 | |
2 | Conglycinin alpha subunit | antioxidative | 0.0529 | 3.01898 × 10−6 |
3 | Conglycinin beta subunit | antioxidative | 0.0934 | 4.16056 × 10−6 |
No | Protein Precursor | Peptide ID | Sequence | Location | Monoisotopic Mass | Chemical Mass |
---|---|---|---|---|---|---|
1 | Glycinin | 3317 | HL | (84–850 | 268.142 | 268.302 |
2 | 10019 | YNL | (508–510) | 408.1899 | 408.434 | |
beta conglycinin alpha subunit | ||||||
1 | 7888 | EL | (190–191) | 260.126 | 260.276 | |
2 | 7888 | EL | (513–514) | 260.126 | 260.276 | |
3 | 7942 | YYV | (301–303) | 443.194 | 443.473 | |
4 | 8025 | PHF | (465–467) | 399.178 | 399.436 | |
5 | 8215 | IR | (220–221) | 287.185 | 287.348 | |
beta conglycinin beta subunit | ||||||
1 | 7888 | EL | (218–219) | 260.126 | 260.276 | |
2 | 7888 | EL | (341–342) | 260.126 | 260.276 | |
3 | 7941 | YYL | (134–136) | 457.21 | 457.5 | |
4 | 8025 | PHF | (295–297) | 399.178 | 399.436 |
No | Sequence | Solubility | Net-Charge | Iso-Electric Point (pH) | Extinction Coefficient |
---|---|---|---|---|---|
1 | PHF | Poor | 0.1 | 8.26 | 0 |
2 | YYL | Poor | 0 | 3.32 | 2560 M−1cm−1 |
3 | YNL | Poor | 0 | 3.34 | 1280 M−1cm−1 |
4 | HL | Poor | 0.1 | 7.56 | 0 |
5 | IR | Good | 1 | 10.85 | 0 |
6 | YYV | Poor | 0 | 3.35 | 2560 M−1cm−1 |
7 | EL | Good | −1 | 0.92 | 0 |
Number | Peptide | Peptide Ranker | Sensory Evaluation | Allergenicity | Toxicity |
---|---|---|---|---|---|
1 | PHF | 0.938016 | bitter | Probable Non Allergen | Non Toxic |
2 | YYL | 0.598987 | bitter | Probable Non Allergen | Non Toxic |
3 | YNL | 0.375314 | bitter | Probable Non Allergen | Non Toxic |
4 | HL | 0.374865 | bitter | Probable Non Allergen | Non Toxic |
5 | IR | 0.332363 | bitter | Probable Non Allergen | Non Toxic |
6 | YYV | 0.188713 | bitter | Non Allergenic | Non Toxic |
7 | EL | 0.0728272 | umami | Probable Non Allergen | Non Toxic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ningrum, A.; Wardani, D.W.; Vanidia, N.; Sarifudin, A.; Kumalasari, R.; Ekafitri, R.; Kristanti, D.; Setiaboma, W.; Munawaroh, H.S.H. In Silico Approach of Glycinin and Conglycinin Chains of Soybean By-Product (Okara) Using Papain and Bromelain. Molecules 2022, 27, 6855. https://doi.org/10.3390/molecules27206855
Ningrum A, Wardani DW, Vanidia N, Sarifudin A, Kumalasari R, Ekafitri R, Kristanti D, Setiaboma W, Munawaroh HSH. In Silico Approach of Glycinin and Conglycinin Chains of Soybean By-Product (Okara) Using Papain and Bromelain. Molecules. 2022; 27(20):6855. https://doi.org/10.3390/molecules27206855
Chicago/Turabian StyleNingrum, Andriati, Dian Wahyu Wardani, Nurul Vanidia, Achmat Sarifudin, Rima Kumalasari, Riyanti Ekafitri, Dita Kristanti, Woro Setiaboma, and Heli Siti Halimatul Munawaroh. 2022. "In Silico Approach of Glycinin and Conglycinin Chains of Soybean By-Product (Okara) Using Papain and Bromelain" Molecules 27, no. 20: 6855. https://doi.org/10.3390/molecules27206855
APA StyleNingrum, A., Wardani, D. W., Vanidia, N., Sarifudin, A., Kumalasari, R., Ekafitri, R., Kristanti, D., Setiaboma, W., & Munawaroh, H. S. H. (2022). In Silico Approach of Glycinin and Conglycinin Chains of Soybean By-Product (Okara) Using Papain and Bromelain. Molecules, 27(20), 6855. https://doi.org/10.3390/molecules27206855