Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Therapeutic Creams
2.2. Preparation of the Post-Reaction Mixture after Isomerization of S-Carvone for Application in Creams
2.3. Microbiological Tests
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, L.; Zhang, X.; Zhang, Y.; Zheng, K.; Xiang, Q.; Chen, N.; Chen, Z.; Zhang, N.; Zhu, J.; He, Q. Antibiotic-Induced Disruption of Gut Microbiota Alters Local Metabolomes and Immune Response. Front. Cell. Infect. Microbiol. 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Lee, C. The antibiotic resistance crisis, part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Saad, N.Y.; Muller, C.D.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr. J. 2013, 28, 269–279. [Google Scholar] [CrossRef]
- Preedy, V.R. Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- De Carvalho, C.R.; da Fonseca, M.R. Carvone: Why and how should one bother to produce this terpene. Food Chem. 2006, 95, 413–422. [Google Scholar] [CrossRef]
- Bailer, J.; Aichinger, T.; Hackl, G.; de Hueber, K.; Dachler, M. Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Ind. Crops Prod. 2001, 14, 229–239. [Google Scholar] [CrossRef]
- Kamaleeswari, M.; Deeptha, K.; Sengottuvelan, M.; Nalini, N. Effect of dietary caraway (Carum carvi L.) on aberrant crypt foci development, fecal steroids, and intestinal alkaline phosphatase activities in 1,2-dimethylhydrazine-induced colon carcinogenesis. Toxicol. Appl. Pharm. 2006, 14, 290–296. [Google Scholar] [CrossRef]
- Husnu, C.; Baser, K. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar]
- Hartmans, K.J.; Lenssen, J.M.; de Vries, R.G. Use of talent (carvone) as a sprout growth regulator of seed potatoes and the effect on stem and tuber number. Potato Res. 1998, 41, 190–191. [Google Scholar]
- Esfandyari-Manesh, M.; Ghaedi, Z.; Asemi, M.; Khanavi, M.; Manayi, A.; Jamalifar, H.; Atyabi, F.; Dinarvand, R. Study of antimicrobial activity of anethole and carvone loaded PLGA nanoparticles. J. Pharm. Res. 2013, 7, 290–295. [Google Scholar] [CrossRef]
- Wah, Y.; Siow, K.S.; Yuen, P.; Gires, U.; Majlis, B.Y. Plasma polymerized carvone as an antibacterial and biocompatible coating. Mat. Sci. Eng. C 2016, 68, 861–871. [Google Scholar]
- McGeady, P.; Wansley, D.L.; Logan, D.A. Carvone and perillaldehyde interfere with the serum-induced formation of filamentous structures in Candida albicans at substantially lower concentrations than those causing significant inhibition of growth. J. Nat. Prod. 2002, 65, 953–955. [Google Scholar] [CrossRef]
- Raphael, T.J.; Kuttan, G. Immunomodulatory activity of naturally occurring monoterpenes carvone, limonene, and perillic acid. Immunophar. Immunotoxicol. 2003, 25, 285–294. [Google Scholar] [CrossRef]
- Retajczyk, M.; Wróblewska, A.; Szymańska, A.; Miądlicki, P.; Koren, C.; Michalkiewicz, B. Synthesis, Characterization, and catalytic applications of the Ti-SBA-16 porous material in the selective and green isomerizations of limonene and S-carvone. Catalysts 2020, 10, 1452–1456. [Google Scholar] [CrossRef]
- Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer. Drugs 2005, 26, 813–823. [Google Scholar] [CrossRef]
- Ozen, D.; Uyanoglu, M. Effect of carvacrol on IL-6/STAT3 pathway after partial hepatectomy in rat liver. Bratisl. Med. J. 2018, 119, 59–601. [Google Scholar] [CrossRef] [Green Version]
- Canbeka, M.; Uyanoglua, M.; Bayramoglua, G.; Senturka, H.; Erkasapb, N.; Kokenc, T.; Uslud, S.; Demirustue, C.; Aralf, E.; Husnu, K.; et al. Effects of carvacrol on defects of is chemia-reperfusion in the rat liver. Phytomedicine 2008, 15, 447–452. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J. Biosci. Bioeng. 2010, 110, 614–619. [Google Scholar] [CrossRef]
- Nostro, A.; Roccaro, A.S.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Luigi, C.P.; Procopio, F.; Blanco, A.R. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 2007, 56, 519–523. [Google Scholar] [CrossRef]
