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Abstract: Tungsten trioxide (WO3) is mainly studied as an electrochromic material and received
attention due to N-type oxide-based semiconductors. The magnetic, structural, and optical behavior of
pristine WO3 and gadolinium (Gd)-doped WO3 are being investigated using density functional theory.
For exchange-correlation potential energy, generalized gradient approximation (GGA+U) is used in
our calculations, where U is the Hubbard potential. The estimated bandgap of pure WO3 is 2.5 eV.
After the doping of Gd, some states cross the Fermi level, and WO3 acts as a degenerate semiconductor
with a 2 eV bandgap. Spin-polarized calculations show that the system is antiferromagnetic in its
ground state. The WO3 material is a semiconductor, as there is a bandgap of 2.5 eV between the
valence and conduction bands. The Gd-doped WO3’s band structure shows few states across the
Fermi level, which means that the material is metal or semimetal. After the doping of Gd, WO3

becomes the degenerate semiconductor with a bandgap of 2 eV. The energy difference between
ferromagnetic (FM) and antiferromagnetic (AFM) configurations is negative, so the Gd-doped WO3

system is AFM. The pure WO3 is nonmagnetic, where the magnetic moment in the system after
doping Gd is 9.5599575 µB.

Keywords: Gd-doped; WO3; first-principle study; antiferromagnetic; bandgap tuning

1. Introduction

The exclusive ability to induce bistable electrical and optical characteristics in WO3
with different excitation sources makes it very promising among significant technologi-
cal devices [1–4]. The element that has three oxygen atoms is called the perovskite-like
structure. WO3 has useful applications in optical and spintronic devices [5–7]. It is used
for the construction of semiconductor-based gas sensors (SGS) and electrochromic devices
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such as high-temperature superconductors (HTS), smart windows, solar cells, and water-
splitting applications. The addition of electrons/holes could alter the characteristics of
WO3. Additionally, the possibility of ion intercalation/deintercalation arises in several
possible applications in rechargeable batteries. Especially, the photocatalytic activities and
SGS properties of WO3 can be modified by doping transitional elements such as Au, Pd,
and Pt. Rare earth and transition metal-doped WO3 systems show interesting magnetic
properties that usually do not exist in undoped WO3 [8–10]. In this study, the magnetic,
electronic, and optical properties of Gd-doped WO3 are investigated by using first principle
calculations. Here is a brief description of previous works related to WO3. The monoclinic
WO3 is the most communal and stable phase of WO3 with space group P21/n. The unit
cell comprises 8W atoms and 24O atoms and holds 8O atoms at the corner in somewhat
distorted cubic arrangements [11,12].

For the RT monoclinic, the direct bandgap calculated by using generalized gradient
approximation (GGA) was increased initially as the volume decreased but, after that,
decreases again with a further decrease in the volume. The cubic structure space groups
Pm-3m contain basic structural characteristics but ignore distortion. The indirect bandgap
of the cubic is smaller than the bandgap of the RT monoclinic. Low-temperature (LT)
monoclinic structures with space groups Pc are other distorted forms of WO3. The unit cell
of LT monoclinic contains 4W atoms and 12O atoms. The bandgap at a low-temperature
(LT) monoclinic is, to some extent, greater than the RT monoclinic. This shows a direct
bandgap with the conduction band minimum (CBM) and valence band maximum (VBM).
The triclinic structures have space groups P-1 and contain 8W and 24O atoms. The bandgap
of the triclinic is a direct bandgap. The orthorhombic structure of WO3 with a space group
of Pmnb also has distorted oxygen-octahedrons [13,14]. The unit cell consists of 8W and
24O atoms. The bandgap is larger than the cubic and tetragonal ones but smaller than the
monoclinic and triclinic structures [15].

The current studies showed that the assimilation of Gd3+ ion and other rare earth
element ions in large bandgap semiconductor fallouts in boosting ferromagnetic properties
inspired scientists on the way to rare earth elemental ion doping in various oxide nano-
materials for spintronics applications. Especially, the Gd3+ ion has more potential due to
its optical and magnetic properties [16]. It was reported that WO3 is translucent in visible
light, but strong absorption arises in near-infrared regions because of the phonon–electron
interaction [17]. The reflectance and transmittance of WO3 material were noted in the
range 400–2600 nm at Ptot = 10 and 30 mTorr. The dielectric function of the monoclinic
and triclinic are comparable and cannot be separated by their dispersion relation. The
optical gap is 2.5 to 2.6 eV, which is less than that of TiO2, and absorbs adequate visible
radiations to produce a photocurrent. According to UV–Vis diffuse reflectance, WO3, bare
light absorbs at a wavelength of less than 460 nm, which gives an energy bandgap of 2.6 eV.
In Gd-WO3, 4% absorption significantly transfers towards a longer wavelength from 460
to 470 nm along a bandgap of 2.64 eV. This perception is associated with the reality that
hybridization occurs between O 2p and Gd 4f /5d orbitals alternatively and is incorporated
into the WO3 lattice [18].

