Photocatalytic Degradation of Dyes Using Titania Nanoparticles Supported in Metal-Organic Materials Based on Iron
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.1.1. X-ray Diffraction
2.1.2. Raman Spectroscopy
2.1.3. Scanning Electronic Microscopy (SEM)
2.1.4. Optical Measurements
2.2. Photocatalytic Activities
2.2.1. Photocatalytic Degradation of Orange II Dye
2.2.2. Photocatalytic Degradation of Reactive Black Dye
2.2.3. Kinetics and Mechanism of Dye Degradation
2.2.4. Stability of the MOFs
2.2.5. Recyclability
2.3. Proposed Mechanism
3. Materials and Methods
3.1. Reagents
3.2. Determination of the Optimum Conditions
3.3. Synthesis of the Materials
3.3.1. Fe-BTC Synthesis
3.3.2. MIL-53 (Fe) Synthesis
3.3.3. MIL-100 (Fe) Synthesis
3.3.4. Incorporation of TiO2 NPs into MOF
3.4. Characterization of Materials
3.5. Photocatalytic Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, A.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Noreen, S.; Tahira, M.; Ghamkhar, M.; Hafiz, I.; Bhatti, H.N.; Nadeem, R.; Murtaza, M.A.; Yaseen, M.; Sheikh, A.A.; Naseem, Z.; et al. Treatment of textile wastewater containing acid dye using novel polymeric graphene oxide nanocomposites (GO/PAN, G.O./PPy, GO/PSty). J. Mater. Res. Technol. 2021, 14, 25–35. [Google Scholar] [CrossRef]
- Mosbah, A.; HChouchane, H.; Abdelwahed, S.; Redissi, A.; Hamdi, M.; Kouidhi, S.; Neifar, M.; Masmoudi, A.S.; Cherif, A.; Mnif, W. Peptides fixing industrial textile dyes: A New Biochemical Method in Wastewater Treatment. J. Chem. 2019, 2019, 5081807. [Google Scholar] [CrossRef] [Green Version]
- Adane, T.; Adugna, A.T.; Alemayehu, E. Review Textile Industry Effluent Treatment Techniques. J. Chem. 2021, 2021, 5314404. [Google Scholar] [CrossRef]
- Shindhala, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2021, 12, 70–87. [Google Scholar] [CrossRef]
- Papić, S.; Koprivanac, N.; Božić, A.L.; Vujević, D.; Dragičević, S.K.; Kušić, H.; Peternel, I. Advanced Oxidation Processes in Azo Dye Wastewater Treatment. Water Environ. Res. 2006, 78, 572–579. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Glaze, W.H.; Kang, J.W.; Chapin, D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Xu, Y. Comparative studies of the Fe3+/2+-UV, H2O2-UV, TiO2-UV, TiO2-UV/vis systems for the decolorization of a textile dye X-3B in water. Chemosphere 2001, 43, 1103–1107. [Google Scholar] [CrossRef]
- Arslan-Alaton, I. A review of the effects of dye-assisting chemicals on advanced oxidation of reactive dyes in wastewater. Color Technol. 2003, 119, 345–353. [Google Scholar] [CrossRef]
- Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Adv. Environ. Res. 2004, 8, 501–551. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Tomar, R.; Abdala, A.A.; Chaudhary, R.G.; Singh, N.B. Photocatalytic degradation of dyes by nanomaterials. Mater. Today Proc. 2020, 29, 967–997. [Google Scholar] [CrossRef]
- Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 2021, 97, 111–128. [Google Scholar] [CrossRef]
