Magnetic, Electronic, and Optical Studies of Gd-Doped WO3: A First Principle Study
Abstract
:1. Introduction
2. Simulation and Calculations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dören, R.; Leibauer, B.; Lange, M.A.; Schechtel, E.; Prädel, L.; Panthöfer, M.; Mondeshki, M.; Tremel, W. Gram-scale selective synthesis of WO3−x nanorods and (NH4)xWO3 ammonium tungsten bronzes with tunable plasmonic properties. Nanoscale 2021, 13, 8146–8162. [Google Scholar] [CrossRef]
- Prasad, U.; Young, J.L.; Johnson, J.C.; McGott, D.L.; Gu, H.; Garfunkeld, E.; Kannan, A.M. Enhancing interfacial charge transfer in a WO3/BiVO4 photoanode heterojunction through gallium and tungsten co-doping and a sulfur modified Bi2O3 interfacial layer. J. Mater. Chem. A 2021, 9, 16137–16149. [Google Scholar] [CrossRef]
- Li, J.; Guo, C.; Li, L.; Gu, Y.; Kim, B.-H.; Huang, J. Synthesis of vertical WO3 nanoarrays with different morphologies using the same protocol for enhanced photocatalytic and photoelectrocatalytic performances. RSC Adv. 2021, 11, 23700–23706. [Google Scholar] [CrossRef]
- Deng, C.-B.; Zhang, M.; Lan, T.; Zhou, M.-J.; Wen, Y.; Zhong, J.; Sun, X.-Y. Spectroscopic investigation on Eu3+-doped TeO2-Lu2O3-WO3 optical glasses. J. Non-Cryst. Solids 2021, 554, 120565. [Google Scholar] [CrossRef]
- Shen, L.; Zheng, J.; Xu, C. Enhanced electrochromic switches and tunable green fluorescence based on terbium ion doped WO3 films. Nanoscale 2019, 11, 23049–23057. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.B.; Sagir, M. Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Sep. Purif. Technol. 2019, 209, 94–102. [Google Scholar] [CrossRef]
- Palanisamy, G.; Bhuvaneswari, K.; Bharathi, G.; Pazhanivel, T.; Grace, A.N.; Pasha, S.K. Construction of magnetically recoverable ZnS–WO3–CoFe2O4 nanohybrid enriched photocatalyst for the degradation of MB dye under visible light irradiation. Chemosphere 2021, 273, 129687. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, J.; Ruan, M.; Guo, Z. An effective strategy of constructing a multi-junction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3. J. Mater. Chem. A 2020, 8, 6256–6267. [Google Scholar] [CrossRef]
- Gopakumar, G.; Nair, S.V.; Shanmugam, M. Assessing the role of plasma-engineered acceptor-like intra- and inter-grain boundaries of heterogeneous WS2–WO3 nanosheets for photocurrent characteristics. Nanoscale Adv. 2020, 2, 2276–2283. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Hao, X.; Jin, Z.; Ma, Q. WP modified S-scheme Zn0.5Cd0.5S/WO3 for efficient photocatalytic hydrogen production. New J. Chem. 2019, 43, 19159–19171. [Google Scholar]
- Çoban, Ö.; Gür, E.; Tüzemen, S. Platinum activated WO3 optical hydrogen sensors. Mater. Today Proc. 2021, 46, 6913–6915. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, C.; Lin, S.; Li, H.; Feng, Y.; Gao, X. Oxygen vacancy modified Bi2MoO6/WO3 electrode with enhanced photoelectrocatalytic degradation activity toward RhB. Fuel 2021, 285, 119171. [Google Scholar] [CrossRef]
- Manikandan, V.S.; Harish, S.; Archana, J.; Navaneethan, M. Fabrication of novel hybrid Z-Scheme WO3@g-C3N4@MWCNT nanostructure for photocatalytic degradation of tetracycline and the evaluation of antimicrobial activity. Chemosphere 2022, 287, 132050. [Google Scholar] [CrossRef]
