Synthesis and Photophysical Properties of α-(N-Biphenyl)-Substituted 2,2′-Bipyridine-Based Push–Pull Fluorophores
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of α-(N-Biphenyl)-Substituted 2,2′-Bipyridines 3a–l
2.2. Photophysical Studies
2.3. Studies of Fluorosolvatochromism
2.4. DFT Studies
2.5. AIEE Properties
2.6. Studies of Sensing Properties
3. Materials and Method
3.1. Materials and Equipment
3.2. General Method for the Synthesis of 5-Arylamino-1,2,4-Triazines 1a–c and 5a–c
3.3. General Method for the Synthesis of N-Aryl-1-(Pyridine-2-yl)-6,7-Dihydro-5H-Cyclopenta[c]pyridin-3-Amines 3a–l and 6a–c
3.4. General Method for the Synthesis N-Aryl-1-(Pyridine-2-yl)-6,7-Dihydro-5H-Cyclopenta[c]pyridin-3-Amines 3a–l Via Suzuki Cross-Coupling Reaction
3.5. Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Okram, B.; Uno, T.; Ding, Q.; Liu, Y.; Jin, Y.; Jin, Q.; Wu, X.; Che, J.; Yan, S.F.; Hao, X. Compounds and Compositions as Kinase Inhibitors. U.S. Patent No. 12/865,339, 14 May 2008. [Google Scholar]
- De Lucca, G.V.; Shi, Q.; Liu, C.; Duan, J.; Tebben, A.J. Nicotinamide Compounds Useful as Kinase Modulators. U.S. Patent No. 8,586,751, 19 November 2013. [Google Scholar]
- Towner, J.S.; Nichol, S.T.; Comer, J.A.; Ksiazek, T.G.; Rollin, P.E. Human Ebola Virus Species and Compositions and Methods Thereof. U.S. Patent 20120251502A1, 24 October 2008. [Google Scholar]
- Velcheva, M.; Vidmar, J.; Quandt, J. Varegation in Plants. U.S. Patent 2011/017203 A1, 26 May 2011. [Google Scholar]
- Chen, B.; Finkel, T.; Liu, Y. Methods and Materials for Increasing Transcription Factor Eb Polypeptide Levels. U.S. Patent No. 17/420,597, 26 July 2019. [Google Scholar]
- Dahl, E.W.; Szymczak, N.K. Hydrogen Bonds Dictate the Coordination Geometry of Copper: Characterization of a Square-Planar Copper(I) Complex. Angew. Chem. Int. Ed. 2016, 55, 3101–3105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, J.; Gagnier, J.P.; Garner, A.W.; Moots, J.G.; Pike, R.D.; Li, Y.; Huo, S. Reaction of N-Isopropyl-N-Phenyl-2,2′-Bipyridin-6-Amine with K2 PtCl4: Selective C–H Bond Activation, C–N Bond Cleavage, and Selective Acylation. Organometallics 2013, 32, 4828–4836. [Google Scholar] [CrossRef]
- Huo, S.; Harris, C.F.; Vezzu, D.A.K.; Gagnier, J.P.; Smith, M.E.; Pike, R.D.; Li, Y. Novel Phosphorescent Tetradentate Bis-Cyclometalated C^C ∗ N^N-Coordinated Platinum Complexes: Structure, Photophysics, and a Synthetic Adventure. Polyhedron 2013, 52, 1030–1040. [Google Scholar] [CrossRef]
- Garner, A.W.; Harris, C.F.; Vezzu, D.A.K.; Pike, R.D.; Huo, S. Solvent-Controlled Switch of Selectivity between Sp2 and Sp3 C–H Bond Activation by Platinum (ii). Chem. Commun. 2011, 47, 1902–1904. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Massare, J.M.; Tian, J.-H. Coronavirus Vaccine Formulations. U.S. Patent KR102080738 B1, 23 March 2021. [Google Scholar]