- Liu, R.; Wu, L.; Liu, H.; Zhang, Y.; Ma, J.; Jiang, C.; Duan, T. High-Efficiency Photocatalytic Degradation of Tannic Acid Using TiO2 Heterojunction Catalysts. ACS Omega 2021, 6, 28538–28547. [Google Scholar] [CrossRef]
- Dong, M.A.; Mahmoud, S.H.K.; Park, H.; Abdel-Wahab, A. Photocatalytic degradation of organic dye using titanium dioxide modified with metal and non-metal deposition. Mater. Sci. Semicond. Process. 2016, 41, 209–218. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; Groy, T.L.; Yaghi, O.M. Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 1998, 120, 8571–8572. [Google Scholar] [CrossRef]
- Barton, T.J.; Bull, L.M.; Klemperer, W.G.; Loy, D.A.; McEnaney, B.; Misono, M.; Monson, P.A.; Pez, G.; Scherer, G.W.; Vartuli, J.C.; et al. Tailored porous materials. Chem. Mater. 1999, 11, 2633–2656. [Google Scholar] [CrossRef] [Green Version]
- Riou, D.; Ferey, G. Hybrid open frameworks (MIL-n). Part 3 Crystal structures of the HT and LT forms of MIL-7: A new vanadium propylenediphosphonate with an open-framework. Influence of the synthesis temperature on the oxidation state of vanadium within the same structural type. J. Mater. Chem. 1998, 8, 733–2735. [Google Scholar] [CrossRef]
- Loiseau, T.; Férey, G. Synthesis and crystal structure of ULM-16, a new open-framework fluorinated gallium phosphate with 16-ring channels: Ga4(PO4)4F2·1.5NC6H14·0.5H2O·0.5H3O. J. Mater. Chem. 1996, 6, 1073–1074. [Google Scholar] [CrossRef]
- Livage, C.; Egger, C.; Nogués, M.; Feérey, G. Hybrid open frameworks (MIL-n). Part 5 Synthesis and crystal structure of MIL-9: A new three-dimensional ferrimagnetic cobalt(II) carboxylate with a two-dimensional array of edge-sharing Co octahedra with 12-membered rings. J. Mater. Chem. 1998, 8, 2743–2747. [Google Scholar] [CrossRef]
- Simon, N.; Loiseau, T.; Férey, G. Synthesis and crystal structure of ULM-6, a new open-framework fluorinated aluminium phosphate with encapsulated 1,3-diaminopropane: [N2C3H12]2+[Al4(PO4)4F2(H2O)]2–. J. Chem. Soc. Dalton Trans. 1999, 7, 1147–1152. [Google Scholar] [CrossRef]
- Serre, C.; Férey, G. Hydrothermal synthesis, structure determination from powder data of a three-dimensional zirconium diphosphonate with an exceptionally high thermal stability: Zr(O3P-(CH2)-PO3) or MIL-57. J. Mater. Chem. 2002, 12, 2367–2369. [Google Scholar] [CrossRef]
- Sassoye, C.; Loiseau, T.; Taulelle, F.; Férey, G. A new open-framework fluorinated gallium phosphate with large 18-ring channels (MIL-31). Chem. Commun. 2000, 12, 943–944. [Google Scholar] [CrossRef]
- Kitagawa, S.; Matsuyama, M.; Munakata, M.; Emori, T. Synthesis and crystal structures of novel one-dimensional polymers, [{M(bpen)X}∞] [M = CuI, X = PF6–; M = AgI, X = ClO4−; bpen = trans-1,2-bis(2-pyridyl)ethylene] and [{Cu(bpen)(CO)(CH3CN)(PF6)}∞]. J. Chem. Soc. Dalton Trans. 1991, 11, 2869–2874. [Google Scholar] [CrossRef]
- Jhung, S.H.; Khan, N.A.; Hasan, Z. Analogous porous metal-organic frameworks: Synthesis, stability and application in adsorption. CrysEngComm 2012, 14, 7099–7109. [Google Scholar] [CrossRef]