- Muller, O.; Gibot, P. Optical limiting properties of templated Cr2O3 and WO3 nanoparticles. Opt. Mater. 2019, 95, 109220. [Google Scholar] [CrossRef]
- Huda, M.N.; Yan, Y.; Moon, C.-Y.; Wei, S.-H.; Al-Jassim, M.M. Density-functional theory study of the effects of atomic impurity on the band edges of monoclinic WO3. Phys. Rev. B 2008, 77, 195102. [Google Scholar] [CrossRef]
- Vijayaprasath, G.; Murugan, R.; Hayakawa, Y.; Ravi, G. Optical and magnetic studies on Gd doped ZnO nanoparticles synthesized by co-precipitation method. J. Lumin. 2016, 17, 375–383. [Google Scholar] [CrossRef]
- Deb, S.K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cells 2008, 92, 245–258. [Google Scholar] [CrossRef]
- Guo, R.; Fang, L.; Dong, W.; Zheng, F.; Shen, M. Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C 2010, 114, 21390–21396. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 2000, 60, 201–262. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, D.; Niu, F.; Wang, S.; Qin, L.; Huang, Y. Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep. 2016, 6, 26467. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Liu, W.; Chan, Y.; Leung, C.; Mak, C.; Ploss, B. Studies of rare-earth-doped BiFeO3 ceramics. Int. J. Appl. Ceram. Technol. 2011, 8, 1246–1253. [Google Scholar] [CrossRef]
- Iqbal, S. Spatial Charge Separation and Transfer in L-Cysteine Capped NiCoP/CdS Nano-Heterojunction Activated with Intimate Covalent Bonding for High-Quantum-Yield Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2020, 274, 119097. [Google Scholar] [CrossRef]
- Iqbal, S.; Bahadur, A.; Anwer, S.; Ali, S.; Saeed, A.; Irfan, R.M.; Li, H.; Javed, M.; Raheel, M.; Shoaib, M. Shape and phase-controlled synthesis of specially designed 2D morphologies of l-cysteine surface capped covellite (CuS) and chalcocite (Cu2S) with excellent photocatalytic properties in the visible spectrum. Appl. Surf. Sci. 2020, 526, 146691. [Google Scholar] [CrossRef]
- Iqbal, S.; Bahadur, A.; Anwer, S.; Shoaib, M.; Liu, G.; Li, H.; Raheel, M.; Javed, M.; Khalid, B. Designing novel morphologies of l-cysteine surface capped 2D covellite (CuS) nanoplates to study the effect of CuS morphologies on dye degradation rate under visible light. Cryst. Eng. Comm. 2020, 22, 4162–4173. [Google Scholar] [CrossRef]
- Iqbal, S.; Bahadur, A.; Ali, S.; Ahmad, Z.; Javed, M.; Irfan, R.M.; Ahmad, N.; Qamar, M.A.; Liu, G.; Akbar, M.B. Critical role of the heterojunction interface of silver decorated ZnO nanocomposite with sulfurized graphitic carbon nitride heterostructure materials for photocatalytic applications. J. Alloys Compd. 2021, 858, 158338. [Google Scholar] [CrossRef]
- Irfan, R.M.; Tahir, M.H.; Khan, S.A.; Shaheen, M.A.; Ahmed, G.; Iqbal, S. Enhanced photocatalytic H2 production under visible light on composite photocatalyst (CdS/NiSe nanorods) synthesized in aqueous solution. J. Colloid Interface Sci. 2019, 557, 1–9. [Google Scholar] [CrossRef]
- Hussain, W.; Malik, H.; Bahadur, A.; Hussain, R.A.; Shoaib, M.; Iqbal, S.; Green, I.R.; Badshah, A.; Li, H. Synthesis and Characterization of CdS Photocatalyst with Different Morphologies: Visible Light Activated Dyes Degradation Study. Kinet. Catal. 2018, 59, 710–719. [Google Scholar] [CrossRef]
