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Abstract: New representatives of 2-(butylamino)cinchomeronic dinitrile derivatives were synthesized
as promising fluorophores showing dual-state emission. To characterize the influence of the length
(from methyl to butyl) and the structure (both linear and branched) of the alkyl substituent at
the amino nitrogen atom, the spectral fluorescence properties of all synthesized compounds were
carefully studied both in solution and in solid state. The highest photoluminescence quantum yield
values of 63% were noted for solutions of 2-(butylamino)-6-phenylpyridine-3,4-dicarbonitrile in DCM
and 2-(butylamino)-5-methyl-6-phenylpyridine-3,4-dicarbonitrile in toluene.

Keywords: cyano compounds; aminopyridines; dual-state emission; fluorescent dyes;
cinchomeronic dinitriles

1. Introduction

The development of new luminescent organic compounds has received continued at-
tention due to their possible applications in many fields. The most promising fluorophores
are compounds efficiently emitting visible light upon photoexcitation both in solution and
in the solid state. Such a phenomenon is called dual-state emission (DSE) [1–4]. Usually,
most fluorescent materials are emissive in one state only (in solution or in crystals). In many
cases, luminogens exhibit an intense photoluminescence in dilute solutions and show no or
weak emission in the solid state [5,6]. This is due to the fact that aggregated molecules are
often affected by strong π-π stacking leading to energy exchange and aggregation-caused
quenching (ACQ). In contrast to such fluorophores, some organic molecules are non- or
weakly emissive in solution but demonstrate a so-called aggregation-induced emission
(AIE)—strong fluorescence in the solid state [7–9]. The mentioned aggregation state restric-
tions significantly reduce the areas of possible use for most fluorescent molecules. Thus, the
possibility to achieve strong emissions both in solution and in solid state simultaneously
for the single molecule is a challenging task since the absorbed excitation energy can be
released through various competing channels.

Over the past decade, there has been an exponential increase in the number of publications
about the synthetic approaches to compounds showing dual-state emission (DSE) [1–4,10–44].
This is due to the fact that DSE molecules are more versatile and are therefore intended for a
wider range of applications. For example, they are successfully used in sensing (as fluorescence
sensors and pH or ion indicators) [20–25], bioimaging [26–28], ultrahigh-density data recording
and storage [29], super-resolution fluorescence microscopy [30], lasing [31], organic OLED
devices [32–35], organic semiconductors [36], and NLO materials [37,38].

Previously, we reported that compounds with cinchomeronic dinitrile fragments exhib-
ited fluorescence both in solutions and in solid state [39–43]. For example, sulfur-containing
cinchomeronic dinitrile derivatives (ethyl 2-((3,4-dicyanopyridine-2-yl)thio)acetates) showed
blue fluorescence in organic solvents and a green emission in powders [39]. Compounds such
as 2-diethylaminocinchomeronic dinitriles were strongly emissive in the solid state and in
nonpolar solvents, with fluorescence quantum yields up to 59% [40]. Compounds such as
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2-(pyrrolidin-1-yl)-, 2-(piperidin-1-yl)-, and 2-(azepan-1-yl)-pyridine-3,4-dicarbonitrile deriva-
tives showed even higher emission efficiencies both in solvents and in crystals up to 80% [41].
In addition, 2-(dicyanomethylene)-1,2-dihydropyridine-3,4-dicarbonitrile derivatives (4-CN-
TCPy) possessed solid-state emissions in the red and NIR regions, while their solutions were
characterized with strong solvatochromic effects and blue fluorescence [42]. It was also shown
that the fluorescence of 4-CN-TCPy can be used for determination of the degree of substitution
of the amino nitrogen atom with ethyl groups using gaseous ethylamine, diethylamine, and
triethylamine [43]. Such above-mentioned promising fluorescence properties prompted us
to continue our studies. Herein, we report our novel findings in the field of cinchomeronic
dinitrile derivatives showing dual-state emissions (DSE): synthesis and characterization of
new compounds along with investigation of their photophysical properties.

It is known that alkyl chains of a certain length and other terminal bulky groups are
usually introduced not only to improve the solubility of conjugated fluorescent molecules,
but also to prevent their intermolecular interactions and to provide “self-isolation” of
fluorophores, increasing the emission intensity in both states [1,12,44]. According to this,
we decided to synthesize previously undescribed N-butylamino-substituted derivatives of
cinchomeronic dinitrile bearing both linear and branched alkyl chains and to study their
photophysical properties.

2. Results
2.1. Synthesis and Photophysical Properties of 2-(Butylamino)Pyridine-3,4-Dicarbonitriles 2

At first, we developed the method for the preparation of 2-butylaminopyridine-3,4-
dicarbonitriles 2a–f (Scheme 1, Table 1) based on the reaction of available 2-chloropyridine-
3,4-dicarbonitriles 1 [45] with N-butylamine in propan-2-ol in the presence of
N,N-diisopropylethylamine (DIPEA). The reaction yield was 53–81%.
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The solvatochromic behavior of 2-butylamino-substituted compounds 2 was studied 
using compound 2d (Table 2, Figure 1). It was found that the long-wavelength absorption 
band was slightly red-shifted upon increasing of the solvent polarity, and its maximum 
lay in the range of 402–410 nm. The fluorescence band was more affected by the polarity 
changes, and its maximum was in the range of 442–477 nm corresponding to the blue and 
blue-green region of the spectrum. 

Table 2. Solvatochromic properties of the compound 2d. 

Solvent λabs, nm a ε, M−1 cm−1 λem, nm b Δλ, nm (cm−1) c Φs, % d 
PhMe 404 11288 442 38 (2128) 60 
EtOAc 402 10766 456 54 (2946) 47 
DCM 402 9794 452 50 (2752) 63 

MeCN 403 7842 463 60 (3216) 51 
DMSO 412 9462 477 65 (3307) 26 

Acetone 404 9800 462 58 (3107) 49 
EtOH 406 8986 470 64 (3354) 39 

1,4-Dioxane 403 9646 454 51 (2787) 49 
Pyridine 410 10834 468 58 (3023) <1 
AcOH 402 10754 467 65 (3462) 48 

a The absorption spectra were registered for 5 × 10−5 M solutions. b The photoluminescence spectra 
were registered for 5 × 10−5 M solutions (long-wavelength absorption maxima were used for excita-
tion). c Stokes shift values were determined from long-wavelength absorption and emission maxima. 
d The relative photoluminescence quantum yields in solution (Φs) were determined using quinine 
sulfate in 0.05 M sulfuric acid (Φstd = 60 ± 2%); the excitation wavelength was 380 nm [46]. 
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sulfate in 0.05 M sulfuric acid (Φstd = 60 ± 2%); the excitation wavelength was 380 nm [46]. 
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The solvatochromic behavior of 2-butylamino-substituted compounds 2 was studied
using compound 2d (Table 2, Figure 1). It was found that the long-wavelength absorption
band was slightly red-shifted upon increasing of the solvent polarity, and its maximum
lay in the range of 402–410 nm. The fluorescence band was more affected by the polarity
changes, and its maximum was in the range of 442–477 nm corresponding to the blue and
blue-green region of the spectrum.

Table 2. Solvatochromic properties of the compound 2d.

