Random Copolymers of Styrene with Pendant Fluorophore Moieties: Synthesis and Applications as Fluorescence Sensors for Nitroaromatics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Thermal Properties
2.2. Photophysical Studies of the Obtained Fluorescent Polymers
2.3. Detection of Nitroaromatic Compounds in Dichloromethane Solution
2.4. Application of Polymers to Detect Nitroaromatic Compounds in Vapor Phase
2.4.1. Preparation and Morphology of Electrospun Sensing Materials
2.4.2. Sensor Cartridge and Fluorescence Recorder
2.4.3. The Sensing Performance of Materials for Various Analytes in Vapor Phase
3. Experimental Materials and Methods
3.1. Materials
3.2. Synthesis of Polymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yinon, J. (Ed.) Counterterrorist Detection Techniques of Explosives; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Giannoukos, S.; Brkić, B.; Taylor, S.; Marshall, T.; Verbeck, G.F. Chemical Sniffing Instrumentation for Security Applications. Chem. Rev. 2016, 116, 8146–8172. [Google Scholar] [CrossRef] [PubMed]
- Salinas, Y.; Martínez-Máñez, R.; Marcos, M.D.; Sancenón, F.; Costero, A.M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 2012, 41, 1261–1296. [Google Scholar] [CrossRef] [PubMed]
- Sunahara, G.I.; Lotufo, G.; Kuperman, R.G.; Hawari, J. Ecotoxicology of Explosives; CRC Press: Boca Raton, FL, USA; Taylor & Francis: London, UK; New York, NY, USA, 2009. [Google Scholar]
- Klapec, D.J.; Czarnopys, G.; Pannuto, J. Interpol review of detection and characterization of explosives and explosives residues 2016–2019. Forensic Sci. Int. Synerg. 2020, 2, 670–700. [Google Scholar] [CrossRef]
- La Grone, M.J.; Cumming, C.J.; Fisher, M.E.; Fox, M.J.; Jacob, S.; Reust, D.; Rockley, M.G.; Towers, E. Detection of land mines by amplified fluorescence quenching of polymer films: A man-portable chemical sniffer for detection of ultratrace concentrations of explosives emanating from land mines. In Detection and Remediation Technologies for Mines and Minelike Targets V; SPIE: Bellingham, WA, USA, 2000; Volume 4038. [Google Scholar] [CrossRef]
- Zyryanov, G.V.; Kopchuk, D.S.; Kovalev, I.S.; Nosova, E.V.; Rusinov, V.L.; Chupakhin, O.N. Chemosensors for detection of nitroaromatic compounds (explosives). Russ. Chem. Rev. 2014, 83, 783–819. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Baranova, A.A.; Lugovik, K.I.; Shafikov, M.Z.; Khokhlov, K.O.; Cheprakova, E.M.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Detection of nitroaromatic explosives by new D–π–A sensing fluorophores on the basis of the pyrimidine scaffold. Anal. Bioanal. Chem. 2016, 408, 4093–4101. [Google Scholar] [CrossRef]
- Moore, D.S. Instrumentation for trace detection of high explosives. Rev. Sci. Instum. 2004, 75, 2499–2512. [Google Scholar] [CrossRef]
- Moore, D.S. Recent advances in trace explosives detection instrumentation. Sens. Imaging 2007, 8, 9–38. [Google Scholar] [CrossRef]
- Singh, S. Sensors—An effective approach for the detection of explosives. J. Hazard Mater. 2007, 144, 15–28. [Google Scholar] [CrossRef]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review. Dyes Pigment. 2020, 180, 108414. [Google Scholar] [CrossRef]
- Kumar, V.; Maiti, B.; Chini, M.K.; De, P.; Satapathi, S. Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics. Sci. Rep. 2019, 9, 7269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Saini, S.K.; Choudhury, N.; Kumar, A.; Maiti, B.; De, P.; Kumar, M.; Satapathi, S. Highly Sensitive Detection of Nitro Compounds Using a Fluorescent Copolymer-Based FRET System. ACS Appl. Polym. Mater. 2021, 3, 4017–4026. [Google Scholar] [CrossRef]