- Pradhan, S.; Das, J.; Rout, P.; Das, S.; Mishra, D.; Sahu, D.; Srinivasu, V.; Nayak, B.; Verma, S.; Roul, B. Defect driven multiferroicity in Gd doped BiFeO3 at room temperature. J. Magn. Magn. Mater. 2010, 322, 3614–3622. [Google Scholar] [CrossRef]
- Biltz, W.; Lehrer, G.A.; Meisel, K. Zeitschrift für anorganische und allgemeine Chemie. Rheniumtrioxyd II Mitt. 1932, 207, 113–120. [Google Scholar]
- Ablat, A.; Wu, R.; Mamat, M.; Li, J.; Muhemmed, E.; Si, C.; Wu, R.; Wang, J.-O.; Qian, H.; Ibrahim, K. Structural analysis and magnetic properties of Gd doped BiFeO3 ceramics. Ceram. Int. 2014, 40, 14083–14089. [Google Scholar] [CrossRef]
- Kumar, K.S.; Ramu, S.; Sudharani, A.; Ramanadha, M.; Murali, G.; Vijayalakshmi, R. Enhanced magnetic and dielectric properties of Gd doped BiFeO3: Er nanoparticles synthesized by sol-gel technique. Phys. E Low-Dimens. Syst. Nanostructures 2020, 115, 113689. [Google Scholar] [CrossRef]
- Salje, E.K.; Rehmann, S.; Pobell, F.; Morris, D.; Knight, K.S.; Herrmannsdörfer, T.; Dove, M.T. Crystal structure and paramagnetic behaviour of. J. Phys. Condens. Matter 1997, 9, 6563. [Google Scholar] [CrossRef]
- Kehl, W.; Hay, R.G.; Wahl, D. The structure of tetragonal tungsten trioxide. J. Appl. Phys. 1952, 23, 212–215. [Google Scholar] [CrossRef]
- Tanisaki, S. Crystal structure of monoclinic tungsten trioxide at room temperature. J. Phys. Soc. Jpn. 1960, 15, 573–581. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Madsen, G.K.H.; Kvasnicka, D. WIEN2k: An augmented plane wave+ local orbitals program for calculating crystal properties. Mater. Trans. 2001, 45, 1991–1993. [Google Scholar]
- Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C.C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 2002, 27, 991–1022. [Google Scholar] [CrossRef]
Compound | Supercell Size | △E = EAFM − EFM (meV) | Coupling | |
---|---|---|---|---|
Gd: WO3 | −1.05815002 | AFM | 9.5599575 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahadur, A.; Anjum, T.A.; Roosh, M.; Iqbal, S.; Alrbyawi, H.; Qayyum, M.A.; Ahmad, Z.; Al-Anazy, M.M.; Elkaeed, E.B.; Pashameah, R.A.; et al. Magnetic, Electronic, and Optical Studies of Gd-Doped WO3: A First Principle Study. Molecules 2022, 27, 6976. https://doi.org/10.3390/molecules27206976
Bahadur A, Anjum TA, Roosh M, Iqbal S, Alrbyawi H, Qayyum MA, Ahmad Z, Al-Anazy MM, Elkaeed EB, Pashameah RA, et al. Magnetic, Electronic, and Optical Studies of Gd-Doped WO3: A First Principle Study. Molecules. 2022; 27(20):6976. https://doi.org/10.3390/molecules27206976
Chicago/Turabian StyleBahadur, Ali, Tehseen Ali Anjum, Mah Roosh, Shahid Iqbal, Hamad Alrbyawi, Muhammad Abdul Qayyum, Zaheer Ahmad, Murefah Mana Al-Anazy, Eslam B. Elkaeed, Rami Adel Pashameah, and et al. 2022. "Magnetic, Electronic, and Optical Studies of Gd-Doped WO3: A First Principle Study" Molecules 27, no. 20: 6976. https://doi.org/10.3390/molecules27206976
APA StyleBahadur, A., Anjum, T. A., Roosh, M., Iqbal, S., Alrbyawi, H., Qayyum, M. A., Ahmad, Z., Al-Anazy, M. M., Elkaeed, E. B., Pashameah, R. A., Alzahrani, E., & Farouk, A. -E. (2022). Magnetic, Electronic, and Optical Studies of Gd-Doped WO3: A First Principle Study. Molecules, 27(20), 6976. https://doi.org/10.3390/molecules27206976