Evaluation of DNA-Damaging Effects Induced by Different Tanning Agents Used in the Processing of Natural Leather—Pilot Study on HepG2 Cell Line
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Leather Samples
4.2. Cell Culture
4.3. Experimental Design
4.4. Alkaline Comet Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Falkiewicz-Dulik, M.; Janda, K.; Wypych, G. Handbook of Biodegradation, Biodeterioration and Biostabilization, 2nd ed.; ChemTec Publishing: Toronto, ON, Canada, 2015; pp. 135–137. [Google Scholar]
- Mark, H.F. Encyclopedia Od Polymer Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Sizeland, K. Nanostructure and Physical Properties of Collagen Biomaterials. Ph.D. Thesis, Massey University, Manawatu, New Zealand, 2015. [Google Scholar]
- Harris, S.; Veldmeijer, A.J. Why Leather? Sidestone Press: Leiden, The Netherlands, 2014. [Google Scholar]
- Covington, T.; Wise, W.R. Tanning Chemistry: The Science of Leather, 2nd ed.; Royal Society of Chemistry: Cambridge, UK, 2019; pp. 1–7, 204–217, 318–324. [Google Scholar]
- Krishnamoorthy, G.; Sadulla, S.; Sehgal, P.K.; Mandal, A.B. Green chemistry approaches to leather tanning process for making chrome-free leather by unnatural amino acids. J. Hazard. Mater. 2012, 215–216, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Lischuk, V.; Plavan, V.; Danilkovich, A. Transformation of the collagen structure during beam-house processes and combined tanning. Proc. Estonian Acad. Sci. 2006, 12, 188–198. [Google Scholar] [CrossRef]
- Hedberg, Y.S.; Lidén, C.; Odnevall Wallinder, I. Chromium released from leather-I: Exposure conditions that govern the release of chromium(III) and chromium(VI). Contact. Dermat. 2015, 72, 206–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolence, C.C.; Musabila, M.M.; Samwel, N.S.; Hilonga, A.; Kanth, S.V.; Njau, K.N. Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: A comprehensive review. Chemosphere 2020, 254, 126804. [Google Scholar] [CrossRef]
- Shirmohammadli, Y.; Efhamisisi, D.; Pizzi, A. Tanins as a sustainable raw material for green chemistry: A review. Ind. Crops Prod. 2018, 126, 316–332. [Google Scholar] [CrossRef]
- Sathiyamoorthy, M.; Selvi, V.; Mekonneu, D.; Habtamu, S. Preparation of eco-friendly leather by process modifications to make pollution free tanneries. J. Eng. Comput. Appl. Sci. 2013, 2, 17–22. [Google Scholar]
- Valentin-Severin, I.; Le Hegarat, L.; Lhuguenot, J.C.; Le Bon, A.M.; Chagnon, M.C. Use of HepG2 cell line for direct or indirect mutagens screening: Comparative investigation between comet and micronucleus assays. Mutat. Res. 2003, 536, 79–90. [Google Scholar] [CrossRef]
- Fic, A.; Žegura, B.; Sollner Dolenc, M.; Filipič, M.; Peterlin Mašič, L. Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells. Arh. Hig. Rada Toksikol. 2013, 64, 189–200. [Google Scholar] [CrossRef]
- Séverin, I.; Jondeau, A.; Dahbi, L.; Chagnon, M.C. 2,4-Diaminotoluene (2,4-DAT)-induced DNA damage, DNA repair and micronucleus formation in the human hepatoma cell line HepG2. Toxicology 2005, 213, 138–146. [Google Scholar] [CrossRef]
- Tsuboy, M.S.; Angeli, J.P.; Mantovani, M.S.; Knasmüller, S.; Umbuzeiro, G.A.; Ribeiro, L.R. Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2. Toxicol. In Vitro 2007, 21, 1650–1655. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Ferraz, E.R.; Chequer, F.M.; Grando, M.D.; Angeli, J.P.; Tsuboy, M.S.; Marcarini, J.C.; Mantovani, M.S.; Osugi, M.E.; Lizier, T.M.; et al. Chlorination treatment of aqueous samples reduces, but does not eliminate, the mutagenic effect of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1. Mutat. Res. 2010, 703, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Ching Chen, S.; Hseu, Y.C.; Sung, J.C.; Chen, C.H.; Chen, L.C.; Chung, K.T. Induction of DNA damage signaling genes in benzidine-treated HepG2 cells. Environ. Mol. Mutagen. 