Solvent λabs, nm a ε, M−1 cm−1 λem, nm b ∆λ, nm
(cm−1) c Φs, % d

PhMe 404 11288 442 38 (2128) 60
EtOAc 402 10766 456 54 (2946) 47
DCM 402 9794 452 50 (2752) 63

MeCN 403 7842 463 60 (3216) 51
DMSO 412 9462 477 65 (3307) 26

Acetone 404 9800 462 58 (3107) 49
EtOH 406 8986 470 64 (3354) 39

1,4-Dioxane 403 9646 454 51 (2787) 49
Pyridine 410 10834 468 58 (3023) <1
AcOH 402 10754 467 65 (3462) 48

a The absorption spectra were registered for 5 × 10−5 M solutions. b The photoluminescence spectra were
registered for 5 × 10−5 M solutions (long-wavelength absorption maxima were used for excitation). c Stokes
shift values were determined from long-wavelength absorption and emission maxima. d The relative photo-
luminescence quantum yields in solution (Φs) were determined using quinine sulfate in 0.05 M sulfuric acid
(Φstd = 60 ± 2%); the excitation wavelength was 380 nm [46].

It was found that increasing of the solvent polarity caused a bathochromic shift in
the emission maximum. It means that the excited state of compound 2d is more polar
than the ground one, and therefore it should be better stabilized by polar solvents. This
observation was supported by the Lippert–Mataga plot showing good linearity (Figure 2).
The compound 1,4-dioxane was excluded from the plot due to its “effective” dielectric
constant which should be considered much higher as the molecule is able to adopt the boat
conformation around dipolar species. Pyridine and acetic acid were also excluded because
of the pronounced acid–base properties.
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Figure 2. The Lippert–Mataga plot for compound 2d.

Table 1 describes the relationship between the nonradiative excitation energy loss (∆λ)
and the polarity function of a solvent (∆f ).

∆λ = (2 ∆µ2/hca3) ∆f, (1)

where ∆λ is Stokes shift value in cm−1, ∆µ is the change in dipole moment upon photoex-
citation, h is Planck’s constant, c is the speed of light in a vacuum, a is the cavity radius of
fluorophore, and ∆f is the orientation polarizability of the solvent which can be found from:

∆f = [(ε − 1)/(2ε + 1)] − [(n2 − 1)/(2n2 + 1)], (2)

where ε is the dielectric constant and n is the refractive index of the solvent.
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The slope of the Lippert–Mataga plot was used to estimate the change in dipole
moment of a molecule upon photoexcitation (∆µ), and for compound 2d it was found to be
about 5.1 D, which can be attributed to the prevailing locally excited (LE) state.

Due to the higher dipole moment in the excited state, the photoluminescence quantum
yield of compound 2d was also expected to be decreased in polar media. Thus, in nonpolar
toluene and dichloromethane, it reached 60% and 63%, respectively, while in DMSO, it
decreased to 26%. Basic pyridine led to almost complete fluorescence quenching, apparently
due to deprotonation of the N–H fragment.

The study of the influence of compound 2’s structure on the photophysical properties
showed that derivatives 2a and 2b, bearing aliphatic fragments at the pyridine ring, had
shorter-wavelength absorption maxima at 389 nm and 396 nm, respectively, while for
aryl-substituted structures 2c–f, these band maxima were in the range of 403–423 nm.
All the studied compound 2s demonstrated good photoluminescence properties. Their
emission maxima lay in the blue region of the spectrum between 429–452 nm. It should also
be noted that the fluorescence quantum yield (Φs) was not decreased, even for aliphatic
derivatives 2a,b. It indicates that the 2-butylamino-substituted cinchomeronic dinitrile
moiety is essential for the radiative relaxation from the excited state. The maximum
photoluminescence efficiency (Φs) was noted for compound 2c of about 63% (Table 3,
Figure 3).

Table 3. Photophysical parameters of the synthesized 2-(butylamino)cinchomeronic dinitrile deriva-
tives 2–6.

Compound λabs, nm a ε,
M−1 cm−1 λem, nm b ∆λ, nm

(cm−1) c Φs, % d λem, nm e Φc, % f

2a 389 5720 429 40 (2397) 54 507 13
2b 396 5980 432 36 (2104) 60 547 <1
2c 403 7100 434 31 (1772) 63 474 16
2d 403 11,280 442 39 (2189) 60 483 72
2e 406 10,240 441 35 (1955) 61 496 38
2f 423 9920 452 29 (1517) 50 517 2
3a 395 4880 449 54 (3045) 36 478 14
3b 402 5020 455 53 (2898) 39 491, 520 6
3c 409 6600 458 49 (2616) 37 499 13
3d 410 6640 463 53 (2792) 41 499 11
3e 409 7130 461 52 (2758) 43 497 3
3f 439 8460 471 32 (1548) 47 540, 564 20
4a 398 4300 456 58 (3196) 33 – –
4b 404 4680 457 53 (2871) 33 529 <1
4c 411 7400 459 48 (2544) 32 501 38
4d 413 6440 466 53 (2754) 37 519 17
4e 412 7620 462 50 (2627) 41 494 10
4f 426 8460 472 46 (2288) 43 532 7
5a 411 6560 464 53 (2779) 23 500 8
5b 413 6500 470 57 (2936) 33 507 20
6a 411 6060 464 53 (2779) 40 493 7
6b 412 6020 466 54 (2813) 38 497 2

a The absorption spectra were registered for 5 × 10−5 M solutions. b The photoluminescence spectra were
registered for 5 × 10−5 M solutions (long-wavelength absorption maxima were used for excitation). c Stokes
shift values were determined from long-wavelength absorption and emission maxima. d The relative photo-
luminescence quantum yields in solution (Φs) were determined using quinine sulfate in 0.05 M sulfuric acid
(Φstd = 60 ± 2%); the excitation wavelength was 380 nm [46]. e The solid-state photoluminescence spectra were
registered in powder; the excitation wavelength was 365 nm. f The photoluminescence quantum yields in the
crystalline state (Φc) were determined at room temperature using 365 nm excitation.
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Figure 3. UV-vis absorption (5 × 10−5 M, solid lines) and emission (5 × 10−5 M, dashed lines) spectra
of compound 2 in toluene. A photo of solution 2f in toluene was taken under 365 nm of irradiation.

Compound 2 also showed good photoluminescence in the individual form in the
crystalline state (Table 3, Figure 4). It was found that the emission maxima of the com-
pounds lay in the range of 474–547 nm, corresponding to a wide range from the blue-green
to yellow-orange regions of the visible spectrum, and in most cases, short-wavelength
emissions were much more intense. These observations indicated that derivatives 2b and
2f, showing red-shifted emission maxima with pronounced shoulders, were prone to ag-
gregation with subsequent fluorescence quenching, while compound 2d, on the contrary,
demonstrated the highest photoluminescence intensity and a narrow emission band.
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2.2. Synthesis and Photophysical Properties of 2-(Butyl(methyl)amino)Pyridine-3,4-Dicarbonitriles 3

The next part of the presented study was the synthesis of compounds bearing a butyl
substituent without the mobile N–H moiety. This proton can participate in amine–imine tau-
tomerism and affects the optical properties of compound 2. The synthesis of target compound
3 bearing N-butyl-N-methylamine fragments was carried out using two approaches.