- Ehrlich, G.; Fenster, M. Methods and Systems of Prioritizing Treatments, Vaccination, Testing and/or Activities while Protecting the Privacy of Individuals. U.S. Patent 2021/230197, 31 August 2021. [Google Scholar]
- Vezzu, D.A.K.; Lu, Q.; Chen, Y.-H.; Huo, S. Cytotoxicity of Cyclometalated Platinum Complexes Based on Tridentate NCN and CNN-Coordinating Ligands: Remarkable Coordination Dependence. J. Inorg. Biochem. 2014, 134, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.-Q.; Busemann, A.; Meijer, M.S.; Siegler, M.A.; Bonnet, S. The Two Isomers of a Cyclometallated Palladium Sensitizer Show Different Photodynamic Properties in Cancer Cells. Chem. Commun. 2019, 55, 4695–4698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, W.L.; Luyt, L.G. Amino-Substituted 2,2′-Bipyridine Ligands as Fluorescent Indicators for ZnII and Applications for Fluorescence Imaging of Prostate Cells. Chem. Eur. J. 2018, 24, 14539–14546. [Google Scholar] [CrossRef] [PubMed]
- Borges da Silva, R.; Teixeira, R.I.; Wardell, J.L.; Wardell, S.M.S.V.; Garden, S.J. Copper(ii) Catalyzed Synthesis of Novel Helical Luminescent Benzo[4,5]Imidazo[1,2-a][1,10]Phenanthrolines via an Intramolecular C–H Amination Reaction. Org. Biomol. Chem. 2017, 15, 812–826. [Google Scholar] [CrossRef]
- Otani, T.; Tsuyuki, A.; Iwachi, T.; Someya, S.; Tateno, K.; Kawai, H.; Saito, T.; Kanyiva, K.S.; Shibata, T. Facile Two-Step Synthesis of 1,10-Phenanthroline-Derived Polyaza[7]Helicenes with High Fluorescence and CPL Efficiency. Angew. Chem. Int. Ed. 2017, 56, 3906–3910. [Google Scholar] [CrossRef]
- Ding, S.; Wang, L.; Miao, Z.; Li, P. NNB-Type Tridentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C–H Borylation. Molecules 2019, 24, 1434. [Google Scholar] [CrossRef]
- Otani, T.; Sasayama, T.; Iwashimizu, C.; Kanyiva, K.S.; Kawai, H.; Shibata, T. Short-Step Synthesis and Chiroptical Properties of Polyaza[5]–[9]Helicenes with Blue to Green-Colour Emission. Chem. Commun. 2020, 56, 4484–4487. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Ghosh, P.; Kwon, N.Y.; Han, S.H.; Han, S.; Mishra, N.K.; Kim, S.; Kim, I.S. Deoxygenative Amination of Azine- N -Oxides with Acyl Azides via [3+2] Cycloaddition. J. Org. Chem. 2020, 85, 2476–2485. [Google Scholar] [CrossRef] [PubMed]
- Cheon, J.-D.; Mutai, T.; Araki, K. Preparation of a Series of Novel Fluorophores, N-Substituted 6-Amino and 6,6″-Diamino-2,2′:6′,2″-Terpyridine by Palladium-Catalyzed Amination. Tetrahedron Lett. 2006, 47, 5079–5082. [Google Scholar] [CrossRef]
- Kopchuk, D.S.; Chepchugov, N.V.; Kovalev, I.S.; Santra, S.; Rahman, M.; Giri, K.; Zyryanov, G.V.; Majee, A.; Charushin, V.N.; Chupakhin, O.N. Solvent-Free Synthesis of 5-(Aryl/Alkyl)Amino-1,2,4-Triazines and α-Arylamino-2,2′-Bipyridines with Greener Prospects. RSC Adv. 2017, 7, 9610–9619. [Google Scholar] [CrossRef] [Green Version]
