Next Article in Journal
Mechanism, Kinetics and Thermodynamics of Decomposition for High Energy Derivatives of [1,2,4]Triazolo[4,3-b][1,2,4,5]tetrazine
Next Article in Special Issue
Connecting SiO4 in Silicate and Silicate Chain Networks to Compute Kulli Temperature Indices
Previous Article in Journal
Development of the Microemulsion Electrokinetic Capillary Chromatography Method for the Analysis of Disperse Dyes Extracted from Polyester Fibers
Previous Article in Special Issue
The Expected Values for the Gutman Index and Schultz Index in the Random Regular Polygonal Chains
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Paradigmatic Approach to Find the Valency-Based K-Banhatti and Redefined Zagreb Entropy for Niobium Oxide and a Metal–Organic Framework

by
Muhammad Usman Ghani
1,†,
Faisal Sultan
1,*,†,
El Sayed M. Tag El Din
2,*,†,
Abdul Rauf Khan
3,*,†,
Jia-Bao Liu
4,*,† and
Murat Cancan
5,†
1
Institute of Mathematics, Khawaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, Rahim Yar Khan 64200, Pakistan
2
Center of Research, Faculty of Engineering, Future University in Egypt, New Caira 11835, Egypt
3
Department of Mathematics, Faculty of Science, Ghazi University, Dera Ghazi Khan 32200, Pakistan
4
School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
5
Faculty of Education, Yuzuncu Yil University, Van 65140, Turkey
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Molecules 2022, 27(20), 6975; https://doi.org/10.3390/molecules27206975
Submission received: 16 September 2022 / Revised: 12 October 2022 / Accepted: 13 October 2022 / Published: 17 October 2022
(This article belongs to the Special Issue Study of Molecules in the Light of Spectral Graph Theory)

Abstract

:
Entropy is a thermodynamic function in chemistry that reflects the randomness and disorder of molecules in a particular system or process based on the number of alternative configurations accessible to them. Distance-based entropy is used to solve a variety of difficulties in biology, chemical graph theory, organic and inorganic chemistry, and other fields. In this article, the characterization of the crystal structure of niobium oxide and a metal–organic framework is investigated. We also use the information function to compute entropies by building these structures with degree-based indices including the K-Banhatti indices, the first redefined Zagreb index, the second redefined Zagreb index, the third redefined Zagreb index, and the atom-bond sum connectivity index.

1. Introduction

The optical properties of metallic nanoparticles have drawn the attention of scientists and researchers. The heat created by the nanoparticles overwhelms cancer tissue while causing no harm to healthy cells. Niobium nanoparticles have the capacity to easily attach to ligands, making them ideal for optothermal cancer treatment. Chemical graph theory is a contemporary branch of applied chemistry, which has remained an attractive area of research for scientists during the past two decades, and significant contributions have been made by scientists in this area of research including [1,2,3,4,5,6,7]. We investigate the relationship between atoms and bonds using combinatorial approaches such as vertex and edge partitions. Topological indices are essential in providing directions for treating malignancies or tumors. These indices can be obtained experimentally or numerically. Although experimental data are valuable, they are also costly; therefore, computational analysis gives a cost-effective and time-efficient solution.
The transformation of a chemical structure into a number is used to generate a topological index. The topological index is a graph invariant that characterizes the graph’s topology while remaining invariant throughout graph automorphism. A topological index is a numerical number defined only by the graph. The eccentricity-based topological indices are crucial in chemical graph theory [8]. Wiener, a chemist, first used a topological index in 1947 while researching the relationship between the molecular structure and the physical and chemical properties of certain hydrocarbon compounds [9]. In 2010, Damir et al. defined the redefined second Zagreb index as the same as the inverse sum indeg index [10].
We used the concept of valency-based entropies in this article, where v a ˙ 1 and v a ˙ 2 denote the valency of atoms, a ˙ 1 and a ˙ 2 , within the molecule. Kulli started computing valency-based topological indices in 2016 using the valency of atom bonds and some Banhatti indices [11,12,13], each of which has the following definition:
The first valence-based K-Banhatti polynomial and the first K-Banhatti index are as follows:
B 1 ( G , x ) = a ˙ 1 a ˙ 2 x ( v a ˙ 1 + v a ˙ 2 ) B 1 ( G ) = a ˙ 1 a ˙ 2 ( v a ˙ 1 + v a ˙ 2 )
The second valence based K-Banhatti polynomial and the second K-Banhatti index are as follows, respectively:
B 2 ( G , x ) = a ˙ 1 a ˙ 2 x ( v a ˙ 1 × v a ˙ 2 ) B 2 ( G ) = a ˙ 1 a ˙ 2 ( v a ˙ 1 × v a ˙ 2 )
The first valence based hyper K-Banhatti polynomial and the firstst hyper K-Banhatti index are as follows, respectively:
H B 1 ( G , x ) = a ˙ 1 a ˙ 2 x ( v a ˙ 1 + v a ˙ 2 ) 2 H B 1 ( G ) = a ˙ 1 a ˙ 2 ( v a ˙ 1 + v a ˙ 2 ) 2
H B 2 ( G , x ) = a ˙ 1 a ˙ 2 x ( v a ˙ 1 × v a ˙ 2 ) 2 H B 2 ( G ) = a ˙ 1 a ˙ 2 ( v a ˙ 1 × v a ˙ 2 ) 2
In 2013, Ranjini [14] introduced a redefined version of the Zagreb indices R e Z G 1 , and in 2021, Shanmukha [15] defined them as
R e Z G 1 ( G , x ) = a ˙ 1 a ˙ 2 x v a ˙ 1 + v a ˙ 2 v a ˙ 1 × v a ˙ 2 R e Z G 1 = a ˙ 1 a ˙ 2 v a ˙ 1 + v a ˙ 2 v a ˙ 1 × v a ˙ 2 .
R e Z G 2 ( G , x ) = a ˙ 1 a ˙ 2 x v a ˙ 1 × v a ˙ 2 v a ˙ 1 + v a ˙ 2 R e Z G 2 = a ˙ 1 a ˙ 2 v a ˙ 1 × v a ˙ 2 v a ˙ 1 + v a ˙ 2 .
The third redefined Zagreb index was defined as
R e Z G 3 ( G , x ) = a ˙ 1 a ˙ 2 x ( v a ˙ 1 × v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) R e Z G 3 = a ˙ 1 a ˙ 2 ( v a ˙ 1 × v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 )
Recently, Ali et al. amalgamated the atom-bond connectivity index and sum connectivity index and initiated the new molecular descriptor named the atom-bond sum-connectivity index [16], defined as:
A B S ( G , x ) = a ˙ 1 a ˙ 2 x ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) A B S = a ˙ 1 a ˙ 2 ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 )
Shannon first popularized the concept of entropy in his 1948 work [17]. Entropy is the quantity of thermal energy per unit temperature in a system that is not accessible for meaningful work [18,19]. Because the work is derived from organized molecular motion, entropy is also a measure of a system’s molecular disorder or unpredictability [20,21]. In this article, we build the Niobium dioxide NbO 2 and the metal–organic framework (MOF) to compute the K-Banhatti and redefined Zagreb entropies using K-Banhatti indices [22,23,24], and redefined Zagreb indices, respectively. The idea of entropy is extracted from Shazia Manzoor’s paper [25].