- Li, J.; Kendig, C.E.; Nesterov, E.E. Chemosensory Performance of Molecularly Imprinted Fluorescent Conjugated Polymer Materials. J. Am. Chem. Soc. 2007, 129, 15911–15918. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Sun, G.; Zhang, M.; Baumgarten, M.; Müllen, K. Fluorescent conjugated polycarbazoles for explosives detection: Side chain effects on TNT sensor sensitivity. J. Mater. Chem. 2012, 22, 2129–2132. [Google Scholar] [CrossRef]
- Rochat, S.; Swager, T.M. Conjugated Amplifying Polymers for Optical Sensing Applications. ACS Appl. Mater. Interfaces 2013, 5, 4488–4502. [Google Scholar] [CrossRef]
- McQuade, D.T.; Pullen, A.P.; Swager, T.M. Conjugated Polymer-Based Chemical Sensors. Chem. Rev. 2000, 100, 2537–2574. [Google Scholar] [CrossRef] [PubMed]
- Turhan, H.; Tukenmez, E.; Karagoz, B.; Bicak, N. Highly fluorescent sensing of nitroaromatic explosives in aqueous media using pyrene-linked PBEMA microspheres. Talanta 2018, 179, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Qazi, F.; Shahsavari, E.; Prawer, S.; Ball, A.S.; Tomljenovic-Hanic, S. Detection and identification of polyaromatic hydrocarbons (PAHs) contamination in soil using intrinsic fluorescence. Environ. Pollut. 2021, 272, 116010. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Baranova, A.A.; Lugovik, K.I.; Khokhlov, K.O.; Chuvashov, R.D.; Dinastiya, E.M.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Linear and V-shaped push–pull systems on a base of pyrimidine scaffold with a pyrene–donative fragment for detection of nitroaromatic compounds. J. Iran Chem. Soc. 2018, 15, 787–797. [Google Scholar] [CrossRef]
- Wang, Y.; La, A.; Ding, Y.; Liu, Y.; Lei, Y. Novel Signal-Amplifying Fluorescent Nanofibers for Naked-Eye-Based Ultrasensitive Detection of Buried Explosives and Explosive Vapors. Adv. Funct. Mater. 2012, 22, 3547–3555. [Google Scholar] [CrossRef]
- Akkoc, E.; Karagoz, B. One step synthesis of crosslinked fluorescent microspheres for the effective and selective sensing of explosives in aqueous media. Eur. Polym. J. 2022, 172, 111238. [Google Scholar] [CrossRef]
- Eddin, M.Z.; Pervova, M.G.; Zhilina, E.F.; Chistyakov, K.A.; Verbitskiy, E.V.; Rusinov, G.L.; Charushin, V.N. A new approach to 4-arylstyrenes: Microwave-assisted synthesis and photophysical properties. Russ. Chem. Bull. 2021, 70, 2139–2144. [Google Scholar] [CrossRef]
- Moad, G. A Critical Assessment of the Kinetics and Mechanism of Initiation of Radical Polymerization with Commercially Available Dialkyldiazene Initiators. Prog. Polym. Sci. 2019, 88, 130–188. [Google Scholar] [CrossRef]
- Chung, F.-J.; Liu, H.-Y.; Jiang, B.-Y.; He, G.-Y.; Wang, S.-H.; Wu, W.-C.; Liu, C.-L. Random Styrenic Copolymers with Pendant Pyrene Moieties: Synthesis and Applications in Organic Field-Effect Transistor Memory. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 910–917. [Google Scholar] [CrossRef]
- Liang, C.Y.; Krimm, S. Infared spectra of high polymers. VI. Polystyrene. J. Polym. Sci. 1958, 27, 241–254. [Google Scholar] [CrossRef]
- Fedorenko, E.V.; Mirochnik, A.G.; Beloliptsev, A.Y. New polymers containing BF2-benzoylacetonate groups. Synthesis, luminescence, excimer and exciplex formation. J. Lumin. 2017, 185, 23–33. [Google Scholar] [CrossRef]
- Bains, G.K.; Kim, S.H.; Sorin, E.J.; Narayanaswami, V. The Extent of Pyrene Excimer Fluorescence Emission Is a Reflector of Distance and Flexibility: Analysis of the Segment Linking the LDL Receptor-Binding and Tetramerization Domains of Apolipoprotein E3. Biochemistry 2012, 51, 6207–6219. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Provisional Peer-Reviewed Toxicity Values for Picric Acid (2,4,6-Trinitrophenol); CASRN 88-89-1; United States Environmental Protection Agency: Washington, DC, USA, 2015.