- Kopchuk, D.S.; Krinochkin, A.P.; Starnovskaya, E.S.; Shtaitz, Y.K.; Khasanov, A.F.; Taniya, O.S.; Santra, S.; Zyryanov, G.V.; Majee, A.; Rusinov, V.L.; et al. 6-Arylamino-2,2′-Bipyridine “Push-Pull” Fluorophores: Solvent-Free Synthesis and Photophysical Studies. ChemistrySelect 2018, 3, 4141–4146. [Google Scholar] [CrossRef]
- Kopchuk, D.S.; Starnovskaya, E.S.; Shtaitz, Y.K.; Khasanov, A.F.; Kim, G.A.; Nosova, E.V.; Krinochkin, A.P.; Zyryanov, G.V.; Rusinov, V.L.; Chupakhin, O.N. 5-Aryl-2,2′-Bipyridines Bearing Fluorinated Anilines Residues at C6 Position: Synthesis and Photophysical Properties. Res. Chem. Intermed. 2020, 46, 3929–3944. [Google Scholar] [CrossRef]
- Starnovskaya, E.S.; Savchuk, M.I.; Shtaitz, Y.K.; Kopchuk, D.S.; Kovalev, I.S.; Pavlyuk, D.E.; Khasanov, A.F.; Zyryanov, G.V.; Chupakhin, O.N. Polynuclear Aromatic Amines as N-Nucleophiles in the Ipso-Substitution of the Cyano Group in 1,2,4-Triazines. Russ. J. Org. Chem. 2020, 56, 335–338. [Google Scholar] [CrossRef]
- Starnovskaya, E.S.; Kopchuk, D.S.; Khasanov, A.F.; Tanya, O.S.; Santra, S.; Giri, K.; Rahman, M.; Kovalev, I.S.; Zyryanov, G.V.; Majee, A.; et al. Synthesis and Photophysics of New Unsymmetrically Substituted 5,5′-Diaryl-2,2′-Bypiridine-Based “Push-Pull” Fluorophores. Dye. Pigment. 2019, 162, 324–330. [Google Scholar] [CrossRef]
- Kopchuk, D.S.; Chepchugov, N.V.; Starnovskaya, E.S.; Khasanov, A.F.; Krinochkin, A.P.; Santra, S.; Zyryanov, G.V.; Das, P.; Majee, A.; Rusinov, V.L.; et al. Synthesis and Optical Properties of New 2-(5-Arylpyridine-2-Yl)-6-(Het)Arylquinoline-Based “Push-Pull” Fluorophores. Dye. Pigment. 2019, 167, 151–156. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Lakowicz, J.R., Ed.; Springer: Boston, MA, USA, 2006; ISBN 978-0-387-31278-1. [Google Scholar]
- Lippert, E. Spektroskopische Bestimmung Des Dipolmomentes Aromatischer Verbindungen Im Ersten Angeregten Singulettzustand. Electro. Chem. 1957, 61, 962–975. [Google Scholar]
- Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent Effects upon Fluorescence Spectra and the Dipolemoments of Excited Molecules. Bull. Chem. Soc. Jpn. 1956, 29, 465–470. [Google Scholar] [CrossRef]
- Moseev, T.D.; Nikiforov, E.A.; Varaksin, M.V.; Starnovskaya, E.S.; Savchuk, M.I.; Nikonov, I.L.; Kopchuk, D.S.; Zyryanov, G.V.; Chupakhin, O.N.; Charushin, V.N. Novel Pentafluorophenyl- and Alkoxyphenyl-Appended 2,2′-Bipyridine Push–Pull Fluorophores: A Convenient Synthesis and Photophysical Studies. Synthesis 2021, 53, 3597–3607. [Google Scholar] [CrossRef]
- Kosower, E.M. Introduction to Physical Organic Chemistry Hardcover; John Wiley & Sons: Hoboken, NJ, USA, 1968; Volume 1. [Google Scholar]