2. Valency-Based Entropy

The idea of edge-weighted graph entropy was introduced in 2009 [26], G = ( ( V G , E G ) , ϕ ( v a ˙ 1 v a ˙ 2 ) ) for an edge-weighted graph, where V G is the vertex set, E G the edge set, and the edge-weight of an edge ( v a ˙ 1 v a ˙ 2 ) is represented by ϕ ( v a ˙ 1 v a ˙ 2 ) . The entropy of an edge-weighted graph is defined as
E N T ϕ ( G ) = a ˙ 1 a ˙ 2 ϕ ( v a ˙ 1 v a ˙ 2 ) a ˙ 1 a ˙ 2 ϕ ( v a ˙ 1 v a ˙ 2 ) log { ϕ ( v a ˙ 1 v a ˙ 2 ) a ˙ 1 a ˙ 2 ϕ ( v a ˙ 1 v a ˙ 2 ) } .
  • The first K -Banhatti entropy
    Let ϕ ( v a ˙ 1 v a ˙ 2 ) = v a ˙ 1 + v a ˙ 2 . Then, the first K-Banhatti index (1) is given by
    B 1 ( G ) = a ˙ 1 a ˙ 2 { v a ˙ 1 + v a ˙ 2 } = a ˙ 1 a ˙ 2 ϕ ( v a ˙ 1 v a ˙ 2 ) .
    Now, by inserting these values into Equation (9), the first K-Banhatti entropy is
    E N T B 1 ( G ) = log ( B 1 ( G ) ) 1 B 1 ( G ) log { a ˙ 1 a ˙ 2 [ v a ˙ 1 + v a ˙ 2 ] [ v a ˙ 1 + v a ˙ 2 ] } .
  • The second K -Banhatti entropy
    Let ϕ ( v a ˙ 1 v a ˙ 2 ) = v a ˙ 1 × v a ˙ 2 . Then, the second K-Banhatti index (2) is given by
    B 2 ( G ) = a ˙ 1 a ˙ 2 { ( v a ˙ 1 × v a ˙ 2 ) } = a ˙ 1 a ˙ 2 ϕ ( v a ˙ 1 v a ˙ 2 ) .
    Now, by inserting these values into Equation (9), the second K-Banhatti entropy is
    E N T B 2 ( G ) = log ( B 2 ( G ) ) 1 B 2 ( G ) log { a ˙ 1 a ˙ 2 [ v a ˙ 1 × v a ˙ 2 ] [ v a ˙ 1 × v a ˙ 2 ] } .
  • The first K -hyper Banhatti entropy
    Let ϕ ( v a ˙ 1 v a ˙ 2 ) = ( v a ˙ 1 + v a ˙ 2 ) 2 . Then, the first K-hyper Banhatti index (3) is given by
    H B 1 ( G ) = a ˙ 1 a ˙ 2 { ( v a ˙ 1 + v a ˙ 2 ) 2 } = a ˙ 1 a ˙ 2 ϕ ( v a ˙ 1 v a ˙ 2 ) .
    Now, by inserting these values into Equation (9), the first K-hyper Banhatti entropy is
    E N T H B 1 ( G ) = log ( H B 1 ( G ) ) 1 H B 1 ( G ) log { a ˙ 1 a ˙ 2 [ v a ˙ 1 + v a ˙ 2 ] 2 [ v a ˙ 1 + v a ˙ 2 ] 2 } .
  • The second K -hyper Banhatti entropy
    Let ϕ ( v a ˙ 1 v a ˙ 2 ) = ( v a ˙ 1 × v a ˙ 2 ) 2 . Then the second K-hyper Banhatti index (4) is given by
    H B 2 ( G ) = a ˙ 1 a ˙ 2 { ( v a ˙ 1 × v a ˙ 2 ) 2 } = a ˙ 1 a ˙ 2 ϕ ( v a ˙ 1 v a ˙ 2 ) .
    Now, by inserting these values into Equation (9), the second K-hyper Banhatti entropy is
    E N T H B 2 ( G ) = log ( H B 1 ( G ) ) 1 H B 1 ( G ) log { a ˙ 1 a ˙ 2 [ v a ˙ 1 × v a ˙ 2 ] 2 [ v a ˙ 1 × v a ˙ 2 ] 2 } .
  • The first redefined Zagreb entropy
    Let ϕ ( v a ˙ 1 v a ˙ 2 ) = v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 . Then, the first redefined Zagreb index (5) is given by
    R e Z G 1 = a ˙ 1 a ˙ 2 { v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 } = a ˙ 1 a ˙ 2 ϕ ( v a ˙ 1 v a ˙ 2 ) .
    Now, by inserting these values into Equation (9), the first redefined Zagreb entropy is
    E N T R e Z G 1 = log ( R e Z G 1 ) 1 R e Z G 1 log { a ˙ 1 a ˙ 2 [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] } .
  • The second redefined Zagreb entropy
    Let ϕ ( v a ˙ 1 v a ˙ 2 ) = v a ˙ 1 d v v a ˙ 1 + v a ˙ 2 . Then, the second redefined index (6) is given by
    R e Z G 2 = a ˙ 1 a ˙ 2 { v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 } = a ˙ 1 a ˙ 2 ϕ ( v a ˙ 1 v a ˙ 2 ) .
    Now, by inserting these values into Equation (9), the second redefined Zagreb entropy is
    E N T R e Z G 2 = log ( R e Z G 2 ) 1 R e Z G 2 log { a ˙ 1 a ˙ 2 [ v a ˙ 1 d v v a ˙ 1 + v a ˙ 2 ] [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] } .
  • The third redefined Zagreb entropy
    Let ϕ ( v a ˙ 1 v a ˙ 2 ) = { ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) } . Then, the third redefined Zagreb index (7) is given by
    R e Z G 3 = a ˙ 1 a ˙ 2 { ( v a ˙ 1 v a ˙ 2 ) ( d u + d v ) } = a ˙ 1 a ˙ 2 ϕ ( v a ˙ 1 v a ˙ 2 ) .
    Now, by inserting these values into Equation (9), the third redefined Zagreb entropy is
    E N T R e Z G 3 = log ( R e Z G 3 ) 1 R e Z G 3 log { a ˙ 1 a ˙ 2 [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] } .
  • Atom-bond sum connectivity entropy
    Let ϕ ( a ˙ 1 a ˙ 2 ) = { v a ˙ 1 + v a ˙ 2 2 v a ˙ 1 + v a ˙ 2 } . Then, the fourth atom-bond connectivity index (8) is given by
    A B S ( G ) = a ˙ 1 , a ˙ 2 E G { v a ˙ 1 + v a ˙ 2 2 v a ˙ 1 + v a ˙ 2 } = a ˙ 1 , a ˙ 2 E G ϕ ( a ˙ 1 a ˙ 2 ) .
    By inserting the values of A B S ( G ) into Equation (9), the atom-bond sum connectivity ( E N T A B C ( G ) ) entropy is
    E N T A B S ( G ) = log ( A B S ( G ) ) 1 A B S ( G ) log { a ˙ 1 , a ˙ 2 E G v a ˙ 1 + v a ˙ 2 2 v a ˙ 1 + v a ˙ 2 v a ˙ 1 + v a ˙ 2 2 v a ˙ 1 + v a ˙ 2 } .