- Khan, I.; Bahuguna, A.; Kumar, P.; Bajpai, V.K.; Kang, S.C. Antimicrobial Potential of Carvacrol against Uropathogenic Escherichia coli via membrane disruption, depolarization, and reactive oxygen species generation. Front. Microbiol. 2017, 8, 2421–2425. [Google Scholar] [CrossRef] [Green Version]
- Vardar-Unlu, G.; Yagmuroglu, A.; Unlu, M. Evaluation of in vitro activity of carvacrol against Candida albicans strains. Nat. Product Res. 2010, 24, 1189–1193. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Papachristos, D.; Karamanoli, K.; Stamopoulos, D.C.; Menkissoglu-Spiroudi, U. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag. Sci. 2004, 60, 514–520. [Google Scholar] [CrossRef]
- Chen, W.; Viljoen, A.M. Geraniol—A review of a commercially important fragrance material. South Afr. J. Bot. 2010, 76, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Hadian, Z.; Maleki, M.; Feizollahi, E.; Alibeyk, S.; Saryazdi, M. Health aspects of geraniol as a main bioactive compound of Rosa damascena Mill: A systematic review. Electron. Physician 2020, 12, 7724–7735. [Google Scholar] [CrossRef]
- Mączka, W.; Wińska, K.; Grabarczyk, M. One hundred faces of geraniol. Molecules 2020, 25, 3303–3308. [Google Scholar] [CrossRef]
- Fajdek-Bieda, A.; Wróblewska, A.; Miądlicki, P.; Tołpa, J.; Michalkiewicz, B. Clinoptilolite as a natural, active zeolite catalyst for the chemical transformations of geraniol. Reac. Kinet. Mech. Catal. 2021, 133, 997–1011. [Google Scholar] [CrossRef]
- Yamada, A.N.; Grespan, R.; Yamada, A.T.; Silva, E.L.; Silva-Filho, S.E.; Damiao, M.J.; de Oliveira Dalalio, M.M.; Bersani-Amado, C.A. Anti-inflammatory activity of Ocimum americanum L. essential oil in experimental model of zymosan-induced arthritis. Am. J. Chin. Med. 2013, 41, 913–926. [Google Scholar] [CrossRef]
- Djenane, D.; Aider, M.; Yanguela, J.; Idir, L. Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157:H7 and S. aureus during storage at abuse refrigeration temperature. Meat. Sci. 2012, 92, 667–674. [Google Scholar] [CrossRef]
- Quintans-Junior, L.J.; Barreto, R.S.; Menezes, P.P.; Almeida, J.R. β-Cyclodextrin-complexed (-)-linalool produces antinociceptive effect superior to that of (-)-linalool in experimental pain protocols. Basic Clin. Pharmacol. Toxicol. 2013, 113, 167–172. [Google Scholar] [CrossRef]
- Phillips, C.A.; Gkatzionis, K.; Laird, K.; Score, J. Identification and quantification of the antimicrobial components of a citrus essential oil vapor. Nat. Prod. Commun. 2012, 7, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Aprotosoaie, A.C.; Hancianu, M.; Costacheb, I.I.; Mirona, A. Linalool: A review on a key odorant molecule with valuable biological properties. Flavour Fragr. J. 2014, 29, 193–219. [Google Scholar] [CrossRef]
- Kamatou, G.P.; Viljoen, A.M. Linalool—A review of a biologically active compound of commercial importance. Nat. Prod. Commun. 2008, 3, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Lis-Balchin, M. Essential oils and ‘aromatherapy’: Their modern role in healing. J. Royal Soc. Promot. Health 1997, 117, 324–329. [Google Scholar] [CrossRef]
- Lapczynski, A.; Foxenberg, R.J.; Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance material review on nerol. FCT 2008, 46, 241–244. [Google Scholar] [CrossRef]
- Costa Marques, T.H.; Leonildes, B.; Gomes, C.; Branco Marques, M.; dos Santos Lima, D.; Santos Siqueira, H.D.; Damasceno Nogueira Neto, J.; do Socorro Boavista Gomes Castelo Branco, M.; Araújo de Souza, A.; Pergentino de Sousa, D.; et al. Evaluation of the neuropharmacological properties of nerol in mice. World J. Neurosci. 2013, 3, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Ammar, A.H.; Bouajila, J.; Lebrihi, A.; Mathieu, F.; Romdhane, M.; Zagrouba, F. Chemical composition and in vitro antimicrobial and antioxidant activities of Citrus aurantium L. flowers essential oil (Neroli oil). Pak. J. Biol. Sci. 2012, 2, 1034–1040. [Google Scholar] [CrossRef] [Green Version]