- ATSDR. 2,4,6-Trinitrotoluene (TNT); Agency for Toxic Substances and Disease Registry (ATSDR), 1996. Available online: https://wwwn.cdc.gov/TSP/substances/ToxSubstance.aspx?toxid=125 (accessed on 28 September 2022).
- Svalova, T.S.; Saigushkina, A.A.; Verbitskiy, E.V.; Chistyakov, K.A.; Varaksin, M.V.; Rusinov, G.L.; Charushin, V.N.; Kozitsina, A.N. Rapid and sensitive determination of nitrobenzene in solutions and commercial honey samples using a screen-printed electrode modified by 1,3-/1,4-diazines. Food Chem. 2022, 372, 131279. [Google Scholar] [CrossRef] [PubMed]
- Verbitskiy, E.V.; Baranova, A.A.; Lugovik, K.I.; Khokhlov, K.O.; Cheprakova, E.M.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. New V-shaped push-pull systems based on 4,5-di(hetero)aryl substituted pyrimidines: Their synthesis and application to the detection of nitroaromatic explosives. ARKIVOC 2016, 2016, 360–373. [Google Scholar] [CrossRef]
- Ware, W.R. Oxygen quenching of fluorescence in solution: An experimental study of diffusion process. J. Phys. Chem. 1962, 66, 455–458. [Google Scholar] [CrossRef]
- Eda, G.; Shivkumar, S. Bead-to-fiber transition in electrospun polystyrene. J. Appl. Polym. Sci. 2007, 106, 475–487. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Zhao, Z.; Han, C.C. Construction of hierarchical structures by electrospinning or electrospraying. Polymer 2012, 53, 546–554. [Google Scholar] [CrossRef]
- Casper, C.L.; Stephens, J.S.; Tassi, N.G.; Chase, D.B.; Rabolt, J.F. Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules 2004, 37, 573–578. [Google Scholar] [CrossRef]
- Lynch, E.J.; Wilke, C.R. Vapor Pressure of Nitrobenzene at Low Temperatures. J. Chem. Eng. Data 1960, 5, 300. [Google Scholar] [CrossRef] [Green Version]
- Ewing, R.G.; Waltman, M.J.; Atkinson, D.A.; Grate, J.W.; Hotchkiss, P.J. The vapor pressures of explosives. Trends Anal. Chem. 2013, 42, 35–48. [Google Scholar] [CrossRef]
- Shaw, P.E.; Bun, P.L. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: What are the key processes? Phys. Chem. Chem. Phys. 2017, 19, 29714–29730. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Liu, G.; Zhang, Z.; Wu, H.; Cui, B.; Bai, J.; Zhang, W. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicol. Environ. Saf. 2019, 173, 331–338. [Google Scholar] [CrossRef]
- Permissible Exposure Limit for Nitrobenzene in the US. Available online: https://www.cdc.gov/niosh/npg/npgd0450.html (accessed on 28 September 2022).