- Cheong, V.F.; Moh, P.Y. Recent advancement in metal-organic framework: Synthesis, activation, functionalization, and bulk production Review. Mater. Sci. Technol. 2018, 34, 1025–1045. [Google Scholar] [CrossRef]
- Rojas, E.; Barrera, A.; Albiter, E.; Maubert, A.; Valenzuela, M. Application of MOFs and Their Composites Materials, Chapter 14. In Light-Driven Redox Reactions, Applications of Metal-Organic Frameworks and Their Derived Materials, 1st ed.; Inamuddin, Boddula, R., Ahamed, M.I., Asiri, A.M., Eds.; Wiley-Scrivener Publisher: Beverly, MA, USA, 2019. [Google Scholar]
- Lucas, M.S.; Peres, J.A. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dye. Pigment. 2006, 71, 236–244. [Google Scholar] [CrossRef]
- Salazar, R.; Ureta-Zañartu, M.S. Degradation of Acid violet 7 and Reactive Black 5 in water by electro-Fenton and photo electroFenton by. J. Chil. Chem. Soc. 2012, 57, 999–1003. [Google Scholar] [CrossRef] [Green Version]
- Riaz, N.; Chong, F.K.; Man, Z.B.; Khan, M.S.; Dutta, B.K. Photodegradation of Orange II under visible light using Cu–Ni/TiO2: Influence of Cu:Ni mass composition, preparation, and calcination temperature. Ind. Eng. Chem. Res. 2013, 52, 4491–4503. [Google Scholar] [CrossRef]
- Preeti, S.M.; Solanki, J.N.; Murthy, Z.V.P. TiO2 nanoparticles synthesis for application in proton exchange membranes. Cryst. Res. Technol. 2013, 48, 969–976. [Google Scholar] [CrossRef]
- Du, J.J.; Yuan, Y.P.; Sun, J.X.; Peng, F.M.; Jiang, X.; Qiu, L.G.; Xie, A.J.; Shen, Y.H.; Zhu, J.F. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye. J. Hazard. Mater. 2011, 190, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J.M.; Lefebvre, F.; Chang, J.S.; et al. Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem. 2011, 21, 1226–1233. [Google Scholar] [CrossRef]
- Llewellyn, P.L.; Horcajada, P.; Maurin, G. Complex Adsorption of Short Linear Alkanes in the Flexible Metal-Organic-Framework MIL-53(Fe). J. Am. Chem. Soc. 2009, 131, 13002–13009. [Google Scholar] [CrossRef] [PubMed]
- Rojas, E.; López, R.; May, M.; Hernández, I.; Valero, M.J.; Maubert, A.M. Adsorption of azo-dye orange II from aqueous solutions using a metal-organic framework material: Iron- benzenetricarboxylate. Materials 2014, 7, 8037–8057. [Google Scholar] [CrossRef] [Green Version]
- Trinh, N.D.; Hong, S.S. Photocatalytic Decomposition of Methylene Blue Over MIL-53(Fe) Prepared Using Microwave-Assisted Process Under Visible Light Irradiation. J. Nanosci. Nanotechnol. 2015, 15, 5450–5454. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Song, M.; Zhou, T.; Zhao, X. Band gap calculation and photo catalytic activity of rare earths doped rutile TiO2. J. Rare Earths 2009, 27, 461–468. [Google Scholar] [CrossRef]
- Nguyen, M.T.H.; Nguyen, Q.T. Efficient refinement of a metal-organic framework MIL-53(Fe) by UV–vis irradiation in aqueous hydrogen peroxide solution. J. Photochem. Photobiol. A Chem. 2014, 288, 55–59. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, J.; Jin, Y.; Zhong, Y.; Zhu, W. Facile synthesis of MIL-100 (Fe) under HF-free conditions and its applications in the characterization of aldehydes with diols. Chem. Eng. J. 2015, 259, 183–190. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bhunia, H.; Bajpai, P.K. Photocatalytic Decolorization Kinetics and Mineralization of Reactive Black 5 Aqueous Solution by UV/TiO2 Nanoparticle. Clean Soil Air Water. 2012, 40, 1290–1296. [Google Scholar] [CrossRef]