2011, 52, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, E.R.; Umbuzeiro, G.A.; de-Almeida, G.; Caloto-Oliveira, A.; Chequer, F.M.; Zanoni, M.V.; Dorta, D.J.; Oliveira, D.P. Differential toxicity of Disperse Red 1 and Disperse Red 13 in the Ames test, HepG2 cytotoxicity assay, and Daphnia acute toxicity test. Environ. Toxicol. 2011, 26, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, E.R.; Li, Z.; Boubriak, O.; de Oliveira, D.P. Hepatotoxicity assessment of the azo dyes disperse orange 1 (DO1), disperse red 1 (DR1) and disperse red 13 (DR13) in HEPG2 cells. J. Toxicol. Environ. Health A 2012, 75, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Knasmüller, S.; Parzefall, W.; Sanyal, R.; Ecker, S.; Schwab, C.; Uhl, M.; Mersch-Sundermann, V.; Williamson, G.; Hietsch, G.; Langer, T.; et al. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat. Res. 1998, 402, 185–202. [Google Scholar] [CrossRef]
- Westerink, W.M.; Schoonen, W.G. Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol. In Vitro 2007, 21, 1581–1591. [Google Scholar] [CrossRef]
- Westerink, W.M.; Schoonen, W.G. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol. In Vitro 2007, 21, 1592–1602. [Google Scholar] [CrossRef]
- Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C.; Sasaki, Y.F. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 2000, 35, 206–221. [Google Scholar] [CrossRef]
- Collins, A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef]
- Azqueta, A.; Collins, A.R. The essential comet assay: A comprehensive guide to measuring DNA damage and repair. Arch. Toxicol. 2013, 87, 949–968. [Google Scholar] [CrossRef]
- Langie, S.A.S.; Azqueta, A.; Collins, A.R. The comet assay: Past, present, and future. Front. Genet. 2015, 6, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Majer, B.J.; Mersch-Sundermann, V.; Darroudi, F.; Laky, B.; de Wit, K.; Knasmüller, S. Genotoxic effects of dietary and lifestyle related carcinogens in human derived hepatoma (HepG2, Hep3B) cells. Mutat. Res. Mol. Mech. Mutagen. 2004, 551, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Specification Sheet, Product Name: RPMI-1640 Medium with L-Glutamine and Sodium Bicarbonate, Liquid, Sterile-Filtered, Suitable for Cell Culture. Available online: https://www.sigmaaldrich.com/HR/en/specification-sheet/SIGMA/R8758 (accessed on 24 November 2021).
- Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Costa Pereira, C.; et al. Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc. 2020, 15, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- Martin-Cordero, C.; Leon-Gonzalez, J.A.; Calderon-Montano, J.M.; Burgos-Moron, E.; Lopez-Lazaro, M. Pro-oxidant natural products as anticancer agents. Curr. Drug Targets 2012, 13, 1006–1028. [Google Scholar] [CrossRef]
- Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef]
- Azmi, A.S.; Bhat, S.H.; Hanif, S.; Hadi, S.M. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: A putative mechanism for anticancer properties. FEBS Lett. 2006, 580, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, A. Tannins: Prospectives and Actual Industrial Applications. Biomolecules 2019, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- Krisper, P.; Tisler, V.; Skubic, V.; Rupnik, I.; Kobal, S. The use of tannin from chestnut (Castanea vesca). Basic Life Sci. 1992, 59, 1013–1019. [Google Scholar] [CrossRef]
- Missio, A.L.; Tischer, B.; dos Santos, P.S.B.; Codevilla, C.; de Menezes, C.R.; Barin, J.S.; Haselein, C.R.; Labidi, J.; Gatto, D.A.; Petutschnigg, A.; et al. Analytical characterization of purified mimosa (Acacia mearnsii) industrial tannin extract: Single and sequential fractionation. Sep. Purif. Technol. 2017, 186, 218–225. [Google Scholar] [CrossRef]