Bullet, Stashans, and Lunnel observed the effect of the interaction of alkali ions on
the cubic, room temperature monoclinic and Perovskite structure of WO3 [19]. The WO3
electronic structure and sub-stoichiometry are informally connected to the properties of the
structure. O 2p orbitals are present in the valence band, and W 5d orbitals are present in
the conduction band. The phase transition outcome in the W 5d states causes changes in
the energy gap. They concluded that the upward shift in the W 5d states changes the ideal
cubic structure to a monoclinic structure and increases Eg from 1.5 to 2.45 eV [20].

The bandgap value of WO3 changes experimentally from 2.6 to 3.2 eV. This is due
to the changes in the structure of WO3 [21]. The significance of the surface area and the
interphase boundary is of great importance [22–27]. The insufficient oxygen WO3-x is
connected to the effect on the electrical properties and color, and the color changes from
greenish to yellowish in WO3. In nanostructure WO3 films processed by reactive sputtering,
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Eg has linked to the O2 sputtering pressure and the vacancy of the O concentration. For the
various phases of WO3 alternations in Eg with d orbital occupancy, the points of the VBM
and CBM have been recognized. The calculation of cubic WO3 with the density functional
theory (DFT) computations underreported at about 0.6 eV correlated with the value of the
experimental value of 2.6 eV. In the dispersion of the band close to the region Nd–gap,
the γ-WO3, δ-WO3, β-WO3, and ε-WO3 phases are observed, which are less by the initial
calculations, which is due to the small difference in the lattice constant and short difference
in the bond angle [17,28].

Even though only insufficient theoretical/experimental research has been done to
discover the electronic/magnetic properties of RT monoclinic WO3, it is needed to explore
the bandgap, energy band, and electron/hole reshuffle. Momentum density studies of WO3
have not been conducted up to now. WO3 exists in more than one crystalline form. The
most common structure of WO3 is cubic, as for ReO3 [29–31]. The crystal structure of WO3
depends on the temperature when the temperature rises above 770 ◦C, its crystal shape
is tetragonal; between 330 ◦C and 740 ◦C, it is orthorhombic; between 17 ◦C and 33 ◦C, it
is monoclinic; and between −50 ◦C and 17 ◦C, it is triclinic [32–34]. Momentum density
studies of WO3 have been not conducted to date. Even though only insufficient theoreti-
cal/experimental research has been done to discover the electronic/magnetic properties
of RT monoclinic WO3, it is needed to explore bandgap, energy band, and electron/hole
reshuffle. In the present work, the electronic, magnetic, and optical properties of Gd-doped
WO3 are investigated by using first principle calculations. GGA+U approximation is ap-
plied to the orthorhombic structure to calculate the density of the states and optical and
magnetic properties of WO3.

2. Simulation and Calculations

The full potential linear augmented plane wave (FPLAPW) method with the WEIN2k code
is used to calculate the optical, electrical, and magnetic properties of pure WO3 and Gd-doped
WO3 [35]. The lattice parameters of pure WO3 are: a = 7.303, b = 7.5389, and c = 7.6896 A, and
those of Gd-doped WO3 are a = 7.303, b = 7.5389, and c = 15.3724 A. The space group number
of WO3 is 14P21/n, and K-mesh points 21 × 21 × 10 were used. The electronic charge density
“ECD” expanded up to Gmax = 12. In the interstitial region “IR”, the plane wave “PW” cut-off
value is Kmax = 6.5/RMT. The size of the supercell is 21× 21× 10, and it contains 16 atoms. The
optical and magnetic properties of the orthorhombic-like structure WO3 are calculated using
GGA+U approximation. The element that has three oxygen atoms is called the perovskite-like
structure. The orthorhombic structure is shown in Figure 1.
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3. Results and Discussion

Figure 2 represents the total density of the states of WO3 before and after the doping
of Gd, a rare earth metal. There is no absolute energy taken along the x-axis but the Fermi
energy. Fermi energy is an approach in quantum mechanics that usually mentions the
highest filled states of single particles in a quantum system of noninteracting fermions
at absolute zero temperature. In Figure 2a, no states reside in the Fermi level for pure
WO3. In Figure 2b, after the doping of Gd, some states reside in the Fermi level when the
system is ferromagnetic (FM), which means that all the unpaired electrons have the same
spin directions. In Figure 2c, some states reside in the Fermi level after the doping of Gd
when the system has antiferromagnetic materials (AFM), which means that all the unpaired
electrons have a spin moment in the antiparallel direction.
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Figure 2. Density of the states (DOS) of (a) pure WO3, (b) Gd-doped WO3 FM, and (c) Gd-doped
WO3 AFM by using GGA+U approximation.