3. Niobium Dioxide NbO 2

Niobium Nb, a refractory metal, is a good choice for the initial shell of nuclear fusion reactors. It does, however, have a strong attraction for O 2 and C, both of which are available in pyrotechnics and refrigerant-like liquids. As part of the first barrier, Nb is well known for its ability to interact very effectively with O 2 [27]. As a result, reliable thermodynamic data on NbO, NbO 2 , Nb 2 O 5 , and other intermediate phases, such as Nb 12 O 29 , are very effective. In transistors, niobium monoxide is used as a gate electrode, and a (NbO/NbO 2 ) junction may be used in robust switching devices. In this article, we will attempt to explain NbO 2 , which has a total atom count of 2 + 5 s + 5 t + 9 s t ; see Figure 1.
There are three types of atoms in NbO 2 based on their valency: eight atoms with valency 2, 8 s + 8 t + 4 s t 8 atoms with valency 3, and 2 3 s 3 t + 5 s t atoms with valency 4. Table 1 shows the atom-bond partitions of NbO 2 derived from these results.
  • The first K -Banhatti entropy of NbO 2
    Let NbO 2 be a network of a niobium dioxide molecule. Then, by using Equation (1) and Table 1, the first K-Banhatti polynomial is
    B 1 ( NbO 2 , x ) = E ( 2 3 ) x 2 + 3 + E ( 3 3 ) x 3 + 3 + E ( 3 4 ) x 3 + 4 + E ( 4 4 ) x 4 + 4 = 16 x 5 + 8 ( 2 s + 2 t 3 ) x 6 + 4 ( 3 s t 2 s 2 t + 2 ) x 7 + 2 ( 2 s t s t ) x 8 .
    After simplifying Equation (18), we obtain the first K-Banhatti index by taking the first derivative at x = 1 .
    B 1 ( NbO 2 ) = 116 s t + 24 s + 24 t 8 .
    Now, we compute the first K-Banhatti entropy of NbO 2 by using Table 1 and Equation (19) in Equation (10) in the following way:
    E N T B 1 ( NbO 2 ) = log ( B 1 ) 1 B 1 log { E ( 2 , 3 ) ( v a ˙ 1 + v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) × E ( 3 , 3 ) ( v a ˙ 1 + v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) × E ( 3 , 4 ) ( v a ˙ 1 + v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) × E ( 4 , 4 ) ( v a ˙ 1 + v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) = log ( 116 s t + 24 s + 24 t 8 ) 1 116 s t + 24 s + 24 t 8 log { 16 ( 4 ) 4 × 8 ( 2 s + 2 t 3 ) ( 5 ) 5 × 4 ( 3 s t 2 s 2 t + 2 ) ( 6 ) 6 × 2 ( 2 s t s t ) ( 8 ) 8 .
  • The second K -Banhatti entropy of NbO 2
    Let NbO 2 be a network of a niobium dioxide molecule. Then, by using Equation (2) and Table 1, the second K-Banhatti polynomial is
    B 2 ( NbO 2 ) = E ( 2 3 ) x 2 × 3 + E ( 3 3 ) x 3 × 3 + E ( 3 4 ) x 3 × 4 + E ( 4 4 ) x 4 × 4 = 16 x 6 + 8 ( 2 s + 2 t 3 ) x 9 + 4 ( 3 s t 2 s 2 t + 2 ) x 12 + 2 ( 2 s t s t ) x 16 .
    Taking the first derivative of Equation (20) at x = 1 , we obtain the second K-Banhatti index
    B 2 ( NbO 2 ) = 208 s t + 16 s + 16 t 24 .
    Now, we compute the second K-Banhatti entropy of NbO 2 by using Table 1 and Equation (21) in Equation (11) in the following way:
    E N T B 2 ( NbO 2 ) = log ( B 2 ) 1 B 2 log { E ( 2 , 3 ) ( v a ˙ 1 × v a ˙ 2 ) ( v a ˙ 1 × v a ˙ 2 ) × E ( 3 , 3 ) ( v a ˙ 1 × v a ˙ 2 ) ( v a ˙ 1 × v a ˙ 2 ) × E ( 3 , 4 ) ( v a ˙ 1 × v a ˙ 2 ) ( v a ˙ 1 × v a ˙ 2 ) × E ( 4 , 4 ) ( v a ˙ 1 × v a ˙ 2 ) ( v a ˙ 1 × v a ˙ 2 ) } = log ( 208 s t + 16 s + 16 t 24 ) 1 208 s t + 16 s + 16 t 24 log { 16 ( 6 6 ) × 8 ( 2 s + 2 t 3 ) 9 9 × 4 ( 3 s t 2 s 2 t + 2 ) 12 12 × 2 ( 2 s t s t ) 16 16 } .
  • The first K -hyper Banhatti entropy of NbO 2
    Let NbO 2 be a network of a niobium dioxide molecule. Then, by using Equation (3) and Table 1, the first K-hyper Banhatti polynomial is
    H B 1 ( NbO 2 ) = E ( 2 3 ) x ( 2 + 3 ) 2 + E ( 3 3 ) x ( 3 + 3 ) 2 + E ( 3 4 ) x ( 3 + 4 ) 2 + E ( 4 4 ) x ( 4 + 4 ) 2 = 16 x 25 + 8 ( 2 s + 2 t 3 ) x 36 + 4 ( 3 s t 2 s 2 t + 2 ) x 49 + 2 ( 2 s t s t ) x 64 .
    Taking the first derivative of Equation (22) at x = 1 , we obtain the first K-hyper Banhatti index
    H B 1 ( NbO 2 ) = 844 s t + 56 s + 56 t 72 .
    Now, we compute the first K-hyper Banhatti entropy of NbO 2 by using Table 1 and Equation (23) in Equation (13) in the following way:
    E N T H B 1 ( NbO 2 ) = log ( H B 1 ) 1 H B 1 log { E ( 2 , 3 ) ( v a ˙ 1 + v a ˙ 2 ) 2 ( v a ˙ 1 + v a ˙ 2 ) 2 × E ( 3 , 3 ) ( v a ˙ 1 + v a ˙ 2 ) 2 ( v a ˙ 1 + v a ˙ 2 ) 2 × E ( 3 , 4 ) ( v a ˙ 1 + v a ˙ 2 ) 2 ( v a ˙ 1 + v a ˙ 2 ) 2 × E ( 4 , 4 ) ( v a ˙ 1 + v a ˙ 2 ) 2 ( v a ˙ 1 + v a ˙ 2 ) 2 = log ( 944 s t + 136 s + 200 t ) 1 944 s t + 136 s + 200 t log { 16 ( 5 50 ) × 8 ( 2 s + 2 t 3 ) ( 6 72 ) × 4 ( 3 s t 2 s 2 t + 2 ) ( 7 98 ) × 2 ( 2 s t s t ) ( 8 128 ) .
  • The second K -hyper Banhatti entropy of NbO 2
    Let NbO 2 be a network of a niobium dioxide molecule. Then, by using Equation (4) and Table 1, the second K-hyper Banhatti polynomial is
    H B 2 ( NbO 2 ) = E ( 2 3 ) x ( 2 × 3 ) 2 + E ( 3 3 ) x ( 3 × 3 ) 2 + E ( 3 4 ) x ( 3 × 4 ) 2 + E ( 4 4 ) x ( 4 × 4 ) 2 = 16 x 36 + 8 ( 2 s + 2 t 3 ) x 81 + 4 ( 3 s t 2 s 2 t + 2 ) x 144 + 2 ( 2 s t s t ) x 256 .
    Taking the first derivative of Equation (24) at x = 1 , we obtain the second K-hyper Banhatti index
    H B 2 ( NbO 2 ) = 2752 s t 368 s 368 t 216 .
    Now, we compute the second K-hyper Banhatti entropy of NbO 2 by using Table 1 and Equation (25) in Equation (13) in the following way:
    E N T H B 1 ( NbO 2 ) = log ( H B 1 ) 1 H B 1 log { E ( 2 , 3 ) ( v a ˙ 1 × v a ˙ 2 ) 2 ( v a ˙ 1 × v a ˙ 2 ) 2 × E ( 3 , 3 ) ( v a ˙ 1 × v a ˙ 2 ) 2 ( v a ˙ 1 × v a ˙ 2 ) 2 × E ( 3 , 4 ) ( v a ˙ 1 × v a ˙ 2 ) 2 ( v a ˙ 1 × v a ˙ 2 ) 2 × E ( 4 , 4 ) ( v a ˙ 1 × v a ˙ 2 ) 2 ( v a ˙ 1 × v a ˙ 2 ) 2 = log ( 2752 s t 368 s 368 t 216 ) 1 2752 s t 368 s 368 t 216 log { 16 ( 6 ) 72 × 8 ( 2 s + 2 t 3 ) 9 81 × 4 ( 3 s t 2 s 2 t + 2 ) 12 288 × 2 ( 2 s t s t ) 16 512 .
  • The first redefined Zagreb entropy of NbO 2
    Let NbO 2 be a network of a niobium dioxide molecule. Then, by using Equation (5) and Table 1, the first redefined Zagreb polynomial is
    R e Z G 1 ( NbO 2 ) = E ( 2 3 ) x 2 + 3 2 × 3 + E ( 3 3 ) x 3 + 3 3 × 3 + E ( 3 3 ) x 3 + 4 3 × 4 + E ( 4 4 ) x 4 + 4 4 × 4 = 16 x 5 6 + 8 ( 2 s + 2 t 3 ) x 2 3 + 4 ( 3 s t 2 s 2 t + 2 ) x 7 12 + 2 ( 2 s t s t ) x 1 2 .
    Taking the first derivative of Equation (26) at x = 1 , we obtain the first redefined Zagreb index
    R e Z G 1 ( NbO 2 ) = 9 s t + 5 s + 5 t + 2 .
    Now, we compute the first redefined Zagreb entropy by using Table 1 and Equation (27) in Equation (14) in the following way:
    E N T R e Z G 1 ( NbO 2 ) = log ( R e Z G 1 ) 1 R e Z G 1 log { E ( 2 , 3 ) [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 d v ] × E ( 3 , 3 ) [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] [ v a ˙ 1 + d v v a ˙ 1 v a ˙ 2 ] × E ( 3 , 4 ) [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] × E ( 4 , 4 ) [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] [ v a ˙ 1 + d v v a ˙ 1 v a ˙ 2 ] } = log 8 ( 9 s t + 5 s + 5 t + 2 ) 1 8 ( 9 s t + 5 s + 5 t + 2 ) log { 16 ( 5 6 ) 5 6 × 8 ( 2 s + 2 t 3 ) ( 2 3 ) 2 3 × 4 ( 3 s t 2 s 2 t + 2 ) ( 7 12 ) 7 12 × 2 ( 2 s t s t ) ( 8 16 ) 8 16 } .
  • The second redefined Zagreb entropy of NbO 2
    Let NbO 2 be a network of a niobium dioxide molecule. Then, by using Equation (6) and Table 1, the second redefined Zagreb polynomial is
    R e Z G 2 ( NbO 2 ) = E ( 2 3 ) x 2 × 3 2 + 3 + E ( 3 3 ) x 3 × 3 3 + 3 + E ( 3 4 ) x 3 × 4 3 + 4 + E ( 4 4 ) x 4 × 4 4 + 4 = 16 x 6 5 + 8 ( 2 s + 2 t 3 ) x 3 2 + 4 ( 3 s t 2 s 2 t + 2 ) x 12 7 + 2 ( 2 s t s t ) x 2 .
    Taking the first derivative of Equation (28) at x = 1 , we obtain the second redefined Zagreb index
    R e Z G 2 ( NbO 2 ) = 4 7 25 s t + 11 s + 11 t 27 .
    Now, we compute the second redefined Zagreb entropy by using Table 1 and Equation (29) in Equation (15) in the following way:
    E N T R e Z G 2 ( NbO 2 ) = log ( R e Z G 2 ) 1 R e Z G 2 log { E ( 2 , 3 ) [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] × E ( 3 , 3 ) [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] [ v a ˙ 1 v a ˙ 2 d u + v a ˙ 2 ] × E ( 3 , 4 ) [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] × E ( 4 , 4 ) [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] } = log 4 7 ( 25 s t + 11 s + 11 t 27 ) 7 4 ( 25 s t + 11 s + 11 t 27 ) log { 16 ( 6 5 ) 6 5 × 8 ( 2 s + 2 t 3 ) ( 9 6 ) 9 6 × 4 ( 3 s t 2 s 2 t + 2 ) ( 12 7 ) 12 7 × 2 ( 2 s t s t ) ( 16 8 ) 16 8 } .
  • The third redefined Zagreb entropy of NbO 2
    Let NbO 2 be a network of a niobium dioxide molecule. Then, by using Equation (7) and Table 1, the third redefined Zagreb polynomial is
    R e Z G 3 ( NbO 2 ) = E ( 2 3 ) x ( 2 × 3 ) ( 2 + 3 ) + E ( 3 3 ) x ( 3 × 3 ) ( 3 + 3 ) + E ( 3 4 ) x ( 3 × 4 ) ( 3 + 4 ) + E ( 4 4 ) x ( 4 × 4 ) ( 4 + 4 ) = 16 x 30 + 8 ( 2 s + 2 t 3 ) x 54 + 4 ( 3 s t 2 s 2 t + 2 ) x 84 + 2 ( 2 s t s t ) x 128 .
    Taking the first derivative of Equation (30) at x = 1 , we obtain the third redefined Zagreb index
    R e Z G 3 ( NbO 2 ) = 8 ( 95 s t 4 s 4 t 9 ) .
    Now, we compute the third redefined Zagreb entropy by using Table 1 and Equation (31) in Equation (16) in the following way:
    E N T R e Z G 3 ( NbO 2 ) = log ( R e Z G 3 ) 1 R e Z G 3 log { E ( 2 , 3 ) [ ( d u v a ˙ 2 ) ( d u + v a ˙ 2 ) ] [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 3 , 3 ) [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( d u v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 3 , 4 ) [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 4 , 4 ) [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] } = log 8 ( 95 s t 4 s 4 t 9 ) 1 8 ( 95 s t 4 s 4 t 9 ) log { 16 ( 30 ) 30 × 8 ( 2 s + 2 t 3 ) 54 54 × 4 ( 3 s t 2 s 2 t + 2 ) 84 84 × 2 ( 2 s t s t ) 128 128 } .
  • Atom-bond sum connectivity entropy of NbO 2
    Let NbO 2 be a network of a niobium dioxide molecule. Then, using Equation (8) and Table 1, the atom-bond sum connectivity polynomial is
    A B S ( NbO 2 ) = E ( 2 3 ) x 2 + 3 2 2 + 3 + E ( 3 3 ) x 3 + 3 2 3 + 3 + E ( 3 4 ) x 4 + 3 2 4 + 3 + E ( 4 4 ) x 4 + 4 2 4 + 4 = 16 x 3 5 + 8 ( 2 s + 2 t 3 ) x 2 6 + 4 ( 3 s t 2 s 2 t + 2 ) x 5 7 + 2 ( 2 s t s t ) x 7 2 .
    Taking the first derivative of Equation (32) at x = 1 , we obtain the atom-bond sum connectivity index
    A B S ( NbO 2 ) = 16 3 5 + 8 ( 2 s + 2 t 3 ) 2 6 + 4 ( 3 s t 2 s 2 t + 2 ) 5 7 + 2 ( 2 s t s t ) 7 2 .
    Now, we compute the atom-bond sum connectivity entropy by using Table 1 and Equation (33) in Equation (17) in the following way:
    E N T A B S ( NbO 2 ) = log ( A B S ) 1 A B S log { E ( 2 , 3 ) [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 3 , 3 ) [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 3 , 4 ) [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 4 , 4 ) [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] } = log ( A B S ) 1 A B S log { 16 ( 3 5 ) 3 5 × 8 ( 2 s + 2 t 3 ) ( 5 6 ) 5 6 × 4 ( 3 s t 2 s 2 t + 2 ) ( 5 7 ) 5 7 × 2 ( 2 s t s t ) ( 7 2 ) 7 2 } .