- Kosower, E.M. The Effect of Solvent on Spectra. I. A New Empirical Measure of Solvent Polarity: Z-Values. J. Am. Chem. Soc. 1958, 80, 3253–3260. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd, Updated and Enlarged Edition; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Kovács, S.L.; Nagy, M.; Fehér, P.P.; Zsuga, M.; Kéki, S. Effect of the Substitution Position on the Electronic and Solvatochromic Properties of Isocyanoaminonaphthalene (ICAN) Fluorophores. Molecules 2019, 24, 2434. [Google Scholar] [CrossRef] [Green Version]
- Ertl, P. A Web Tool for Calculating Substituent Descriptors Compatible with Hammett Sigma Constants. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Grabowski, Z.R.; Rotkiewicz, K.; Rettig, W. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chem. Rev. 2003, 103, 3899–4032. [Google Scholar] [CrossRef]
- Germain, M.E.; Knapp, M.J. Optical Explosives Detection: From Color Changes to Fluorescence Turn-On. Chem. Soc. Rev. 2009, 38, 2543. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Design of Fluorescent Sensors Based on Azaheterocyclic Push-Pull Systems towards Nitroaromatic Explosives and Related Compounds: A Review. Dye. Pigment. 2020, 180, 108414. [Google Scholar] [CrossRef]
- Kozhevnikov, V.N.; Kozhevnikov, D.N.; Nikitina, T.V.; Rusinov, V.L.; Chupakhin, O.N.; Zabel, M.; König, B. A Versatile Strategy for the Synthesis of Functionalized 2,2′-Bi- and 2,2′:6′,2″-Terpyridines via Their 1,2,4-Triazine Analogues. J. Org. Chem. 2003, 68, 2882–2888. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378. [Google Scholar] [CrossRef] [PubMed]
Entry | Ref./Comp. | Ar | R | λabs max a, nm | εM, M−1 × cm−1 | λem max b, nm | Stokes Shift, cm−1 | Φf, % c |
---|---|---|---|---|---|---|---|---|
1 | [22] | Ph | H | 258, 285, 354 | N/A | 446 | 5827 | 46 |
2 | [22] | 2-MeO | 259, 309, 359 | N/A | 453 | 5780 | 28 | |
3 | [22] | 3-Cl | 351 | N/A | 427 | 5070 | 55 | |
4 | [22] | 4-Me | 259, 287, 359 | N/A | 469 | 6533 | 28 | |
5 | 3a | 3-Ph | 251, 356 | 35,200 | 443 | 5516 | 49 | |
6 | 3e | 3-(2,5-(MeO)2C6H4) | 295, 350 (sh) | 34,300 | 450 | 6349 | 19 | |
7 | 3f | 3-(2,5-Me2C6H4) | 287, 356 | 42,000 | 448 | 5768 | 39 | |
8 | 3h | 4-Ph | 269, 313, 354 (sh) | 21,000 | 466 | 6789 | 32 | |
9 | 3k | 4-(4-MeOC6H4) | 317, 352 (sh) | 19,400 | 484 | 7747 | 2 | |
10 | 3l | 4-(4-Ph2NC6H4) | 289, 342 | 60,500 | 511 | 9670 | 3 | |
11 | 6a | 4-Br | 259, 299, 353 | 28,300 | 441 | 5652 | 30 | |
12 | [22] | Tol | H | 295, 356 | N/A | 445 | 5617 | 48 |
13 | [22] | 4-CN | 316 | N/A | 417 | 7664 | 45 | |
14 | [22] | 4-MeO | 262, 289 (sh), 362 | N/A | 498 | 7543 | 4 | |
15 | [23] | 4-F | 257, 282 (sh), 353 | N/A | 447 | 5957 | 53 | |
16 | 3b | 3-(4-Ph2NC6H4) | 297, 335 (sh) | 21,100 | 444 | 7328 | 48 | |
17 | 3c | 3-(3,4,5-(MeO)2C6H2) | 259, 356 | 49,800 | 448 | 5768 | 38 | |