- Consolini, A.E.; Berardi, A.; Rosella, M.A.; Volonté, M. Antispasmodic effects of Aloysia polystachya and A. gratissima tinctures and extracts are due to non- competitive inhibition of intestinal contractility induced by acethylcholine and calcium. Rev. Bras. Farmacogn. 2011, 21, 889–900. [Google Scholar] [CrossRef] [Green Version]
- Kuwahara, Y.; Suzuki, H.; Matsumoto, K. Pheromone study on acarid mites. XI. Function of mite body as geometrical isomerization and reduction of citral (the alarm pheromone) Carpoglyphus lactis. Appl. Entomol. Zool. 1983, 18, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M.A.; Elfeki, A.; Talarmin, H. Biological properties of citral and its potential protective effects againstcytotoxicity caused by aspirin in the IEC-6 cells. Biomed. Pharmacother. 2017, 87, 653–660. [Google Scholar] [CrossRef]
- Espina, L.; Daniel, B.; Patricia, A.; García-Gonzalo, D.; Rafael, P. Potential use of carvacrol and citral to inactivate biofilm cells and eliminate biofouling. Food Control 2017, 82, 256–265. [Google Scholar] [CrossRef]
- Yuxiang, Z.; Wei, J.; Chen, H.; Song, Z.; Guo, H.; Yuan, Y.; Yue, T. Antibacterial activity of essential oils against Stenotrophomonas maltophilia and the effect of citral on cell membrane. LWT 2020, 117, 108667–108671. [Google Scholar]
- Kang, S.; Li, X.; Xing, Z.; Liu, X.; Bai, X.; Yang, Y.; Guo, D.; Xia, X.; Zhang, C.; Shi, C. Antibacterial effect of citral on yersinia enterocolitica and its mechanism. Food Control 2022, 35, 108775–108779. [Google Scholar] [CrossRef]
- Cristiane de Bona da, S. Antifungal activity of the lemongrass oil and citral against Candidas. Braz. J. Infect. Dis. 2008, 12, 63–66. [Google Scholar]
- Cai, R.; Hu, M.; Zhang, Y.; Niu, C.; Yue, T.; Yuan, Y.; Wang, Z. Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. LWT 2019, 106, 50–56. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Approved standard M2-A10; Performance Standards for Antimicrobial Disk Susceptibility Tests; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2009. [Google Scholar]
- Pucci, M.; Raimondo, S.; Zichittella, C.; Tinnirello, V.; Corleone, V.; Aiello, G.; Moschetti, M.; Conigliaro, A.; Fontana, S.; Alessandro, R. Biological properties of a citral-enriched fraction of Citrus limon essential oil. Foods 2020, 9, 1290. [Google Scholar] [CrossRef]
- De Oliveira Lima, M.I.; Araújo de Medeiros, A.C.; Souza Silva, K.V.; Cardoso, G.N.; de Oliveira Lima, E.; de Oliveira Pereira, F. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Méd. 2017, 27, 195–202. [Google Scholar] [CrossRef]
- Özek, T.; Tabanca, N.; Demirci, F.; Wedge, D.E.; Baser, K.H.C. Enantiomeric distribution of some linalool containing essential oils and their biological activities. Rec. Nat. Prod. 2010, 4, 180–192. [Google Scholar]
- Abi-Ayad, M.; Abi-Ayad, F.Z.; Lazzouni, H.A.; Rebiahi, S.A.; Ziani_Cherif, C.; Bessiere, C. Chemical composition and antifungal activity of Aleppo pine essential oil. J. Med. Plant Res. 2011, 5, 5433–5436. [Google Scholar]
Microorganism | Temperature Incubation (°C) | Preculture Media | Culture Media |
---|---|---|---|
Escherichia coli | 37 | Enrich Broth (BioMaxima S. A., Lublin, Poland) | Plate Count Agar (BioMaxima S.A., Poland) |
Staphylococcus epidermidis | 37 | Brain Heart Infusion Broth (BioMaxima S. A., Poland) | Brain Heart Infusion Agar (BioMaxima S.A., Poland) |
Candida albicans Trichophyton rubrum | 30 | Slants on Sabouraud Agar (BTL, Lodz, Poland) | Sabouraud Agar (BTL, Poland) |
Aspergillus niger Penicillium chrysogenum | 25 | Slants on Malt Extract Agar, MEA (Merck, Warsaw, Poland) | Malt Extract Agar, MEA (Merck, Poland) |
Cream Supplemented with: | Bacteria | ||
---|---|---|---|
E.coli | S. epidermidis | ||
Isomerization of s-carvone | |||
S-carvone 0.5% | 18.5 ± 0.2 | 0 ± 0 | |
S-carvone 1.0% | 25.0 ± 1.0 | 0 ± 0 | |
S-carvone 2.0% | 7.0 ± 0.4 poor growth over the entire area of the plate | 0 ± 0 | |