Comparison

In this section, we compare the K-Banhatti indices namely B 1 (first K-Banhatti index), B 2 (second K-Banhatti index), H B 1 (first hyper K-Banhatti index), H B 2 (second hyper K-Banhatti index) and the redefined Zagreb indices ( R e G 1 , R e G 2 , R e G 3 ) for NbO 2 numerically and graphically in Table 2 and Figure 2, respectively.

4. Metal–Organic Framework

Metal–organic frameworks are distinguished by their three-dimensional frameworks composed of metallic ions. This metal–organic framework has the molecular formula FeTPyP–Co, where Fe denotes iron, TPyP denotes tetrakis pyridyl porphyrin, and Co denotes cobalt [28]. All metal ions and organic molecules in the MOF ( s , t ) network can accommodate a wide range of guest molecules. Metal–organic frameworks have several uses, including as energy storage devices, gas storage, heterogeneous catalysis, and chemical evaluation. We will examine a 2 D structure of a metal–organic framework called MOF ( s , t ) , where s and t are the unit cells in a row and column, respectively. The MOF ( 2 , 2 ) is shown in Figure 3. There are 74 s t atoms in the MOF ( s , t ) , and 2 ( 44 s t s t ) + 1 atom-bonds are used, as Figure 3 of MOF ( 2 , 2 ) demonstrates.
The atom-bonds partition of the MOF ( s , t ) is shown in Table 3.
E ( 1 3 ) = { e = v a ˙ 1 v a ˙ 2 , a ˙ 1 , a ˙ 2 E ( MOF ( s , t ) ) | ( v a ˙ 1 ) = 1 , ( v a ˙ 2 ) = 3 } , E ( 2 3 ) = { e = v a ˙ 1 v a ˙ 2 , a ˙ 1 , a ˙ 2 E ( MOF ( s , t ) ) | ( v a ˙ 1 ) = 2 , ( v a ˙ 2 ) = 3 } , E ( 3 3 ) = { e = v a ˙ 1 v a ˙ 2 , a ˙ 1 , a ˙ 2 E ( MOF ( s , t ) ) | ( v a ˙ 1 ) = 3 , ( v a ˙ 2 ) = 3 } , E ( 3 4 ) = { e = v a ˙ 1 v a ˙ 2 , a ˙ 1 , a ˙ 2 E ( MOF ( s , t ) ) | ( v a ˙ 1 ) = 3 , ( v a ˙ 2 ) = 4 }
  • The first K -Banhatti entropy of MOF ( s , t )
    Let MOF ( s , t ) be a metal–organic framework. Then, using Equation (1) and Table 3, the first K-Banhatti polynomial is
    B 1 ( MOF ( s , t ) , x ) = E ( 1 3 ) x 1 + 3 + E ( 2 3 ) x 2 + 3 + E ( 3 3 ) x 3 + 3 + E ( 3 4 ) x 3 + 4 = ( 24 s t + 1 ) x 4 + 6 ( s + t 1 ) x 5 + 2 ( 28 s t 2 s 2 t + 1 ) x 6 + 4 ( 2 s t s t + 1 ) x 7 .
    Taking the first derivative of Equation (34) at x = 1 , we obtain the first K-Banhatti index
    B 1 ( MOF ( s , t ) ) = 2 ( 244 s t 11 s 11 t + 2 ) .
    Now, we compute the 1st K-Banhatti entropy of ( MOF ( s , t ) ) by using Table 3 and Equation (35) in Equation (10) in the following way:
    E N T B 1 ( MOF ( s , t ) , x ) = log ( B 1 ) 1 B 1 log { E ( 1 , 3 ) ( v a ˙ 1 + v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) × E ( 2 , 3 ) ( v a ˙ 1 + v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) × E ( 3 , 3 ) ( v a ˙ 1 + v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) × E ( 3 , 4 ) ( v a ˙ 1 + v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) .
    After simplification, we obtain
    E N T B 1 ( MOF ( s , t ) , x ) = log 2 ( 244 s t 11 s 11 t + 2 ) 1 2 ( 244 s t 11 s 11 t + 2 ) log { ( 24 s t + 1 ) 4 4 × 6 ( s + t 1 ) 5 5 × 2 ( 28 s t 2 s 2 t + 1 ) 6 6 × 4 ( 2 s t s t + 1 ) 7 7 } .
  • The second K -Banhatti entropy of MOF ( s , t )
    Let MOF ( s , t ) be a metal–organic framework. Then, using Equation (1) and Table 3, the second K-Banhatti polynomial is
    B 2 ( MOF ( s , t ) , x ) = E ( 1 3 ) x 1 × 3 + E ( 2 3 ) x 2 × 3 + E ( 3 3 ) x 3 × 3 + E ( 3 4 ) x 3 × 4 = ( 24 s t + 1 ) x 3 + 6 ( s + t 1 ) x 6 + 2 ( 28 s t 2 s 2 t + 1 ) ) x 9 + 4 ( 2 s t s t + 1 ) x 12 .
    Taking the first derivative of Equation (37) at x = 1 , we obtain the second K-Banhatti index
    B 2 ( MOF ( s , t ) ) = 3 ( 224 s t 16 s 16 t + 11 ) .
    Now, we compute the second K-Banhatti entropy of ( MOF ( s , t ) ) by using Table 3 and Equation (38) in Equation (11) in the following way:
    E N T B 2 ( MOF ( s , t ) ) = log ( B 2 ) 1 B 2 log { E ( 1 , 3 ) ( v a ˙ 1 × v a ˙ 2 ) ( v a ˙ 1 × v a ˙ 2 ) × E ( 2 , 3 ) ( v a ˙ 1 × v a ˙ 2 ) ( v a ˙ 1 × v a ˙ 2 ) × E ( 3 , 3 ) ( v a ˙ 1 × v a ˙ 2 ) ( v a ˙ 1 × v a ˙ 2 ) × E ( 3 , 4 ) ( v a ˙ 1 × v a ˙ 2 ) ( v a ˙ 1 × v a ˙ 2 ) } = log ( 3 ( 224 s t 16 s 16 t + 11 ) 1 3 ( 224 s t 16 s 16 t + 11 ) log { ( 24 s t + 1 ) 3 3 × 6 ( s + t 1 ) 6 6 × 2 ( 28 s t 2 s 2 t + 1 ) 9 9 × 4 ( 2 s t s t + 1 ) 12 12 } .
  • The first K -hyper Banhatti entropy of MOF ( s , t )
    Let MOF ( s , t ) be a metal–organic framework. Then, using Equation (3) and Table 3, the first K-hyper Banhatti polynomial is
    H B 1 ( MOF ( s , t ) , x ) = E ( 1 3 ) x ( 1 + 3 ) 2 + E ( 2 3 ) x ( 2 + 3 ) 2 + E ( 3 3 ) x ( 3 + 3 ) 2 + E ( 3 4 ) x ( 3 + 4 ) 2 = ( 24 s t + 1 ) x 16 + 6 ( s + t 1 ) x 25 + 2 ( 28 s t 2 s 2 t + 1 ) x 36 + 4 ( 2 s t s t + 1 ) x 49 .
    Taking the first derivative of Equation (39) at x = 1 , we obtain the first K-hyper Banhatti index
    H B 1 ( MOF ( s , t ) ) = 2 ( 1396 s t 95 s 95 t + 67 ) .
    Now, we compute the first K-hyper Banhatti entropy of MOF ( s , t ) by using Table 3 and Equation (40) in Equation (12) in the following way:
    E N T H B 1 ( MOF ( s , t ) , x ) = log ( H B 1 ) 1 H B 1 log { E ( 1 , 3 ) ( v a ˙ 1 + v a ˙ 2 ) 2 ( v a ˙ 1 + v a ˙ 2 ) 2 × E ( 2 , 3 ) ( v a ˙ 1 + v a ˙ 2 ) 2 ( v a ˙ 1 + v a ˙ 2 ) 2 × E ( 3 , 3 ) ( v a ˙ 1 + v a ˙ 2 ) 2 ( v a ˙ 1 + v a ˙ 2 ) 2 × E ( 4 , 4 ) ( v a ˙ 1 + v a ˙ 2 ) 2 ( v a ˙ 1 + v a ˙ 2 ) 2 .
    After simplification, we obtain
    = log 2 ( 1396 s t 95 s 95 t + 67 ) 1 2 ( 1396 s t 95 s 95 t + 67 ) log { ( 24 s t + 1 ) 4 32 × 6 ( s + t 1 ) 5 50 × 2 ( 28 s t 2 s 2 t + 1 ) 6 72 × 4 ( 2 s t s t + 1 ) 7 98 .
  • The second K -hyper Banhatti entropy of MOF ( s , t )
    Let MOF ( s , t ) be a metal–organic framework. Then, by using Equation (4) and Table 3, the second K-Banhatti polynomial is
    H B 2 ( MOF ( s , t ) , x ) = E ( 1 3 ) x ( 1 × 3 ) 2 + E ( 2 3 ) x ( 2 × 3 ) 2 + E ( 3 3 ) x ( 3 × 3 ) 2 + E ( 3 4 ) x ( 3 × 4 ) 2 = ( 24 s t + 1 ) x 9 + 6 ( s + t 1 ) ) x 36 + 2 ( 28 s t 2 s 2 t + 1 ) x 81 + 4 ( 2 s t s t + 1 ) x 144 .
    Taking the first derivative of Equation (41) at x = 1 , we obtain the second K-hyper Banhatti index
    H B 2 ( MOF ( s , t ) ) = 5904 s t 684 s 684 t + 693 .
    Now, we compute the second K-hyper Banhatti entropy of MOF ( s , t ) by using Table 3 and Equation (42) in Equation (13) in the following way:
    E N T H B 2 ( MOF ( s , t ) ) = log ( H B 2 ) 1 H B 2 log { E ( 1 , 3 ) ( v a ˙ 1 × v a ˙ 2 ) 2 ( v a ˙ 1 × v a ˙ 2 ) 2 × E ( 2 , 3 ) ( v a ˙ 1 × v a ˙ 2 ) 2 ( v a ˙ 1 × v a ˙ 2 ) 2 × E ( 3 , 3 ) ( v a ˙ 1 × v a ˙ 2 ) 2 ( v a ˙ 1 × v a ˙ 2 ) 2 × E ( 3 , 4 ) ( v a ˙ 1 × v a ˙ 2 ) 2 ( v a ˙ 1 × v a ˙ 2 ) 2 .
    After simplification, we obtain
    = log ( 5904 s t 684 s 684 t + 693 ) 1 5904 s t 684 s 684 t + 693 log { ( 24 s t + 1 ) 3 18 × 6 ( s + t 1 ) 6 72 × 2 ( 28 s t 2 s 2 t + 1 ) 9 162 × 4 ( 2 s t s t + 1 ) 12 288 .
  • The first redefined Zagreb entropy of MOF ( s , t )
    Let MOF ( s , t ) be a metal–organic framework. Then, using Equation (5) and Table 3, the first redefined Zagreb polynomial is
    R e Z G 1 ( MOF ( s , t ) , x ) = E ( 1 3 ) x 1 + 3 1 × 3 + E ( 2 3 ) x 2 + 3 2 × 3 + E ( 3 3 ) x 3 + 3 3 × 3 + E ( 3 4 ) x 3 + 4 3 × 4 = ( 24 s t + 1 ) x 4 3 + 6 ( s + t 1 ) x 5 6 + 2 ( 28 s t 2 s 2 t + 1 ) x 2 3 + 4 ( 2 s t s t + 1 ) x 7 12 .
    Taking the first derivative of Equation (44) at x = 1 , we obtain the first redefined Zagreb index
    R e Z G 1 ( MOF ( s , t ) ) = 2 ( 37 s t + 2 ) .
    Now, we compute the first redefined Zagreb entropy using Table 3 and Equation (45) in Equation (14) in the following way:
    E N T R e Z G 1 ( MOF ( s , t ) , x ) = log ( R e Z G 1 ) 1 R e Z G 1 log { E ( 1 , 3 ) [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 d v ] × E ( 2 , 3 ) [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] [ v a ˙ 1 + d v v a ˙ 1 v a ˙ 2 ] × E ( 3 , 3 ) [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] × E ( 3 , 4 ) [ v a ˙ 1 + v a ˙ 2 v a ˙ 1 v a ˙ 2 ] [ v a ˙ 1 + d v v a ˙ 1 v a ˙ 2 ] } .
    After simplification, we obtain
    = log 2 ( 37 s t + 2 ) 1 2 ( 37 s t + 2 ) log { ( 24 s t + 1 ) ( 4 3 ) 4 3 × 6 ( s + t 1 ) ( 5 6 ) 5 6 × 2 ( 28 s t 2 s 2 t + 1 ) ( 6 9 ) 6 9 × 4 ( 2 s t s t + 1 ) ( 7 12 ) 7 12 } .
  • The second redefined Zagreb entropy of MOF ( s , t )
    Let MOF ( s , t ) be a metal–organic framework. Then, using Equation (6) and Table 3, the second redefined Zagreb polynomial is
    R e Z G 2 ( MOF ( s , t ) , x ) = E ( 1 3 ) x 1 × 3 1 + 3 + E ( 2 3 ) x 2 × 3 2 + 3 + E ( 3 3 ) x 3 × 3 3 + 3 + E ( 3 4 ) x 3 × 4 3 + 4 = ( 24 s t + 1 ) x 3 4 + 6 ( s + t 1 ) x 6 5 + 2 ( 28 s t 2 s 2 t + 1 ) x 3 2 + 4 ( 2 s t s t + 1 ) x 12 7 .
    Taking the first derivative of Equation (46) at x = 1 , we obtain the second redefined Zagreb index
    R e Z G 2 ( MOF ( s , t ) ) = 810 7 s t 198 35 ( s + t ) + 198 35 .
    Now, we compute the second redefined Zagreb entropy by using Table 3 and Equation (47) in Equation (15) in the following way:
    E N T R e Z G 2 ( MOF ( s , t ) , x ) = log ( R e Z G 2 ) 1 R e Z G 2 log { E ( 1 , 3 ) [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] × E ( 2 , 3 ) [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] [ v a ˙ 1 v a ˙ 2 d u + v a ˙ 2 ] × E ( 3 , 3 ) [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] × E ( 3 , 4 ) [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] [ v a ˙ 1 v a ˙ 2 v a ˙ 1 + v a ˙ 2 ] } .
    After simplification, we obtain
    = log ( 810 7 s t 198 35 ( s + t ) + 198 35 ) 1 810 7 s t 198 35 ( s + t ) + 198 35 log { ( 24 s t + 1 ) ( 3 4 ) 3 4 × 6 ( s + t 1 ) ( 6 5 ) 6 5 × 2 ( 28 s t 2 s 2 t + 1 ) ( 9 6 ) 9 6 × 4 ( 2 s t s t + 1 ) ( 12 7 ) 12 7 } .
  • The third redefined Zagreb entropy of MOF ( s , t )
    Let MOF ( s , t ) be a metal–organic framework. Then, using Equation (7) and Table 3, the third redefined Zagreb polynomial is
    R e Z G 3 ( MOF ( s , t ) , x ) = E ( 1 3 ) x ( 1 × 3 ) ( 1 + 3 ) + E ( 2 3 ) x ( 2 × 3 ) ( 2 + 3 ) + E ( 3 3 ) x ( 3 × 3 ) ( 3 + 3 ) + E ( 3 4 ) x ( 3 × 4 ) ( 3 + 4 ) = ( 24 s t + 1 ) x 12 + 6 ( s + t 1 ) x 30 + 2 ( 28 s t 2 s 2 t + 1 ) x 54 + 4 ( 2 s t s t + 1 ) x 84 .
    R e Z G 3 ( MOF ( s , t ) , x ) = ( 24 s t + 1 ) x 12 + 6 ( s + t 1 ) x 30 + 2 ( 28 s t 2 s 2 t + 1 ) x 54 + 4 ( 2 s t s t + 1 ) x 84 .
    Taking the first derivative of Equation (48) at x = 1 , we obtain the third redefined Zagreb index
    R e Z G 2 ( MOF ( s , t ) ) = 3984 s t 372 ( s + t ) + 384 .
    Now, we compute the third redefined Zagreb entropy by using Table 3 and Equation (49) in Equation (16) in the following way:
    E N T R e Z G 3 ( MOF ( s , t ) , x ) = log ( R e Z G 3 ) 1 R e Z G 3 log { E ( 1 , 3 ) [ ( d u v a ˙ 2 ) ( d u + v a ˙ 2 ) ] [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 2 , 3 ) [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( d u v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 3 , 3 ) [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 3 , 4 ) [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 v a ˙ 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] } .
    After simplification, we obtain
    = log ( 3984 s t 372 ( s + t ) + 384 ) 1 3984 s t 372 ( s + t ) + 384 log { ( 24 s t + 1 ) 12 12 × 6 ( s + t 1 ) 30 30 × 2 ( 28 s t 2 s 2 t + 1 ) 54 54 × 4 ( 2 s t s t + 1 ) 84 84 } .
  • Atom-bond sum connectivity entropy of MOF ( s , t )
    Let NbO be a network of a niobium I I oxide molecule. Then, using Equation (8) and Table 1, the atom-bond sum connectivity polynomial is
    A B S ( MOF ( s , t ) , x ) = E ( 1 3 ) x 1 + 3 2 1 + 3 + E ( 2 3 ) x 2 + 3 2 2 + 3 + E ( 3 3 ) x 3 + 3 2 3 + 3 + E ( 3 4 ) x 3 + 4 2 3 + 4 = ( 24 s t + 1 ) x 1 2 + 6 ( s + t 1 ) x 3 5 + 2 ( 28 s t 2 s 2 t + 1 ) x 2 3 + 4 ( 2 s t s t + 1 ) x 5 7 .
    Taking the first derivative of Equation (50) at x = 1 , we obtain the atom-bond sum connectivity index
    A B S ( MOF ) = ( 24 s t + 1 ) 1 2 + 6 ( s + t 1 ) 3 5 + 2 ( 28 s t 2 s 2 t + 1 ) 2 3 + 4 ( 2 s t s t + 1 ) 5 7 .
    Now, we compute the third redefined Zagreb entropy using Table 3 and Equation (51) in Equation (17) in the following way:
    E N T A B S ( M O F ) = log ( A B S ) 1 A B S log { E ( 1 , 3 ) [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 2 , 3 ) [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 3 , 3 ) [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] × E ( 3 , 4 ) [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] [ ( v a ˙ 1 + v a ˙ 2 2 ) ( v a ˙ 1 + v a ˙ 2 ) ] } = log ( A B S ) 1 A B S log { ( 24 s t + 1 ) ( 1 2 ) 1 2 × 6 ( s + t 1 ) ( 3 5 ) 3 5 × 2 ( 28 s t 2 s 2 t + 1 ) ( 2 3 ) 2 3 × 4 ( 2 s t s t + 1 ) ( 5 7 ) 5 7 } .