- Reggi, S.; Giromini, C.; Dell’Anno, M.; Baldi, A.; Rebucci, R.; Rossi, L. In Vitro Digestion of Chestnut and Quebracho Tannin Extracts: Antimicrobial Effect, Antioxidant Capacity and Cytomodulatory Activity in Swine Intestinal IPEC-J2 Cells. Animals 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Sakagami, H.; Kuribayashi, N.; Iida, M.; Sakagami, T.; Takeda, M.; Fukuchi, K.; Gomi, K.; Ohata, H.; Momose, K.; Kawazoe, Y. Induction of DNA fragmentation by tannin- and lignin-related substances. Anticancer Res. 1995, 15, 2121–2128. [Google Scholar] [PubMed]
- Bhat, R.; Hadi, S.M. DNA breakage by tannic acid and Cu(Il) sequence specificity of the reaction and involvement of active oxygen species. Mutat. Res. 1994, 313, 39–48. [Google Scholar] [CrossRef]
- Bhat, R.; Hadi, S.M. DNA breakage by tannic acid and Cu(ll) generation of active oxygen species and biological activity of the reaction. Mutat. Res. 1994, 313, 49–55. [Google Scholar] [CrossRef]
- Mhlanga, P.; Perumal, P.O.; Somboro, A.M.; Amoako, D.G.; Khumalo, H.M.; Khan, R.B. Mechanistic Insights into Oxidative Stress and Apoptosis Mediated by Tannic Acid in Human Liver Hepatocellular Carcinoma Cells. Int. J. Mol. Sci. 2019, 20, 6145. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.M.; Hasan, M.J.; Mahmud, Y.; Tuj-Zohra, F.; Ahmed, S. Evaluating Suitability of Glutaraldehyde Tanning in Conformity with Physical Properties of Conventional Chrome-Tanned Leather. Text. Leather Rev. 2020, 3, 135–145. [Google Scholar] [CrossRef]
- St Clair, M.B.; Bermudez, E.; Gross, E.A.; Butterworth, B.E.; Recio, L. Evaluation of the genotoxic potential of glutaraldehyde. Environ. Mol. Mutagen. 1991, 18, 113–119. [Google Scholar] [CrossRef]
- Zeiger, E.; Gollapudi, B.; Spencer, P. Genetic toxicity and carcinogenicity studies of glutaraldehyde-a review. Mutat. Res. Rev. Mutat. Res. 2005, 589, 136–151. [Google Scholar] [CrossRef]
- Speit, G.; Neuss, S.; Schütz, P.; Fröhler-Keller, M.; Schmid, O. The genotoxic potential of glutaraldehyde in mammalian cells in vitro in comparison with formaldehyde. Mutat. Res. Gen. Toxicol. Environ. Mutagen. 2008, 649, 146–154. [Google Scholar] [CrossRef]
- Inclusion of Substances of Very High Concern in the Candidate List for Eventual Inclusion in Annex XIV (Decision of the European Chemicals Agency). Available online: https://echa.europa.eu/documents/10162/f8bab22e-f605-bbed-66eb-1332835436f9 (accessed on 7 September 2022).
- Annex XV Report, Proposal for a Restriction, Substance Name(s): Chromium (VI) Compounds. Available online: https://echa.europa.eu/documents/10162/477b4727-e5fc-75da-ccd9-b8bcc2d2b7dd (accessed on 24 November 2021).
- Błasiak, J.; Kowalik, J. A comparison of the in vitro genotoxicity of tri- and hexavalent chromium. Mutat. Res. Gen. Toxicol. Environ. Mutagen. 2000, 469, 135–145. [Google Scholar] [CrossRef]
- Chiu, A.; Shi, X.L.; Lee, W.K.; Hill, R.; Wakeman, T.P.; Katz, A.; Xu, B.; Dalal, N.S.; Robertson, J.D.; Chen, C.; et al. Review of chromium (VI) apoptosis, cell-cycle-arrest, and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2010, 28, 188–230. [Google Scholar] [CrossRef] [Green Version]
- Teklay, A. Physiological Effect of Chromium Exposure: A Review. Int. J. Food Sci. Nutr. Diet. 2016, S7, 1–11. [Google Scholar] [CrossRef]
- Klaude, M.; Eriksson, S.; Nygren, J.; Ahnstrom, G. The comet assay: Mechanisms and technical considerations. Mutat. Res. 1996, 363, 89–96. [Google Scholar] [CrossRef]
- Uhl, M.; Helma, C.; Knasmuller, S. Single-cell gel electrophoresis assays with human-derived hepatoma (HepG2) cells. Mutat. Res. 1999, 441, 215–224. [Google Scholar] [CrossRef]
- Uhl, M.; Helma, C.; Knasmuller, S. Evaluation of the single cell gel electrophoresis assay with human hepatoma (HepG2) cells. Mutat. Res. 2000, 468, 213–225. [Google Scholar] [CrossRef]
- Lima, C.F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Phenolic compounds protect HepG2 cells from oxidative damage: Relevance of glutathione levels. Life Sci. 2006, 79, 2056–2068. [Google Scholar] [CrossRef] [PubMed]
- Chi-Square, Cramer’s V, and Lambda. Available online: http://vassarstats.net/newcs.html (accessed on 27 October 2021).