- Rurack, K. Standardization and Quality Assurance in Fluorescence Measurements I; Springer: Berlin/Heidelberg, Germany, 2008; pp. 101–145. [Google Scholar]
- Östmark, H.; Wallin, S.; Ang, H.G. Vapor Pressure of Explosives: A Critical Review. Propellants Explos. Pyrotech. 2012, 37, 12–23. [Google Scholar] [CrossRef]
- Chuvashov, R.; Baranova, A.; Khokhlov, K.; Verbitskiy, E. A detection system with low sampling distortion for application in optical array sensing in gas phase. In Proceedings of the 2020 7th International Congress on Energy Fluxes and Radiation Effects, EFRE 2020, Tomsk, Russia, 14–26 September 2020; pp. 984–988. [Google Scholar] [CrossRef]
- Baranova, A.A.; Khokhlov, K.O.; Chuvashov, R.D.; Verbitskiy, E.V.; Cheprakova, E.M.; Rusinov, G.L.; Charushin, V.N. The portable detector of nitro-explosives in vapor phase with new sensing elements on the base of pyrimidine scaffolds. J. Phys. Conf. Ser. 2017, 830, 012159. [Google Scholar]
Entry | AIBN (mol.%) | Yield (%) | Mw | Mn | PDI |
---|---|---|---|---|---|
1 | 0.5 | 52 | 7800 | 4200 | 1.8 |
2(d) | 0.5 | 25 | 3200 | 2300 | 1.4 |
3 | 1.0 | 60 | 12,400 | 7600 | 1.6 |
4 | 1.5 | 70 | 20,000 | 11,000 | 1.8 |
5 | 2.0 | 58 | 9000 | 5000 | 1.8 |
6(a) | 1.5 | 80 | 16,000 | 9800 | 1.6 |
7(b) | 1.5 | 84 | 24,000 | 14,400 | 1.6 |
8(c) | 1.5 | 70 | 31,500 | 19,100 | 1.7 |
9(e) | 1.5 | 31 | 11,500 | 4100 | 2.8 |
Copolymer | Yield, % | Mw | Mn | PDI | Td, °C |
---|---|---|---|---|---|
P1 | 76 | 23,000 | 13,500 | 1.7 | 387 |
P2 | 82 | 25,000 | 15,500 | 1.6 | 387 |
P3 | 83 | 24,000 | 14,400 | 1.6 | 392 |
P3* | 58 | 9000 | 5000 | 1.8 | 385 |
P4 | 73 | 24,000 | 14,000 | 1.7 | 395 |
P5 | 80 | 26,000 | 16,000 | 1.6 | 391 |
Polymer | UV Absorption | Fluorescence | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Solution in DCM | Solid | |||||||||
λabsmax (nm) | εmax (M−1 cm−1) | Excitation λex (nm) | Emission λem (nm) | τ avg (ns) | ΦF a | Excitation λex (nm) | Emission λem (nm0 | τ avg (ns) | ΦF c | |
P1 | 292 | 310,000 | 290 | 362 | 21.19 | 0.17 | 305 | 362 | 41.25 | 0.44 |
259 | 1,031,000 | 263 | 345 | 21.60 | 355 | 40.31 | ||||
346 | 40.02 | |||||||||
P2 | 294 | 309,000 | 294 | 358 | 2.06 | 0.28 | 311 | 359 | 2.15 | 0.48 |
230 | 1,271,700 | 230 | ||||||||
P3 | 301 | 336,800 | 301 | 376 | 14.57 | 0.08 | 351 | 377 | 27.88 | 0.24 |
258 | 1,318,300 | 265 | 359 | 14.74 | 313 | 364 | 27.95 | |||
P3* | 301 | 132,600 | 301 | 376 | 14.41 | 0.07 | 351 | 377 | 27.53 | 0.19 |
258 | 517,300 | 258 | 359 | 14.36 | 313 | 364 | 27.21 | |||