Comparison

In this section, we compare the K-Banhatti and redefined Zagreb indices for MOF ( s , t ) numerically and graphically in Table 4 and Figure 4, respectively.

5. Conclusions

The remarkable optical properties of metallic nanoparticles have piqued the interest of scientists and researchers. In this article, two important molecules niobium dioxide NbO 2 and the MOF ( s , t ) were considered, and the accurate formulas of some important valency-based topological indices were calculated using the technique of atom-bond partitioning. We investigated the distance-based entropies associated with a new information function and evaluated the relationship between degree-based topological indices and degree-based entropies in this article using Shannon’s entropy and Chen et al.’s entropy definitions. The idea of distance-based entropy is widely ingrained in industrial chemistry. It is used to calculate the complexity of molecules and molecular ensembles, their electronic structure, signal processing, physicochemical processes, and so on. The K-Banhatti entropy, in conjunction with the chemical structure, thermodynamic entropy, energy, and computer sciences can play an essential role in bridging various domains and providing a foundation for new interdisciplinary research. In the future, we hope to expand this concept to include various chemical structures, allowing researchers to pursue new avenues in this field.

Author Contributions

Conceptualization, M.U.G., F.S., E.S.M.T.E.D., A.R.K., J.-B.L. and M.C.; methodology, M.U.G., F.S. and A.R.K.; validation, M.U.G. and F.S.; formal analysis, M.U.G., F.S., E.S.M.T.E.D., A.R.K., J.-B.L. and M.C.; investigation, M.U.G., F.S., E.S.M.T.E.D., A.R.K., J.-B.L. and M.C.; data curation, M.U.G. and F.S.; writing—original draft preparation, M.U.G., F.S. and A.R.K.; writing—review and editing, M.U.G. and A.R.K.; visualization, M.U.G., F.S., E.S.M.T.E.D., A.R.K., J.-B.L. and M.C.; supervision, M.U.G., F.S. and A.R.K.; project administration, M.U.G. and F.S.; funding acquisition, E.S.M.T.E.D., A.R.K. and J.-B.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Liu, J.B.; Zhang, T.; Wang, Y.; Lin, W. The Kirchhoff index and spanning trees of Möbius/cylinder octagonal chain. Discret. Appl. Math. 2022, 307, 22–31. [Google Scholar] [CrossRef]
  2. Liu, J.B.; Bao, Y.; Zheng, W.T.; Hayat, S. Network coherence analysis on a family of nested weighted n-polygon networks. Fractals 2021, 29, 2150260. [Google Scholar] [CrossRef]
  3. Liu, J.B.; Zhao, J.; He, H.; Shao, Z. Valency-based topological descriptors and structural property of the generalized sierpiński networks. J. Stat. Phys. 2019, 177, 1131–1147. [Google Scholar] [CrossRef]
  4. Liu, J.-B.; Wang, C.; Wang, S.; Wei, B. Zagreb indices and multiplicative zagreb indices of eulerian graphs. Bull. Malays. Math. Sci. Soc. 2019, 42, 67–78. [Google Scholar] [CrossRef]
  5. Liu, J.B.; Zhao, J.; Min, J.; Cao, J. The Hosoya index of graphs formed by a fractal graph. Fractals 2019, 27, 1950135. [Google Scholar] [CrossRef]
  6. Liu, J.B.; Pan, X.F. Minimizing Kirchhoff index among graphs with a given vertex bipartiteness. Appl. Math. Comput. 2016, 291, 84–88. [Google Scholar] [CrossRef]
  7. Liu, J.B.; Pan, X.F.; Yu, L.; Li, D. Complete characterization of bicyclic graphs with minimal Kirchhoff index. Discret. Appl. Math. 2016, 200, 95–107. [Google Scholar] [CrossRef]
  8. Chu, Y.M.; Khan, A.R.; Ghani, M.U.; Ghaffar, A.; Mustafa Inc. Computation of Zagreb Polynomials and Zagreb Indices for Benzenoid Triangular & Hourglass System. Polycycl. Aromat. Compd. 2022, in press. [Google Scholar] [CrossRef]
  9. Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef] [PubMed]
  10. Vukičević, D.; Gašperov, M. Bond additive modeling 1. Adriatic indices. Croat. Chem. Acta 2010, 83, 243–260. [Google Scholar]
  11. Kulli, V.R. On K Banhatti indices of graphs. J. Comput. Math. Sci. 2016, 7, 213–218. [Google Scholar]
  12. Kulli, V.R.; On, K. On K hyper-Banhatti indices and coindices of graphs. Int. Res. J. Pure Algebra 2016, 6, 300–304. [Google Scholar]
  13. Kulli, V.R. On multiplicative K Banhatti and multiplicative K hyper-Banhatti indices of V-Phenylenic nanotubes and nanotorus. Ann. Pure Appl. Math. 2016, 11, 145–150. [Google Scholar]
  14. Ranjini, P.S.; Lokesha, V.; Usha, A. Relation between phenylene and hexagonal squeeze using harmonic index. Int. J. Graph Theory 2013, 1, 116–121. [Google Scholar]
  15. Saeed, N.; Long, K.; Mufti, Z.S.; Sajid, H.; Rehman, A. Degree-based topological indices of boron b12. J. Chem. 2021, 2021, 5563218. [Google Scholar] [CrossRef]
  16. Ali, A.; Furtula, B.; Redžepović, I.; Gutman, I. Atom-bond sum-connectivity index. J. Math. Chem. 2022, 60, 2081–2093. [Google Scholar] [CrossRef]
  17. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
  18. Alam, A.; Ghani, M.U.; Kamran, M.; Shazib Hameed, M.; Hussain Khan, R.; Baig, A.Q. Degree-Based Entropy for a Non-Kekulean Benzenoid Graph. J. Math. 2022, 2022, 2288207. [Google Scholar]
  19. Rashid, T.; Faizi, S.; Zafar, S. Distance based entropy measure of interval-valued intuitionistic fuzzy sets and its application in multicriteria decision making. Adv. Fuzzy Syst. 2018, 2018, 3637897. [Google Scholar] [CrossRef]
  20. Hayat, S. Computing distance-based topological descriptors of complex chemical networks: New theoretical techniques. Chem. Phys. Lett. 2017, 688, 51–58. [Google Scholar] [CrossRef]