Labelling of Leather Samples | CHR-T1 | CHR-T2 | SYN-T | VEG-T |
---|---|---|---|---|
Pickling process | 1.6–1.8% acid (formic acid, sulphuric acid) 5–7% sodium chloride 40–45% water temp. 19–22 °C pH 3.00 | 1.6–1.8% acid (formic acid, sulphuric acid) 5–7% sodium chloride 40–45% water temp. 19–22 °C pH 3.00 | 2.0–2.5% commercial product based on polysulphonic acid, without salts 50% water temp. 20–25 °C | / |
Pre-Tanning process | / | / | / | 7–9% synthetic tanning agent for better tanning process; prevents the reduction of the concentration of the plant extracts) 20% water temp. 20–23 °C pH 5.0–5.5 |
Scouring | / | / | / | water, temp. 30 °C, circular bath |
Tanning process * | 3.2–3.6% basic chromium sulphate (commercially agent 25–27% Cr2O3; 330Sch) pH 2.4 | 3.2–3.6% basic chromium sulphate (commercially agent 25–27% Cr2O3; 330Sch) pH 2.4 | 1.5–2.0% synthetic tanning agent based on aliphatic polyaldehyde, metal free 2.0–2.5% commercial product based on polysulphonic acid, 0.1–0.2% formic acid (85%), pH 3.5 0.1–0.2% sodium bicarbonate 0.1–0.2% sodium bisulphite, pH 3.8–4.0 | 4–6% mimosa; 9–11% chestnut; 9–11% quebracho 1.5–2.5% synthetic tanning agent (for softness, suppleness and strength, dyeing) water 20% pH 3.0–3.5 |
Basification process | 0.25–0.32% basifying agents (commercial preparations of salt mixtures with low alkaline reactivity)—pH 10–12), water dispersed fungicide with zero volatile organic compounds; 20–25% water temp. 50 °C | 0.25–0.32% basifying agents (commercial preparations of salt mixtures with low alkaline reactivity)—pH 10–12), water dispersed fungicide with zero volatile organic compounds; 20–25% water temp. 50 °C | / | / |
Dyeing | / | Aniline Black dyes | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ražić, S.E.; Kopjar, N.; Kašuba, V.; Skenderi, Z.; Akalović, J.; Hrenović, J. Evaluation of DNA-Damaging Effects Induced by Different Tanning Agents Used in the Processing of Natural Leather—Pilot Study on HepG2 Cell Line. Molecules 2022, 27, 7030. https://doi.org/10.3390/molecules27207030
Ražić SE, Kopjar N, Kašuba V, Skenderi Z, Akalović J, Hrenović J. Evaluation of DNA-Damaging Effects Induced by Different Tanning Agents Used in the Processing of Natural Leather—Pilot Study on HepG2 Cell Line. Molecules. 2022; 27(20):7030. https://doi.org/10.3390/molecules27207030
Chicago/Turabian StyleRažić, Sanja Ercegović, Nevenka Kopjar, Vilena Kašuba, Zenun Skenderi, Jadranka Akalović, and Jasna Hrenović. 2022. "Evaluation of DNA-Damaging Effects Induced by Different Tanning Agents Used in the Processing of Natural Leather—Pilot Study on HepG2 Cell Line" Molecules 27, no. 20: 7030. https://doi.org/10.3390/molecules27207030
APA StyleRažić, S. E., Kopjar, N., Kašuba, V., Skenderi, Z., Akalović, J., & Hrenović, J. (2022). Evaluation of DNA-Damaging Effects Induced by Different Tanning Agents Used in the Processing of Natural Leather—Pilot Study on HepG2 Cell Line. Molecules, 27(20), 7030. https://doi.org/10.3390/molecules27207030