P4 | 345 | 693,000 | 345 | 478 | 25.23 | 0.29 b | 375 | 457 | 23.50 | 0.93 |
281 | 858,800 | 281 | 401 | 11.46 | ||||||
271 | 585,100 | 271 | 383 | 11.35 | 350 | |||||
245 | 1,025,300 | 245 | ||||||||
P5 | 322 | 552,300 | 325 | 392 | 1.12 | 0.30 | 350 | 420 | 1.32 | 0.77 |
246 | 332,700 | 246 |
Polymer | Ksv × 104, M−1/DL, mol × L−1 | |||
---|---|---|---|---|
PA | TNT | DNT | NB | |
P1 | 405.79/1.74 × 10−7 | 24.32/4.02 × 10−7 | 34.33/3.70 × 10−7 | 52.26/1.92 × 10−7 |
P2 | 89.16/5.11 × 10−7 | 19.91/3.63 × 10−7 | 41.78/3.44 × 10−7 | 29.56/3.71 × 10−7 |
P3 | 40.25/3.55 × 10−7 | 14.70/4.51 × 10−7 | 24.81/2.58 × 10−7 | 17.14/2.91 × 10−7 |
P3* | 42.36/1.18 × 10−6 | 18.15/2.19 × 10−7 | 25.88/2.11 × 10−7 | 17.51/2.39 × 10−7 |
P4 | 54.21/4.78 × 10−7 | 7.56/6.63 × 10−7 | 5.20/7.18 × 10−7 | 3.08/1.04 × 10−6 |
P5 | 76.24/1.74 × 10−7 | 5.74/1.54 × 10−7 | 4.66/3.71 × 10−7 | 2.70/5.55 × 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zen Eddin, M.; Zhilina, E.F.; Chuvashov, R.D.; Dubovik, A.I.; Mekhaev, A.V.; Chistyakov, K.A.; Baranova, A.A.; Khokhlov, K.O.; Rusinov, G.L.; Verbitskiy, E.V.; et al. Random Copolymers of Styrene with Pendant Fluorophore Moieties: Synthesis and Applications as Fluorescence Sensors for Nitroaromatics. Molecules 2022, 27, 6957. https://doi.org/10.3390/molecules27206957
Zen Eddin M, Zhilina EF, Chuvashov RD, Dubovik AI, Mekhaev AV, Chistyakov KA, Baranova AA, Khokhlov KO, Rusinov GL, Verbitskiy EV, et al. Random Copolymers of Styrene with Pendant Fluorophore Moieties: Synthesis and Applications as Fluorescence Sensors for Nitroaromatics. Molecules. 2022; 27(20):6957. https://doi.org/10.3390/molecules27206957
Chicago/Turabian StyleZen Eddin, Mohamad, Ekaterina F. Zhilina, Roman D. Chuvashov, Alyona I. Dubovik, Alexandr V. Mekhaev, Konstantin A. Chistyakov, Anna A. Baranova, Konstantin O. Khokhlov, Gennady L. Rusinov, Egor V. Verbitskiy, and et al. 2022. "Random Copolymers of Styrene with Pendant Fluorophore Moieties: Synthesis and Applications as Fluorescence Sensors for Nitroaromatics" Molecules 27, no. 20: 6957. https://doi.org/10.3390/molecules27206957
APA StyleZen Eddin, M., Zhilina, E. F., Chuvashov, R. D., Dubovik, A. I., Mekhaev, A. V., Chistyakov, K. A., Baranova, A. A., Khokhlov, K. O., Rusinov, G. L., Verbitskiy, E. V., & Charushin, V. N. (2022). Random Copolymers of Styrene with Pendant Fluorophore Moieties: Synthesis and Applications as Fluorescence Sensors for Nitroaromatics. Molecules, 27(20), 6957. https://doi.org/10.3390/molecules27206957