The first method was developed based on the NH alkylation of compound 2 with
methyl iodide in the presence of sodium hydride (Scheme 2) in absolute DMF. The isolated
yield of 2-(butyl(methyl)amino)pyridine-3,4-dicarbonitriles 3 was about 12–37%. The sec-
ond preparation method was based on the halogen substitution reaction in pyridines. As a
result of the reaction of 2-chloropyridine-3,4-dicarbonitriles 1 with N-butyl-N-methylamine
in propan-2-ol in the presence of N,N-diisopropylethylamine (DIPEA), compounds 3a–f
were synthesized with 71–96% yields (Scheme 2, Table 1).
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in toluene were characterized by maxima in the range of 395–439 nm, and the emission 
spectra showed an intense fluorescence band in the range of 449–471 nm, corresponding 
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probability of the existence of several radiating excited states. The Stokes shift values (Δλ) 
correlated with the observed photoluminescence quantum yield values (Φs). Thus, for 
compound 3a, significant nonradiative energy losses (3045 cm–1) were observed leading 
to a decrease in Φs to 36%. In turn, for the derivative 3f, which was characterized by a 
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Figure 5. UV-vis absorption (5 × 10−5 M, solid lines) and emission (5 × 10−5 M, dashed lines) spectra 
of compound 3 in toluene. A photo of solution 3f in toluene was taken under 365 nm of irradiation. 

Scheme 2. Synthesis of 2-(butyl(methyl)amino)pyridine-3,4-dicarbonitriles 3.

The synthesized 2-(butyl(methyl)amino)pyridine-3,4-dicarbonitriles 3 also exhibited a
pronounced fluorescence in solution. The registered absorption spectra of compound 3 in
toluene were characterized by maxima in the range of 395–439 nm, and the emission spectra
showed an intense fluorescence band in the range of 449–471 nm, corresponding to the
blue region of the spectra (Table 3, Figure 5). The shape of the photoluminescence spectra
was characterized by a pronounced long-wavelength shoulder, indicating the probability
of the existence of several radiating excited states. The Stokes shift values (∆λ) correlated
with the observed photoluminescence quantum yield values (Φs). Thus, for compound 3a,
significant nonradiative energy losses (3045 cm–1) were observed leading to a decrease in
Φs to 36%. In turn, for the derivative 3f, which was characterized by a bathochromic shift
in both the absorption and emission bands, the quantum yield reached 47%, and the Stokes
shift was the smallest one of 32 nm (1548 cm−1).
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The fluorescence spectra of compound 3, registered at room temperature for powders
of the studied substances, covered a wide range from the blue-green to yellow-orange
spectral regions, with maxima in the range of 478–564 nm (Table 3, Figure 6). Compounds
3b and 3f, bearing a six-membered ring fused with pyridine, were characterized by the
presence of several emission maxima, which were associated with different types of crystal
packings in solid samples. The highest intensity of the solid-state photoluminescence upon
excitation at 365 nm was noted for compounds 3a, 3c, 3d, and 3f.
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2.3. Synthesis and Photophysical Properties of 2-(Dibutylamino)Pyridine-3,4-Dicarbonitriles 4

In the next step, the method for preparation of compounds bearing two bulky alkyl sub-
stituents was developed. It was found that the reaction of 2-chloropyridine-3,4-dicarbonitriles
1 with N,N-dibutylamine in propan-2-ol in the presence of N,N-diisopropylethylamine
(DIPEA) gave 2-dibutylaminopyridine-3,4-dicarbonitriles 4a–d (Scheme 3, Table 1), with
43–77% yields. The method based on the N-alkylation of compound 2 with butyl halides
gave extremely poor yields (less than 10%).
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Studies of the photophysical properties of the 2-dibutylamino-substituted derivatives
4 showed that the absorption maxima of these compounds in toluene were in the range
of 398–426 nm and were also characterized by intermediate values of light absorption
coefficients (4300–8460 M−1 cm−1) (Table 3, Figure 7). The expected bathochromic shift in
the absorption band along with an increase in intensity was observed for aryl-substituted
derivatives 4c–f. Compound 4f, containing a spatially locked aromatic fragment, showed
the biggest red shift and hyperchromic effect. The fluorescence bands of compound 4 were
also in the blue region of the spectra, with maxima in the range of 456–472 nm, that also
showed a bathochromic shift for aryl-substituted derivatives 4c–f. The photoluminescence
quantum yields were in the range from 33% to 43%, and the highest emission intensity
was also noted for compound 4f with fused cyclic fragments. The Stokes shift values
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(2288–3196 cm−1) showed the expected inverse correlation with the emission efficiency, and
the shape of the emission bands was also characterized by a pronounced long-wavelength
shoulder, probably caused by another radiative excited state.
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The solid-state photoluminescence was registered at room temperature for the powder
samples of compounds 4b-f (compound 4a is liquid at rt). It was found that excitation
by UV (365 nm) caused fluorescence of compound 4 with emission maxima in the green-
yellow region of the spectra between 494–532 nm. Compound 4c showed the highest
emission intensity; all other compounds observed slight quenching, probably caused by
self-aggregation. It was supported by the shape of the fluorescence spectra showing a
pronounced long-wavelength shoulder (Table 3, Figure 8).
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2.4. Synthesis and Photophysical Properties of 2-(Diisobutylamino)Pyridine-3,4-Dicarbonitriles 5

The next part of the presented study was the synthesis of compounds bearing branched
alkyl substituents. It was found that the reaction of 2-chloropyridine-3,4-dicarbonitriles 1
with diisobutylamine in propan-2-ol in the presence of N,N-diisopropylethylamine (DIPEA)
gave 2-diisobutylaminopyridine-3,4-dicarbonitrile derivatives 5a,b, with yields of 48–56%
(Scheme 4, Table 4).
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Scheme 5. Synthesis of 2-((alkyl)butylamino)pyridine-3,4-dicarbonitriles 6.

To study the effect of the branching alkyl fragment of the substituted amino group on
the spectral properties, the electronic spectra of 2-diisobutylamino-substituted pyridines
5 were analyzed (Table 3, Figure 9). It was found that their absorption maxima were
in a narrow range of 411–413 nm, and the emission maxima were between 464–470 nm.
Moreover, it should be noted that the 5-methyl-substituted derivative 5b was characterized
with a high photoluminescence quantum yield, reaching 33% in a toluene solution. For
compound 5a, the fluorescence efficiency was 23%. Apparently, the presence of the methyl
group at the C5 atom of the pyridine ring prevented the planarity of the molecule; as a
result, the efficiency of conjugation between aromatic fragments was decreased. Apparently,
it hindered the process of deactivation of the excited state through intramolecular charge
transfer and increased the probability of radiative relaxation. The Stokes shift values
(2779–2936 cm−1) also indicated a significant nonradiative loss of excitation energy, which
was associated with an increase in the contribution of vibrational relaxation due to an
increase in the number of mobile moieties.
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The solid-state photoluminescence spectra of compounds 5 were registered in powders
at room temperature (excitation wavelength was 365 nm). The spectra demonstrated a sim-
ilar dependence with solutions: the 5-methyl-substituted derivative 5b was characterized
by a higher fluorescence intensity. The maxima of the solid-state emission bands of both
compounds were in the yellow region of the spectra (500 nm and 507 nm) and did not show
a pronounced “shoulder” (Table 3, Figure 10).
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2.5. Synthesis of N-Alkyl-2-(Butylamino)Pyridine-3,4-Dicarbonitriles 6

One of the tasks of the presented study was to establish the effects of the length of
the alkyl substituent at the amino group on the photophysical properties of cinchomeronic
dinitrile derivatives. Therefore, we directly prepared a series of N-substituted derivatives
of 2-butylamino-5-methyl-6-phenylpyridine-3,4-dicarbonitrile 2d, 3d, and 4d and addi-
tional N-ethyl (6a) and N-propyl (6b) derivatives. They were obtained by the reaction
of 2-butylamino-5-methyl-6-phenylpyridine-3,4-dicarbonitrile 2d with bromoethane or
bromopropane in absolute DMF in the presence of sodium hydride (Scheme 5, Table 4).
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3. Discussion