  21. Hu, M.; Ali, H.; Binyamin, M.A.; Ali, B.; Liu, J.B.; Fan, C. On distance-based topological descriptors of chemical interconnection networks. J. Math. 2021, 2021, 5520619. [Google Scholar] [CrossRef]
  22. Anjum, M.S.; Safdar, M.U. K Banhatti and K hyper-Banhatti indices of nanotubes. Eng. Appl. Sci. Lett. 2019, 2, 19–37. [Google Scholar] [CrossRef]
  23. Asghar, A.; Rafaqat, M.; Nazeer, W.; Gao, W. K Banhatti and K hyper Banhatti indices of circulant graphs. Int. J. Adv. Appl. Sci. 2018, 5, 107–109. [Google Scholar] [CrossRef]
  24. Kulli, V.R.; Chaluvaraju, B.; Boregowda, H.S. Connectivity Banhatti indices for certain families of benzenoid systems. J. Ultra Chem. 2017, 13, 81–87. [Google Scholar] [CrossRef]
  25. Manzoor, S.; Siddiqui, M.K.; Ahmad, S. On entropy measures of molecular graphs using topological indices. Arab. J. Chem. 2020, 13, 6285–6298. [Google Scholar] [CrossRef]
  26. Liu, R.; Yang, N.; Ding, X.; Ma, L. An unsupervised feature selection algorithm: Laplacian score combined with distance-based entropy measure. In Proceedings of the 2009 Third International Symposium on Intelligent Information Technology Application, Nanchang, China, 21–22 November 2009; IEEE: Picataway, NJ, USA, 2009; Volume 3. [Google Scholar]
  27. Nico, C.; Monteiro, T.; Graça, M.P. Niobium oxides and niobates physical properties: Review and prospects. Prog. Mater. Sci. 2016, 80, 1–37. [Google Scholar] [CrossRef]
  28. Wurster, B.; Grumelli, D.; Hotger, D.; Gutzler, R.; Kern, K. Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts. J. Am. Chem. Soc. 2016, 138, 3623–3626. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Niobium dioxide 3D structure.
Figure 1. Niobium dioxide 3D structure.
Molecules 27 06975 g001
Figure 2. Graphical comparison of TI’s of NbO 2 .
Figure 2. Graphical comparison of TI’s of NbO 2 .
Molecules 27 06975 g002
Figure 3. Two-dimensional MOF_(2,2) structure.
Figure 3. Two-dimensional MOF_(2,2) structure.
Molecules 27 06975 g003
Figure 4. Graphical comparison of TI’s of metal–organic framework.
Figure 4. Graphical comparison of TI’s of metal–organic framework.
Molecules 27 06975 g004
Table 1. Atom-bond partition of NbO 2 .
Table 1. Atom-bond partition of NbO 2 .
Types of Atom Bonds E ( 2 3 ) E ( 3 3 ) E ( 3 4 ) E ( 4 4 )
Cardinality of Atom bonds16 8 ( 2 s + 2 t 3 ) 4 ( 3 s t 2 s 2 t + 2 ) 2(2st-s-t)
Table 2. Numerical comparison of the K-Banhatti topological indices of NbO 2 .
Table 2. Numerical comparison of the K-Banhatti topological indices of NbO 2 .
( s , t ) B 1 B 2 HB 1 HB 2 ReG 1 ReG 2 ReG 3 ABS
(2,2)5528723528932058136.34568075.920117
(3,3)11801944786022,344113291.7713,152160.400806
(4,4)2040343213,880408,872186504.3423,664275.748201
(5,5)3132533621,58864,904277774.05837,216421.962304
(6,6)4456765630,98494,4403861100.9153,808599.043115
(7,7)601210,39242,068129,4805131484.973,440806.990632
(8,8)780013,54454,840170,0246581926.196,1121045.804857
(9,9)982017,11269,300216,0728212424.3121,8241315.48579
(10,10)12,07221,09685,448267,62410022979.7150,5761616.03343
(11,11)14,55625,496103,284324,68012013592.3182,3681947.447777
(12,12)17,27230,312122,808387,24014184262.1217,2002309.728831
Table 3. Atom-bonds partition of MOF ( s , t ) .
Table 3. Atom-bonds partition of MOF ( s , t ) .
Types of Atom Bonds E ( 1 3 ) E ( 2 3 ) E ( 3 3 ) E ( 3 4 )
Cardinality of Atom bonds ( 1 + 24 s t ) 6 ( s + t 1 ) 2 ( 28 s t 2 s 2 t + 1 ) 4(2stst + 1)
Table 4. Numerical comparison of the topological indices of MOF ( s , t ) .
Table 4. Numerical comparison of the topological indices of MOF ( s , t ) .
( s , t ) B 1 B 2 HB 1 HB 2 ReG 1 ReG 2 ReG 3 ABS
(2,2)1868252910,54221,573296307.031483227,339.22
(3,3)4264579324,12249,725444700.713400827,686.67
(4,4)763610,40143,28689,6855921256.406115228,173.03
(5,5)11,98416,35368,034141,4537401974.0996,26428,798.29
(6,6)17,30823,64998,366205,0298882853.77139,34429,562.45
(7,7)23,60832,289134,282280,41310363895.46190,39230,465.50
(8,8)30,88442,273175,782367,60511845099.14249,40831,507.46
(9,9)39,13653,601222,866466,60513326464.83316,39232,688.32
(10,10)48,36466,273275,534577,41314807992.51391,34434,008.08
(11,11)58,56880,289333,786700,02916289682.20474,26435,466.73
(12,12)69,74895,649397,622834,453177611,533.89565,15237,064.29
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ghani, M.U.; Sultan, F.; Tag El Din, E.S.M.; Khan, A.R.; Liu, J.-B.; Cancan, M. A Paradigmatic Approach to Find the Valency-Based K-Banhatti and Redefined Zagreb Entropy for Niobium Oxide and a Metal–Organic Framework. Molecules 2022, 27, 6975. https://doi.org/10.3390/molecules27206975

AMA Style

Ghani MU, Sultan F, Tag El Din ESM, Khan AR, Liu J-B, Cancan M. A Paradigmatic Approach to Find the Valency-Based K-Banhatti and Redefined Zagreb Entropy for Niobium Oxide and a Metal–Organic Framework. Molecules. 2022; 27(20):6975. https://doi.org/10.3390/molecules27206975

Chicago/Turabian Style

Ghani, Muhammad Usman, Faisal Sultan, El Sayed M. Tag El Din, Abdul Rauf Khan, Jia-Bao Liu, and Murat Cancan. 2022. "A Paradigmatic Approach to Find the Valency-Based K-Banhatti and Redefined Zagreb Entropy for Niobium Oxide and a Metal–Organic Framework" Molecules 27, no. 20: 6975. https://doi.org/10.3390/molecules27206975

APA Style

Ghani, M. U., Sultan, F., Tag El Din, E. S. M., Khan, A. R., Liu, J. -B., & Cancan, M. (2022). A Paradigmatic Approach to Find the Valency-Based K-Banhatti and Redefined Zagreb Entropy for Niobium Oxide and a Metal–Organic Framework. Molecules, 27(20), 6975. https://doi.org/10.3390/molecules27206975

Article Metrics

Back to TopTop