Figure 3 represents the partial density of the states. GGA+U approximation is used for
the calculation of Gd-doped WO3. For calculating the partial density of the states, W has
the states of s, p, d, and f, and O has s and p, while Gd has the s, p, d, and f states. Many
clear states reside in the bandgap after the doping of the Gd rare earth metal. In the case of
pure WO3, no states exist in the bandgap, as shown in Figure 3a, but after the doping of
Gd, some states reside that cross the Fermi level, as shown in Figure 3b,c. Both calculations
are done by using the GGA+U approximations. According to Figure 4, the material is a
semiconductor, as there is a bandgap of 2.5 eV between the valence band and conduction
band [36]. Figure 4 represents the band structure of pure WO3, which shows the direct
bandgap. Figure 4a is the spin-up band, and Figure 4b is the spin-down direction.
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Figure 4. Band structure of pure WO3 for the (a) spin-up and (b) spin-down directions by using
GGA+U approximation.

Figure 5 represents the band structure of Gd-doped WO3 for spin-up and spin-down
in the FM configuration. It shows that few states cross the Fermi level, which means that
the material is metal or semimetal. Figure 5 represents the gap inside the conduction band.
From Figure 5, after the doping of Gd, WO3 becomes the degenerate semiconductor. The
degenerate semiconductor shows a metallic character after high doping.
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Figure 5. Band structure of Gd-doped WO3 for FM calculations (a) spin-up and (b) spin-down.

Figure 6 represents the band structure of the Gd-doped WO3 by AFM calculations.
Figure 6 is for the spin-up and spin-down directions after WO3 doping by Gd. As the
states lie inside the Fermi level, it shows a metallic character after the doping of the
Gd metal. Figure 6 also shows that, after the doping of Gd, the WO3 semiconductor
becomes a degenerate semiconductor. As the energy difference between the FM and AFM
configurations is negative, the Gd-doped WO3 system is AFM, according to the calculations,
and the energy is calculated in millielectron volts. The pure WO3 is nonmagnetic, where
the magnetic moment in the system after doping Gd is 9.5599575 µB (Table 1).
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Table 1. Magnetic properties of Gd-doped WO3.

Compound Supercell Size 4 E = EAFM − EFM (meV) Coupling Spin Magnetic Moment in Supercell (µB)

Gd: WO3 21× 21× 10 −1.05815002 AFM 9.5599575

Figure 7 represents the absorption coefficient of WO3 and Gd-doped WO3. Figure 7a
indicates that, in pure WO3, the absorption increases gradually at energy 2 eV, which is
the threshold energy for absorption and is equivalent to the bandgap energy. However,
after the doping of the Gd rare earth element, there is a clear difference in the absorption of
WO3, as the curve starts rising from 0 eV, as shown in Figure 7b,c, which means that the
material becomes metallic or semi-metallic.
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Figure 8 represents the real part of the dielectric function for pure and doped WO3
in FM and AFM configurations. In Figure 8a, the perpendicular component lies in the
negative region in the energy range 6–7 eV, which shows that the material behaves reflective
in this energy range and is transparent in the rest of the energy region. However, after
the doping of Gd, as shown in Figure 7b,c, the states mostly lie above zero points, and
very few states are below zero points. A clear reduction in the states below zero points
happened. Figure 8b is FM Gd-doped WO3, and Figure 8c is Gd-doped WO3 in the AFM
configuration. Gd causes a reduction of the states below zero points, which shows that the
material became nonreflective.
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A material’s complex dielectric function consists of two parts: real ε1(ω) and imaginary
ε2(ω) (Figure 9). The absorption of photons is represented by the imaginary part of the
dielectric function and electronic transition from valence towards the conduction band.
The equation for ε2(ω) can be written as:

ε2(ω) =
4π2e2

m2ω2σij

∫
〈 i|M|j〉2fi(1− fi)δ

(
Ej − Ei −ω

)
d3k (1)

where M represents the dipole matrix, the free electron is represented by m, for the initial
and final states, the i and j symbols are used, the ith state Fermi distribution is represented
by fi, and Ei and Ej are the energy of the free electrons in the initial and final states.
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2.5 eV between the VB and CB. Pure WO3 is nonmagnetic, where the magnetic moment in 
the system after doping Gd is 9.5599575 μB. 
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WO3 for the AFM configuration.

4. Conclusions

In the present work, the electronic, magnetic, and optical properties of pure WO3
and Gd-doped WO3 were calculated by using the GGA+U approximation for exchange–
correlation energy. The energy difference between the FM and AFM configurations showed
that the Gd-doped WO3 system is AFM. Pure WO3 is a nonmagnetic semiconductor with a
bandgap of 2.5 eV. The system becomes a degenerate semiconductor after the doping of the
rare earth element Gd in WO3. In the real dielectric function of WO3, the perpendicular
component lies in the negative region in the energy range 6–7 eV, which shows that the
material behaves as reflective in this energy range and is transparent in the rest of the
energy region. The spin-polarized calculations showed that the system is antiferromagnetic
in its grounded state. The WO3 material is a semiconductor, as there is a bandgap of 2.5 eV
between the VB and CB. Pure WO3 is nonmagnetic, where the magnetic moment in the
system after doping Gd is 9.5599575 µB.
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