A study of the optical properties showed that the highest fluorescence intensity was
observed for compound 2d, bearing a free NH fragment. Its photoluminescence quantum
yield reached 60% in a toluene solution. A replacement of a hydrogen atom of NH moiety by
alkyl substituents of various lengths led to a decrease in the photoluminescence efficiency,
down to 37%, and that decrease occurred with an increase in the alkyl chain per carbon atom.
Moreover, a slight bathochromic shift in the absorption bands from 403 nm (derivative 2d)
to 410–413 nm (compounds 3d, 6a, 6b, 4d) also occurred (Figure 11). A similar trend was
also observed for the emission band, shifting from 442 nm to the region of 463–466 nm.
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The solid-state photoluminescence spectra of compounds 2d, 3d, 6a, 6b, and 4d,
containing various substituents at the nitrogen atom of the amino group, were characterized
by emission maxima in the range of 483–519 nm. Compound 2d, with a free NH fragment
was the most intense, similarly as in solution. The introduction of an alkyl substituent into
the amino group led to a bathochromic shift in the emission band and caused a decrease in
its intensity (Table 3, Figure 12).
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Thus, it can be concluded that the presence of a free NH fragment in the studied
compounds is essential for the intense photoluminescence both in solution and in solid
state (dual-state emission). The introduction of a second substituent into the amino group,
as well as an increase in its size, lead to a decrease in the fluorescence efficiency (Table 3,
Figure 11).
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4. Materials and Methods

The progress of reactions and the purity of products were monitored by thin-layer
chromatography (TLC) on Sorbfil plates (spots were visualized under UV light, by treat-
ment with iodine vapor, or by heating). Melting points were determined using an OptiMelt
MPA100 device. The IR spectra were recorded on an FSM-2201 spectrometer with Fourier
transforms from samples dispersed in mineral oil. The NMR spectra were measured a
DMSO-d6 on Bruker AV-500 spectrometer using tetramethylsilane or residual solvent peak
as the internal references. Copies of the NMR spectra are provided in supplementary
materials. Elemental analyses were performed using a FlashEA 1112 CHN analyzer. The
mass spectra (electron impact, 70 eV) were obtained on a Shimadzu GCMS-QP2020 using
a direct-probe inlet. The UV spectra were recorded on an Agilent Cary 60 UV-Vis spec-
trophotometer using a standard quartz cuvette with a pathlength of 1 cm. The fluorescence
spectra were recorded on an Agilent Cary Eclipse spectrofluorometer using a quartz cu-
vette with four optically clear sides. The relative fluorescence quantum yields in solution
(Φs) were evaluated by the comparative method using quinine sulfate in 0.05 M H2SO4
as the standard compound with a known fluorescence efficiency (Φstd = 60%, excited at
380 nm) [46] by the creation of a calibration curve, plotting the area of fluorescence against
the absorbance for different concentrations of the fluorophore. The solid-state emission
spectra were registered at room temperature for sample powders using the Agilent Cary
Eclipse solid sample holder. Photoluminescence quantum yields in the crystalline state
(Φc) were determined by Wrighton’s method [47] using 365 nm of excitation.

4.1. General Procedure for the Preparation of 2-(Butylamino)Pyridine-3,4-Dicarbonitriles 2

An appropriate 2-chloropyridine-3,4-dicarbonitrile 1 (0.01 mol) was suspended in i-
PrOH (5 mL), and then N-butylamine (0.80 g, 0.011 mol) and DIPEA (1.42 g, 0.011 mol) were
added. The reaction mixture was stirred at 60–70 ◦C for 24 h. After reaction completion
(TLC monitoring), the mixture was cooled, and the precipitated product was filtered off
and washed with ice-cold water and i-PrOH. The resulting product was crystallized from
i-PrOH, and then dried in a vacuum desiccator over CaCl2.

Compound 2a: 2-(Butylamino)-5,6-dimethylpyridine-3,4-dicarbonitrile. Yield 53%,
mp 160–161 ◦C. IR (mineral oil, cm−1): 3377 (NH); 2233, 2214 (C≡N); 1591 (C=C). 1H NMR
(500.13 MHz, DMSO-d6): δ 0.89 (t, J = 7.4 Hz, 3H, CH2CH3), 1.25–1.33 (m, 2H, CH2CH3),
1.48–1.54 (m, 2H, CH2CH2), 2.25 (s, 3H, CH3), 2.40 (s, 3H, CH3), 3.34–3.39 (m, 2H, CH2NH),
7.38 (br t, 1H, NH). 13C NMR (125.76 MHz, DMSO-d6): δ 13.5, 15.8, 19.3, 23.7, 30.6, 40.2,
86.6, 114.5, 114.9, 121.0, 123.3, 156.1, 163.3. MS (EI, 70 eV): m/z (%) 228 ([M]+, 25), 185
([M-C3H7]+, 100). Anal: Calcd for C13H16N4: C, 68.39; H, 7.06; N, 24.54. Found: C, 68.18; H,
7.03; N, 24.64.

Compound 2b: 2-(Butylamino)-5,6,7,8-tetrahydroquinoline-3,4-dicarbonitrile. Yield
54%, mp 149–150 ◦C. IR (mineral oil, cm−1): 3367 (NH); 2214 (C≡N); 1582 (C=C). 1H NMR
(500.13 MHz, DMSO-d6): δ 0.88 (t, J = 7.3 Hz, 3H, CH2CH3), 1.25–1.32 (m, 2H, CH2CH3),
1.45–1.54 (m, 2H, CH2), 1.71–1.79 (m, 4H, 2CH2), 2.66–2.72 (m, 4H, 2CH2), 3.33–3.37 (m, 2H,
CH2NH), 7.36 (br t, 1H, NH). 13C NMR (125.76 MHz, DMSO-d6): δ 13.7, 19.46, 21.6, 21.6,
25.9, 30.7, 33.0, 40.3, 87.9, 114.0, 114.8, 121.8, 123.9, 155.9, 163.4. MS (EI, 70 eV): m/z (%)
254 ([M]+, 22), 211 ([M-C3H7]+, 100). Anal: Calcd for C15H18N4: C, 70.84; H, 7.13; N, 22.03.
Found: C, 70.51; H, 7.02; N, 22.13.