18 | 3d | 3-(4-MeOC6H4) | 356 | 7700 | 446 | 5668 | 44 | |
19 | 3g | 3-(4-Et2NC6H4) | 299, 360 (sh) | 8000 | 452 | 5653 | 33 | |
20 | 3i | 4-(3,4,5-(MeO)3C6H2) | 317, 360 (sh) | 17,000 | 472 | 6591 | 26 | |
21 | 3j | 4-(4-MeOC6H4) | 270, 314, 358 (sh) | 16,900 | 479 | 7056 | 21 | |
22 | 6b | 4-Br | 263, 287, 354 | 18,400 | 440 | 5521 | 29 | |
23 | 6c | 3-Br | 263 (sh), 283, 351 | 13,900 | 426 | 5015 | 45 |
Compound | 3b | 3g | 3i | 3l |
---|---|---|---|---|
Δμ, D | 11.93 | 12.73 | 10.62 | 12.61 |
Solvent | Z, kcal/mol−1 | ET(30), kcal/mol−1 | λem max, nm | |||
---|---|---|---|---|---|---|
3b | 3g | 3i | 3l | |||
Methanol | 83.6 | 55.4 | 410 | 437 | 480 | 407 |
Acetonitrile | 71.3 | 45.6 | 455 | 465 | 482 | 416 |
DMSO | 71.1 | 45.1 | 469 | 474 | 497 | 418 |
DMF | 68.4 | 43.2 | 478 | 480 | 515 | 418 |
DCM | 64.7 | 40.7 | 438 | 449 | 464 | 519 |
Ethyl Acetate | 59.4 | 38.1 | 444 | 452 | 467 | 511 |
THF | 58.8 | 37.4 | 441 | 449 | 473 | 507 |
1,4-Dioxane | N/A | 36.0 | 438 | 446 | 463 | 494 |
Toluene | N/A | 33.9 | 424 | 431 | 440 | 463 |
n-Heptane | N/A | 31.1 | 408 | 414 | 418 | 438 |
Cyclohexane | N/A | 30.9 | 409 | 413 | 418 | 441 |
3a | 3h | ||
---|---|---|---|
PA | KSV, M−1 | 53.6 | 35.4 |
LOD, ppb | 139.6 | 480.3 | |
TNT | KSV, M−1 | 68.3 | 10.6 |
LOD, ppb | 64.9 | 5535.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starnovskaya, E.S.; Kopchuk, D.S.; Khasanov, A.F.; Taniya, O.S.; Nikonov, I.L.; Valieva, M.I.; Pavlyuk, D.E.; Novikov, A.S.; Zyryanov, G.V.; Chupakhin, O.N. Synthesis and Photophysical Properties of α-(N-Biphenyl)-Substituted 2,2′-Bipyridine-Based Push–Pull Fluorophores. Molecules 2022, 27, 6879. https://doi.org/10.3390/molecules27206879
Starnovskaya ES, Kopchuk DS, Khasanov AF, Taniya OS, Nikonov IL, Valieva MI, Pavlyuk DE, Novikov AS, Zyryanov GV, Chupakhin ON. Synthesis and Photophysical Properties of α-(N-Biphenyl)-Substituted 2,2′-Bipyridine-Based Push–Pull Fluorophores. Molecules. 2022; 27(20):6879. https://doi.org/10.3390/molecules27206879
Chicago/Turabian StyleStarnovskaya, Ekaterina S., Dmitry S. Kopchuk, Albert F. Khasanov, Olga S. Taniya, Igor L. Nikonov, Maria I. Valieva, Dmitry E. Pavlyuk, Alexander S. Novikov, Grigory V. Zyryanov, and Oleg N. Chupakhin. 2022. "Synthesis and Photophysical Properties of α-(N-Biphenyl)-Substituted 2,2′-Bipyridine-Based Push–Pull Fluorophores" Molecules 27, no. 20: 6879. https://doi.org/10.3390/molecules27206879
APA StyleStarnovskaya, E. S., Kopchuk, D. S., Khasanov, A. F., Taniya, O. S., Nikonov, I. L., Valieva, M. I., Pavlyuk, D. E., Novikov, A. S., Zyryanov, G. V., & Chupakhin, O. N. (2022). Synthesis and Photophysical Properties of α-(N-Biphenyl)-Substituted 2,2′-Bipyridine-Based Push–Pull Fluorophores. Molecules, 27(20), 6879. https://doi.org/10.3390/molecules27206879