- Wang, D.; Li, Z. Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light. J. Catal. 2016, 342, 151–157. [Google Scholar] [CrossRef]
Sample | Bandgap (eV) | |
---|---|---|
Direct | Indirect | |
MIL-53 (Fe) | 2.45 | 2.9 |
0.5TiO2/MIL-53 | 2.42 | 2.9 |
1TiO2/MIL-53 | 2.41 | 2.8 |
2.5TiO2/MIL-53 | 2.43 | 2.9 |
MIL-100 (Fe) | 1.95 | 2.72 |
0.5TiO2/MIL-100 | 1.96 | 2.72 |
1TiO2/MIL-100 | 1.94 | 2.72 |
2.5TiO2/MIL-100 | 1.94 | 2.72 |
Fe-BTC | 2.45 | 3.1 |
0.5TiO2/Fe-BTC | 2.42 | 3.1 |
1TiO2/Fe-BTC | 1.7 | 2.65 |
2.5TiO2/Fe-BTC | 2.45 | 3.09 |
Sample | % Degradation | Apparent Reaction Constant (min−1) | ||||
---|---|---|---|---|---|---|
Orange II | RB 5 | Orange II | R2 | RB 5 | R2 | |
MIL-53 | 95.2 | 91.2 | 0.0262 | 0.8892 | 0.0236 | 0.9073 |
0.5TiO2/MIL-53 | 93.4 | 94.9 | 0.0247 | 0.8654 | 0.0245 | 0.8653 |
1.0TiO2/MIL-53 | 95.9 | 96.4 | 0.0292 | 0.8673 | 0.0279 | 0.8723 |
2.5TiO2/MIL-53 | 95.4 | 91.0 | 0.0258 | 0.8864 | 0.0199 | 0.8621 |
MIL-100 | 94.0 | 92.5 | 0.0236 | 0.8674 | 0.255 | 0.9565 |
0.5TiO2/MIL-100 | 91.3 | 93.7 | 0.0244 | 0.8652 | 0.0234 | 0.8964 |
1.0TiO2/MIL-100 | 94.3 | 97.7 | 0.0270 | 0.9341 | 0.0335 | 0.9234 |
2.5TiO2/MIL-100 | 96.9 | 98.9 | 0.0322 | 0.8865 | 0.0453 | 0.9856 |
Fe-BTC | 91.2 | 69.8 | 0.0223 | 0.9542 | 0.0133 | 0.8865 |
0.5TiO2/Fe-BTC | - | 65.3 | - | - | 0.0125 | 0.8123 |
1.0TiO2/Fe-BTC | - | 65.2 | - | - | 0.0161 | 0.7432 |
2.5TiO2/Fe-BTC | 92.3 | 70.3 | 0.0243 | 0.9453 | 0.0135 | 0.8221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-García, E.; García-Martínez, D.C.; López-Medina, R.; Rubio-Marcos, F.; Castañeda-Ramírez, A.A.; Maubert-Franco, A.M. Photocatalytic Degradation of Dyes Using Titania Nanoparticles Supported in Metal-Organic Materials Based on Iron. Molecules 2022, 27, 7078. https://doi.org/10.3390/molecules27207078
Rojas-García E, García-Martínez DC, López-Medina R, Rubio-Marcos F, Castañeda-Ramírez AA, Maubert-Franco AM. Photocatalytic Degradation of Dyes Using Titania Nanoparticles Supported in Metal-Organic Materials Based on Iron. Molecules. 2022; 27(20):7078. https://doi.org/10.3390/molecules27207078
Chicago/Turabian StyleRojas-García, Elizabeth, Diana Carolina García-Martínez, Ricardo López-Medina, Fernando Rubio-Marcos, Aldo A. Castañeda-Ramírez, and Ana M. Maubert-Franco. 2022. "Photocatalytic Degradation of Dyes Using Titania Nanoparticles Supported in Metal-Organic Materials Based on Iron" Molecules 27, no. 20: 7078. https://doi.org/10.3390/molecules27207078
APA StyleRojas-García, E., García-Martínez, D. C., López-Medina, R., Rubio-Marcos, F., Castañeda-Ramírez, A. A., & Maubert-Franco, A. M. (2022). Photocatalytic Degradation of Dyes Using Titania Nanoparticles Supported in Metal-Organic Materials Based on Iron. Molecules, 27(20), 7078. https://doi.org/10.3390/molecules27207078