Compound 2c: 2-(Butylamino)-6-phenylpyridine-3,4-dicarbonitrile. Yield 65%, mp
151–152 ◦C. IR (mineral oil, cm−1): 3393 (NH); 2242, 2213 (C≡N); 1588 (C=C). 1H NMR
(500.13 MHz, DMSO-d6): δ 0.91 (t, J = 7.4 Hz, 3H, CH2CH3), 1.28–1.39 (m, 2H, CH2CH3),
1.54–1.65 (m, 2H, CH2), 3.47–3.54 (m, 2H, CH2NH), 7.50–7.55 (m, 3H, Ph), 7.76 (s, 1H,
CHpyr), 7.82 (t, J = 5.6 Hz, 1H, NH), 8.11–8.17 (m, 2H, Ph). 13C NMR (125.76 MHz, DMSO-
d6): δ 13.8, 19.6, 30.6, 40.6, 88.9, 110.2, 114.7, 115.3, 125.3, 127.3, 128.9, 131.2, 136.3, 157.7,
159.6. MS (EI, 70 eV): m/z (%) 276 ([M]+, 37), 233 ([M-C3H7]+, 100). Anal: Calcd for
C17H16N4: C, 73.89; H, 5.84; N, 20.27. Found: C, 74.01; H, 5.81; N, 20.18.
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Compound 2d: 2-(Butylamino)-5-methyl-6-phenylpyridine-3,4-dicarbonitrile. Yield
74%, mp 141–142 ◦C. IR (mineral oil, cm−1): 3361 (NH); 2231, 2217 (C≡N); 1586 (C=C).
1H NMR (500.13 MHz, DMSO-d6): δ 0.86 (t, J = 7.4 Hz, 3H, CH2CH3), 1.25–1.32 (m, 2H,
CH2CH3), 1.49–1.58 (m, 2H, CH2), 2.31 (s, 3H, CH3), 3.35–3.39 (m, 2H, CH2NH), 7.48–7.51
(m, 3H, Ph), 7.54–7.57 (m, 2H, Ph), 7.60 (t, J = 5.6 Hz, 1H, NH). 13C NMR (125.76 MHz,
DMSO-d6): δ 13.7, 17.4, 19.5, 30.7, 40.5, 89.1, 114.7, 114.8, 120.2, 125.8, 128.2, 128.8, 129.3,
138.5, 156.1, 162.2. MS (EI, 70 eV): m/z (%) 290 ([M]+, 43), 247 ([M-C3H7]+, 100). Anal:
Calcd for C18H18N4: C, 74.46; H, 6.25; N, 19.30. Found: C, 74.59; H, 6.21; N, 19.24.

Compound 2e: 2-(Butylamino)-6-(4-methoxyphenyl)-5-methylpyridine-3,4-dicarbonitrile.
Yield 63%, mp 125–126 ◦C. IR (mineral oil, cm−1): 3377 (NH); 2234, 2211 (C≡N); 1585 (C=C).
1H NMR (500.13 MHz, DMSO-d6): δ 0.88 (t, J = 7.4 Hz, 3H, CH2CH3), 1.26-1.34 (m, 2H,
CH2CH3), 1.51–1.57 (m, 2H, CH2), 2.35 (s, 3H, CH3), 3.36–3.42 (m, 2H, CH2NH), 3.83 (s,
3H, OCH3), 7.02–7.09 (m, 2H, C6H4), 7.50–7.61 (m, 3H, C6H4+NH). 13C NMR (125.76 MHz,
DMSO-d6): δ 14.3, 18.3, 20.1, 31.4, 41.1, 55.9, 88.9, 114.2, 115.4, 115.6, 120.7, 126.3, 131.3, 131.4,
156.6, 160.9, 162.3. MS (EI, 70 eV): m/z (%) 320 ([M]+, 51), 277 ([M-C3H7]+, 100). Anal: Calcd
for C19H20N4O: C, 71.23; H, 6.29; N, 17.49. Found: C, 71.44; H, 6.32; N, 17.38.

Compound 2f: 2-(Butylamino)-5,6-dihydrobenzo[h]quinoline-3,4-dicarbonitrile. Yield
81%, mp 161–162 ◦C. IR (mineral oil, cm−1): 3368 (NH); 2215 (C≡N); 1583 (C=C). 1H NMR
(500.13 MHz, DMSO-d6): δ 0.91 (t, J = 7.4 Hz, 3H, CH2CH3), 1.29–1.39 (m, 2H, CH2CH3),
1.56–1.63 (m, 2H, CH2), 2.86–2.96 (m, 4H, 2CH2), 3.45–3.49 (m, 2H, CH2NH), 7.30–7.44 (m,
3H, C6H4), 7.56 (br t, 1H, NH), 8.07–8.12 (m, 1H, C6H4). 13C NMR (125.76 MHz, DMSO-d6):
δ 14.4, 20.24, 25.4, 27.1, 31.3, 41.2, 88.9, 114.8, 115.7, 122.1, 123.8, 126.1, 127.8, 128.9, 131.9,
132.7, 140.1, 155.9, 157.4. MS (EI, 70 eV): m/z (%) 302 ([M]+, 46), 259 ([M-C3H7]+, 100). Anal:
Calcd for C19H18N4: C, 75.47; H, 6.00; N, 18.53. Found: C, 75.22; H, 5.97; N, 18.61.

4.2. General Procedure for the Preparation of 2-(Butyl(methyl)amino)Pyridine-3,4-Dicarbonitriles 3

Method A. An appropriate 2-butylaminopyridine-3,4-dicarbonitrile 2 (0.01 mol) was
dissolved in dry DMF (10 mL), and then NaH (0.52 g, 0.013 mol, 60% in mineral oil) and
methyl iodide (2.13 g, 0.015 mol) were added. The reaction mixture was stirred at room
temperature for 24 h. After reaction completion (TLC monitoring), the mixture was diluted
with water (50 mL) and neutralized by acetic acid. The precipitated solid was filtered off,
washed with ice-cold water, and crystallized from i-PrOH, and then dried in a vacuum
desiccator over CaCl2.

Method B. An appropriate 2-chloropyridine-3,4-dicarbonitrile 1 (0.01 mol) was sus-
pended in i-PrOH (5 mL), and then N-butyl-N-methylamine (0.96 g, 0.011 mol) and DIPEA
(1.42 g, 0.011 mol) were added. The reaction mixture was stirred at 60–70 ◦C for 24 h.
After reaction completion (TLC monitoring), the mixture was cooled, and the precipitated
product was filtered off and washed with ice-cold water and i-PrOH. The resulting product
3 was crystallized from i-PrOH, and then dried in a vacuum desiccator over CaCl2.

Compound 3a: 2-(Butyl(methyl)amino)-5,6-dimethylpyridine-3,4-dicarbonitrile. Yield
17% (method A), 71% (method B), mp 43–44 ◦C. IR (mineral oil, cm−1): 2232, 2206 (C≡N);
1578 (C=C). 1H NMR (500.13 MHz, DMSO-d6): δ 0.90 (t, J = 7.4 Hz, 3H, CH2CH3), 1.25–1.32
(m, 2H, CH2CH3), 1.54–1.60 (m, 2H, CH2CH2), 2.28 (s, 3H, CH3), 2.41 (s, 3H, CH3), 3.19 (s,
3H, CH3N), 3.62 (t, J = 7.6 Hz, 2H, CH2N). 13C NMR (125.76 MHz, DMSO-d6): δ 13.7, 16.0,
19.3, 23.7, 29.1, 37.9, 50.8, 85.8, 114.8, 116.9, 122.9, 125.3, 155.9, 162.4. MS (EI, 70 eV): m/z (%)
242 ([M]+, 19), 199 ([M-C3H7]+, 100). Anal: Calcd for C14H18N4: C, 69.39; H, 7.49; N, 23.12.
Found: C, 69.18; H, 7.54; N, 23.04.