S-carvone 3.0% | >50 mm | 0 ± 0 | |
carvacrol 0.5% | 0 ± 0 | 0 ± 0 | |
carvacrol 1.0% | 0 ± 0 | 0 ± 0 | |
carvacrol 2.0% | poor growth over the entire area of the plate | 0 ± 0 | |
carvacrol 3.0% | >50 mm | 0 ± 0 | |
mixture 0.5% | poor growth over the entire area of the plate >50 mm | 0 ± 0 | |
mixture 1.0% | 0 ± 0 | ||
mixture 2.0% | 0 ± 0 | ||
mixture 3.0% | 0 ± 0 | ||
Isomerization of geraniol | |||
geraniol 0.5% | 0 ± 0 | 0 ± 0 | |
geraniol 1.0% | 0 ± 0 | 0 ± 0 | |
geraniol 2.0% | 0 ± 0 | 0 ± 0 | |
geraniol 3.0% | 0 ± 0 | 0 ± 0 | |
nerol 0.5% | 0 ± 0 | 0 ± 0 | |
nerol 1.0% | 1.3 ± 0.2 | 0.3 ± 0.2 | |
nerol 2.0% | 8.5 ± 0.5 | 0.7 ± 0.3 | |
nerol 3.0% | 23.2 ± 1.3 | 1.8 ± 0.3 | |
linalool 0.5% | 1.0 ± 0.2 | 1.0 ± 0.2 | |
linalool 1.0% | 1.0 ± 0.2 | 1.0 ± 0.2 | |
linalool 2.0% | 1.0 ± 0.2 | 1.0 ± 0.2 | |
linalool 3.0% | 2.0 ± 0.1 | 2.0 ± 0.1 | |
citral 0.5% | poor growth over the entire area of the plate >50 mm | 0 ± 0 | |
citral 1.0% | 0 ± 0 | ||
citral 2.0% | 0 ± 0 | ||
citral 3.0% | 0 ± 0 | ||
control | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Cream Supplemented with: | Fungi | |||
---|---|---|---|---|
C. albicans | T. rubrum | A. niger | P. chrysognum | |
Isomerization of S-carvone | ||||
S-carvone 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
S-carvone 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
S-carvone 2.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
S-carvone 3.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
carvacrol 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
carvacrol 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
carvacrol 2.0% | 1.0 ± 0.1 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
carvacrol 3.0% | 8.6 ± 1.4 | 5.4 ± 0.4 | 1.4 ± 0.3 | 1.3 ± 0.2 |
mixture 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
mixture 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
mixture 2.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
mixture 3.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Isomerization of geraniol | ||||
geraniol 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
geraniol 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
geraniol 2.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
geraniol 3.0% | 1.0 ± 0.1 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
nerol 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
nerol 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
nerol 2.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
nerol 3.0% | 1.3 ± 0.2 | 1.0 ± 0.1 | 0 ± 0 | 0 ± 0 |
linalool 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
linalool 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
linalool 2.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
linalool 3.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
citral 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
citral 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
citral 2.0% | 2.0 ± 0.2 | 1.3 ± 0.2 | 0 ± 0 | 0 ± 0 |
citral 3.0% | 7.6 ± 0.5 | 2.3 ± 0.6 | 1.2 ± 0.1 | 1.2 ± 0.2 |
control | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewska, A.; Fajdek-Bieda, A.; Markowska-Szczupak, A.; Radkowska, M. Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation. Molecules 2022, 27, 7012. https://doi.org/10.3390/molecules27207012
Wróblewska A, Fajdek-Bieda A, Markowska-Szczupak A, Radkowska M. Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation. Molecules. 2022; 27(20):7012. https://doi.org/10.3390/molecules27207012
Chicago/Turabian StyleWróblewska, Agnieszka, Anna Fajdek-Bieda, Agata Markowska-Szczupak, and Monika Radkowska. 2022. "Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation" Molecules 27, no. 20: 7012. https://doi.org/10.3390/molecules27207012
APA StyleWróblewska, A., Fajdek-Bieda, A., Markowska-Szczupak, A., & Radkowska, M. (2022). Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation. Molecules, 27(20), 7012. https://doi.org/10.3390/molecules27207012