Compound 3b: 2-(Butyl(methyl)amino)-5,6,7,8-tetrahydroquinoline-3,4-dicarbonitrile.
Yield 12% (method A), 84% (method B), mp 42–43 ◦C. IR (mineral oil, cm−1): 2231, 2212
(C≡N); 1571 (C=C). 1H NMR (500.13 MHz, DMSO-d6): δ 0.90 (t, J = 7.4 Hz, 3H, CH2CH3),
1.25–1.32 (m, 2H, CH2CH3), 1.54–1.60 (m, 2H, CH2), 1.74–1.80 (m, 4H, 2CH2), 2.69–2.74
(m, 4H, 2CH2), 3.18 (s, 3H, CH3N), 3.61 (t, J = 7.6 Hz, 2H, CH2N). 13C NMR (125.76 MHz,
DMSO-d6): δ 13.7, 19.3, 21.5, 21.6, 26.0, 29.1, 32.9, 38.0, 50.8, 87.0, 114.2, 116.7, 123.5, 125.7,
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155.8, 162.4. MS (EI, 70 eV): m/z (%) 268 ([M]+, 20), 225 ([M-C3H7]+, 100). Anal: Calcd for
C16H20N4: C, 71.61; H, 7.51; N, 20.88. Found: C, 71.22; H, 7.55; N, 20.96.

Compound 3c: 2-(Butyl(methyl)amino)-6-phenylpyridine-3,4-dicarbonitrile. Yield 20%
(method A), 87% (method B), mp 69–70 ◦C. IR (mineral oil, cm−1): 2240, 2205 (C≡N); 1588
(C=C). 1H NMR (500.13 MHz, DMSO-d6): δ 0.92 (t, J = 7.4 Hz, 3H, CH2CH3), 1.29–1.39 (m,
2H, CH2CH3), 1.60–1.68 (m, 2H, CH2), 3.31 (s, 3H, CH3N), 3.72 (t, J = 7.7 Hz, 2H, CH2N),
7.50–7.54 (m, 3H, Ph), 7.86 (s, 1H, CHpyr), 8.10–8.14 (m, 2H, Ph). 13C NMR (125.76 MHz,
DMSO-d6): δ 13.7, 19.4, 29.0, 38.2, 51.2, 87.4, 111.4, 115.5, 116.7, 127.3, 127.5, 128.9, 131.2,
135.9, 157.0, 158.5. MS (EI, 70 eV): m/z (%) 290 ([M]+, 29), 247 ([M-C3H7]+, 100). Anal:
Calcd for C18H18N4: C, 74.46; H, 6.25; N, 19.30. Found: C, 74.62; H, 6.21; N, 19.11.

Compound 3d: 2-(Butyl(methyl)amino)-5-methyl-6-phenylpyridine-3,4-dicarbonitrile.
Yield 19% (method A), 96% (method B), mp 126–127 ◦C. IR (mineral oil, cm−1): 2237, 2212
(C≡N); 1584 (C=C). 1H NMR (500.13 MHz, DMSO-d6): δ 0.89 (t, J = 7.4 Hz, 3H, CH2CH3),
1.25–1.33 (m, 2H, CH2CH3), 1.58–1.64 (m, 2H, CH2), 2.35 (s, 3H, CH3), 3.25 (s, 3H, CH3N), 3.65
(t, J = 7.7 Hz, 2H, CH2N), 7.48–7.52 (m, 3H, Ph), 7.57–7.60 (m, 2H, Ph). 13C NMR (125.76 MHz,
DMSO-d6): δ 13.7, 17.4, 19.3, 29.1, 38.1, 51.0, 87.8, 114.8, 116.7, 121.8, 127.7, 128.2, 128.9, 129.5,
138.2, 155.7, 161.2. MS (EI, 70 eV): m/z (%) 304 ([M]+, 31), 261 ([M-C3H7]+, 100). Anal: Calcd
for C19H20N4: C, 74.97; H, 6.62; N, 18.41. Found: C, 74.69; H, 6.66; N, 18.31.

Compound 3e: 2-(Butyl(methyl)amino)-6-(4-methoxyphenyl)-5-methylpyridine-3,4-
dicarbonitrile. Yield 37% (method A), 79% (method B), mp 118–119 ◦C. IR (mineral
oil, cm−1): 2229, 2210 (C≡N); 1582 (C=C). 1H NMR (500.13 MHz, DMSO-d6): δ 0.90
(t, J = 7.4 Hz, 3H, CH2CH3), 1.26–1.34 (m, 2H, CH2CH3), 1.58–1.64 (m, 2H, CH2), 2.39 (s,
3H, CH3), 3.25 (s, 3H, CH3N), 3.66 (t, J = 7.6 Hz, 2H, CH2N), 3.82 (s, 3H, OCH3), 7.03–7.06
(m, 2H, C6H4), 7.58–7.61 (m, 2H, C6H4). 13C NMR (125.76 MHz, DMSO-d6): δ 13.7, 17.7,
19.3, 29.1, 38.1, 51.0, 55.3, 87.0, 113.7, 114.9, 116.9, 121.7, 127.6, 130.4, 130.7, 155.7, 160.3, 160.7.
MS (EI, 70 eV): m/z (%) 334 ([M]+, 39), 291 ([M-C3H7]+, 100). Anal: Calcd for C20H22N4O:
C, 71.83; H, 6.63; N, 16.75. Found: C, 71.57; H, 6.65; N, 16.60.

Compound 3f: 2-(Butyl(methyl)amino)-5,6-dihydrobenzo[h]quinoline-3,4-dicarbonitrile.
Yield 14% (method A), 92% (method B), mp 135–136 ◦C. IR (mineral oil, cm−1): 2233, 2203
(C≡N); 1584 (C=C). 1H NMR (500.13 MHz, DMSO-d6): δ 0.92 (t, J = 7.4 Hz, 3H, CH2CH3),
1.30–1.38 (m, 2H, CH2CH3), 1.60–1.66 (m, 2H, CH2), 2.87–2.98 (m, 4H, 2CH2), 3.28 (s, 3H,
CH3N), 3.70 (t, J = 7.6 Hz, 2H, CH2N), 7.29–7.48 (m, 3H, C6H4), 8.08 (d, J = 7.7 Hz, 1H, C6H4).
13C NMR (125.76 MHz, DMSO-d6): δ 13.7, 19.4, 24.8, 26.4, 29.0, 38.2, 51.2, 87.1, 114.3, 117.0,
123.0, 125.1, 125.5, 127.2, 128.3, 131.4, 131.8, 139.5, 154.4, 156.5. MS (EI, 70 eV): m/z (%) 316
([M]+, 32), 273 ([M-C3H7]+, 100). Anal: Calcd for C20H20N4: C, 75.92; H, 6.37; N, 17.71. Found:
C, 75.54; H, 6.39; N, 17.64.

4.3. General Procedure for the Preparation of 2-(Dibutylamino)Pyridine-3,4-Dicarbonitriles 4

An appropriate 2-chloropyridine-3,4-dicarbonitrile 1 (0.01 mol) was suspended in i-
PrOH (5 mL), and then N,N-dibutylamine (1.42 g, 0.011 mol) and DIPEA (1.42 g, 0.011 mol)
were added. The reaction mixture was stirred at 60–70 ◦C for 24 h. After reaction comple-
tion (TLC monitoring), the mixture was cooled, the solvent was removed using a rotary
evaporator, and the residue was extracted with ethyl acetate. The extract was dried with
CaCl2 and then purified with column chromatography (ethyl acetate/hexane, 1/1 v/v).
Product 4 was isolated after solvent evaporation.

Compound 4a: 2-(Dibutylamino)-5,6-dimethylpyridine-3,4-dicarbonitrile. Yield 58%,
yellow oil. IR (thin film, cm−1): 2233, 2208 (C≡N); 1580 (C=C). 1H NMR (500.13 MHz, DMSO-
d6): δ 0.91 (t, J = 7.4 Hz, 6H, 2CH2CH3), 1.27–1.34 (m, 4H, 2CH2CH3), 1.54–1.60 (m, 4H,
2CH2CH2), 2.29 (s, 3H, CH3), 2.41 (s, 3H, CH3), 3.60 (t, J = 7.7 Hz, 4H, (CH2)2N). 13C NMR
(125.76 MHz, DMSO-d6): δ 13.7, 16.0, 19.2, 23.7, 29.6, 49.3, 85.4, 114.9, 117.0, 122.8, 125.6, 154.9,
162.6. MS (EI, 70 eV): m/z (%) 284 ([M]+, 32), 241 ([M-C3H7]+, 56), 199 (100), 185 (73). Anal:
Calcd for C17H24N4: C, 71.79; H, 8.51; N, 19.70. Found: C, 71.88; H, 8.47; N, 19.64.

Compound 4b: 2-(Dibutylamino)-5,6,7,8-tetrahydroquinoline-3,4-dicarbonitrile. Yield
43%, mp 42–43 ◦C. IR (mineral oil, cm−1): 2232, 2203 (C≡N); 1572 (C=C). 1H NMR
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(500.13 MHz, DMSO-d6): 0.90 (t, J = 7.4 Hz, 6H, 2CH2CH3), 1.26–1.33 (m, 4H, 2CH2CH3),
1.53–1.59 (m, 4H, 2CH2), 1.72–1.80 (m, 4H, 2CH2), 2.67–2.74 (m, 4H, 2CH2), 3.57 (t, J = 7.7 Hz,
4H, (CH2)2N). 13C NMR (125.76 MHz, DMSO-d6): δ 13.7, 19.2, 21.6, 21.6, 26.0, 29.6, 32.9,
49.3, 86.5, 114.2, 116.8, 123.2, 126.0, 154.7, 162.5. MS (EI, 70 eV): m/z (%) 310 ([M]+, 36), 267
([M-C3H7]+, 66), 225 (100), 211 (74). Anal: Calcd for C19H26N4: C, 73.51; H, 8.44; N, 18.05.
Found: C, 73.22; H, 8.49; N, 17.94.

Compound 4c: 2-(Dibutylamino)-6-phenylpyridine-3,4-dicarbonitrile. Yield 59%, mp
75–76 ◦C. IR (mineral oil, cm−1): 2240, 2202 (C≡N); 1587 (C=C). 1H NMR (500.13 MHz,
DMSO-d6): δ 0.92 (t, J = 7.4 Hz, 6H, 2CH2CH3), 1.31–1.38 (m, 4H, 2CH2CH3), 1.60–1.66
(m, 4H, 2CH2), 3.65 (t, J = 7.6 Hz, 4H, (CH2)2N), 7.48–7.53 (m, 3H, Ph), 7.83 (s, 1H, CHpyr),
8.07–8.11 (m, 2H, Ph). 13C NMR (125.76 MHz, DMSO-d6): δ 13.7, 19.3, 29.6, 49.7, 86.9, 111.2,
115.5, 116.6, 127.2, 127.8, 128.9, 131.2, 136.0, 156.0, 158.6. MS (EI, 70 eV): m/z (%) 332 ([M]+,
51), 289 ([M-C3H7]+, 54), 247 (100), 233 (76). Anal: Calcd for C21H24N4: C, 75.87; H, 7.28; N,
16.85. Found: C, 75.51; H, 7.31; N, 16.80.

Compound 4d: 2-(Dibutylamino)-5-methyl-6-phenylpyridine-3,4-dicarbonitrile. Yield
77%, mp 77–78 ◦C. IR (mineral oil, cm−1): 2229, 2203 (C≡N); 1583 (C=C). 1H NMR (500.13
MHz, DMSO-d6): δ 0.88 (t, J = 7.3 Hz, 6H, 2CH2CH3), 1.26–1.34 (m, 4H, 2CH2CH3),
1.57–1.64 (m, 4H, 2CH2), 2.34 (s, 3H, CH3), 3.61 (t, J = 7.6 Hz, 4H, (CH2)2N), 7.48–7.51 (m,
3H, Ph), 7.56–7.59 (m, 2H, Ph). 13C NMR (125.76 MHz, DMSO-d6): δ 13.7, 17.4, 19.3, 29.6,
49.5, 87.3, 114.9, 116.8, 121.9, 128.0, 128.2, 128.8, 129.5, 138.2, 154.7, 161.3. MS (EI, 70 eV):
m/z (%) 346 ([M]+, 50), 303 ([M-C3H7]+, 47), 261 (100), 247 (77). Anal: Calcd for C22H26N4:
C, 76.27; H, 7.56; N, 16.17. Found: C, 76.44; H, 7.53; N, 16.08.

Compound 4e: 2-(Dibutylamino)-6-(4-methoxyphenyl)-5-methylpyridine-3,4-dicarbonitrile.
Yield 61%, mp 76–77 ◦C. IR (mineral oil, cm−1): 2229, 2207 (C≡N); 1580 (C=C). 1H NMR
(500.13 MHz, DMSO-d6): 0.90 (t, J = 7.4 Hz, 6H, 2CH2CH3), 1.26–1.36 (m, 4H, 2CH2CH3), 1.57–1.64
(m, 4H, 2CH2), 2.38 (s, 3H, CH3), 3.57–3.64 (m, 4H, (CH2)2N), 3.82 (s, 3H, OCH3), 7.02–7.06 (m,
2H, C6H4), 7.56–7.60 (m, 2H, C6H4).13C NMR (125.76 MHz, DMSO-d6): δ 13.7, 17.7, 19.3, 29.7,
49.5, 55.3, 86.5, 113.6, 115.0, 116.9, 121.4, 127.9, 130.4, 130.7, 154.6, 160.3, 160.8. MS (EI, 70 eV): m/z
(%) 376 ([M]+, 46), 333 ([M-C3H7]+, 40), 291 (100), 277 (68). Anal: Calcd for C23H28N4O: C, 73.37;
H, 7.50; N, 14.88. Found: C, 73.11; H, 7.54; N, 14.79.

Compound 4f: 2-(Dibutylamino)-5,6-dihydrobenzo[h]quinoline-3,4-dicarbonitrile. Yield
64%, mp 89–90 ◦C. IR (mineral oil, cm−1): 2238, 2201 (C≡N); 1584 (C=C). 1H NMR (500.13 MHz,
DMSO-d6): δ 0.93 (t, J = 7.4 Hz, 6H, 2CH2CH3), 1.31–1.41 (m, 4H, 2CH2CH3), 1.60–1.68 (m, 4H,
2CH2), 2.92–2.98 (m, 4H, 2CH2), 3.64–3.71 (m, 4H, (CH2)2N), 7.32–7.48 (m, 3H, C6H4), 8.07 (m,
1H, C6H4). 13C NMR (125.76 MHz, DMSO-d6): δ 13.8, 19.4, 24.9, 26.5, 29.7, 49.8, 86.7, 114.4,
117.0, 122.9, 125.3, 125.4, 127.3, 128.4, 131.4, 131.9, 139.7, 154.6, 155.5. MS (EI, 70 eV): m/z (%) 358
([M]+, 58), 315 ([M-C3H7]+, 65), 273 (100), 259 (76). Anal: Calcd for C23H26N4: C, 77.06; H, 7.31;
N, 15.63. Found: C, 76.87; H, 7.35; N, 15.57.

4.4. General Procedure for the Preparation of 2-(Diisobutylamino)Pyridine-3,4-Dicarbonitriles 5

An appropriate 2-chloropyridine-3,4-dicarbonitrile 1 (0.01 mol) was suspended in
i-PrOH (5 mL), and then N,N-diisobutylamine (1.42 g, 0.011 mol) and DIPEA (1.42 g,
0.011 mol) were added. The reaction mixture was stirred at 60–70 ◦C for 24 h. After reaction
completion (TLC monitoring), the mixture was cooled, and the precipitated product was
filtered off and washed with ice-cold water and i-PrOH. The resulting product 5 was
crystallized from i-PrOH, and then dried in a vacuum desiccator over CaCl2.

Compound 5a: 2-(Diisobutylamino)-6-phenylpyridine-3,4-dicarbonitrile. Yield 48%, mp
180–181 ◦C. IR (mineral oil, cm−1): 2242, 2215 (C≡N); 1586 (C=C). 1H NMR (500.13 MHz,
DMSO-d6): δ 0.91 (d, J = 6.6 Hz, 12H, 4CH3), 2.06–2.16 (m, 2H, 2CH(CH3)2), 3.67 (d, J = 7.4 Hz,
4H, (CH2)2N), 7.51–7.57 (m, 3H, Ph), 7.93 (s, 1H, CH), 8.11–8.16 (m, 2H, Ph). 13C NMR
(125.76 MHz, DMSO-d6): δ 19.5, 26.8, 58.4, 87.9, 111.6, 115.5, 116.8, 127.3, 127.9, 129.1, 131.3,
136.0, 156.4, 158.6. MS (EI, 70 eV): m/z (%) 332 ([M]+, 16), 289 ([M-C3H7]+, 77), 233 (100). Anal:
Calcd for C21H24N4: C, 75.87; H, 7.28; N, 16.85. Found: C, 75.66; H, 7.32; N, 16.80.
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Compound 5b: 2-(Diisobutylamino)-5-methyl-6-phenylpyridine-3,4-dicarbonitrile.
Yield 56%, mp 105–106 ◦C. IR (mineral oil, cm−1): 2207 (C≡N); 1582 (C=C). 1H NMR
(500.13 MHz, DMSO-d6): δ 0.86 (d, J = 6.6 Hz, 12H, 4CH3), 1.99–2.10 (m, 2H, 2CH(CH3)2),
2.36 (s, 3H, CH3), 3.57 (d, J = 7.4 Hz, 4H, (CH2)2N), 7.49–7.53 (m, 3H, Ph), 7.57–7.62 (m,
2H, Ph). 13C NMR (125.76 MHz, DMSO-d6): δ 17.5, 19.5, 26.7, 58.0, 88.4, 114.8, 116.8, 122.0,
128.0, 128.3, 128.8, 129.5, 138.2, 155.0, 161.3. MS (EI, 70 eV): m/z (%) 346 ([M]+, 14), 303
([M-C3H7]+, 66), 247 (100). Anal: Calcd for C22H26N4: C, 76.27; H, 7.56; N, 16.17. Found: C,
76.04; H, 7.58; N, 16.09.

4.5. General Procedure for the Preparation of
2-(Butylamino)-5-Methyl-6-Phenylpyridine-3,4-Dicarbonitriles 6

The compound 2-(Butylamino)-5-methyl-6-phenylpyridine-3,4-dicarbonitrile 2d (2.9 g,
0.01 mol) was dissolved in dry DMF (10 mL), and then NaH (0.52 g, 0.013 mol, 60% in
mineral oil) and bromoethane (1.64 g, 0.015 mol, for 6a) or bromopropane (1.85 g, 0.015 mol,
for 6b) were added. The reaction mixture was stirred at room temperature for 24 h. After
reaction completion (TLC monitoring), the mixture was diluted with water (50 mL) and
neutralized by acetic acid. The precipitated solid was filtered off, washed with ice-cold
water, and crystallized from i-PrOH, and then dried in a vacuum desiccator over CaCl2.

Compound 6a: 2-(Butyl(ethyl)amino)-5-methyl-6-phenylpyridine-3,4-dicarbonitrile.
Yield 36%, mp 116–117 ◦C. IR (mineral oil, cm−1): 2235, 2209 (C≡N); 1582 (C=C). 1H
NMR (500.13 MHz, DMSO-d6): δ 0.90 (t, J = 7.4 Hz, 3H, CH2CH3), 1.21 (t, J = 6.9 Hz, 3H,
CH2CH3), 1.29–1.36 (m, 2H, CH2CH3), 1.60–1.66 (m, 2H, CH2), 2.35 (s, 3H, CH3), 3.59–3.64
(m, 2H, CH2N), 3.69 (q, J = 7.0 Hz, 2H, CH2N), 7.49–7.53 (m, 3H, Ph), 7.57–7.61 (m, 2H, Ph).
13C NMR (125.76 MHz, DMSO-d6): δ 13.9, 14.3, 18.1, 20.0, 30.4, 45.1, 49.5, 87.9, 115.5, 117.4,
122.2, 128.6, 128.9, 129.4, 130.1, 138.8, 155.3, 162.0. MS (EI, 70 eV): m/z (%) 318 ([M]+, 40),
275 ([M-C3H7]+, 100), 261 (25), 247 (84). Anal: Calcd for C20H22N4: C, 75.44; H, 6.96; N,
17.60. Found: C, 75.21; H, 7.00; N, 17.55.

Compound 6b: 2-(Butyl(propyl)amino)-5-methyl-6-phenylpyridine-3,4-dicarbonitrile.
Yield 29%, mp 78–79 ◦C. IR (mineral oil, cm−1): 2231, 2203 (C≡N); 1581 (C=C). 1H NMR
(500.13 MHz, DMSO-d6): δ 0.85-0.90 (m, 6H, 2CH2CH3), 1.25–1.35 (m, 2H, CH2CH3),
1.56–1.69 (m, 4H, 2CH2), 2.35 (s, 3H, CH3), 3.51–3.67 (m, 4H, 2CH2N), 7.48–7.52 (m, 3H,
Ph), 7.55–7.60 (m, 2H, Ph). 13C NMR (125.76 MHz, DMSO-d6): δ 10.6, 13.7, 17.4, 19.3, 20.9,
29.6, 49.5, 51.2, 87.3, 114.8, 116.7, 121.6, 128.0, 128.2, 128.8, 129.4, 138.2, 154.7, 161.3. MS (EI,
70 eV): m/z (%) 332 ([M]+, 40), 289 ([M-C3H7]+, 59), 261 (55), 247 (100). Anal: Calcd for
C21H24N4: C, 75.87; H, 7.28; N, 16.85. Found: C, 75.63; H, 7.30; N, 16.78.

5. Conclusions

Thus, we have developed a facile approach to the synthesis of novel 2-(butylamino)pyridine-
3,4-dicarbonitrile derivatives and have investigated their absorption, fluorescence, and solva-
tochromic properties. The synthesized compounds showed a unique property to be efficiently
fluorescent both in solution and in solid state (dual-state emission). The highest fluorescence
of the synthesized compounds was observed in nonpolar media with a quantum yield up to
63%. The strongest photoluminescence was noted for the butylaminocinchomeronic dinitrile
derivative. The introduction of an additional substituent to the amino nitrogen atom led to the
decrease in emissions in a row of N-substituted methyl, ethyl, propyl and butyl derivatives. All
the 2-(butylamino)pyridine-3,4-dicarbonitrile derivatives also showed solid-state emissions from
the blue to green regions of the spectra 478–564 nm.

Supplementary Materials: Copies of the NMR spectra for compounds 2—6 can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27217144/s1.
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