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Abstract: Simvastatin (SIM) particles are liposoluble drugs with large particle sizes, resulting in
poor compatibility with electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) nanofibers,
so that part of them will be exposed to the electrospun nanofiber surface, which is easy to cause
the burst release of drugs. Therefore, in this paper, stearic acid (SA) with good biocompatibility
was innovatively added to increase the dispersion uniformity of SIM in the spinning solution, thus
improving the performances of SIM-loaded PCL/PEG nanofiber membranes (NFMs). Accordingly,
the effects of SA addition on the morphologies, mechanical properties, wettability, and drug release
properties of the SIM-loaded NFMs were studied. The results showed that after SIM was dissolved
in SA solution, the particle size of SIM was significantly reduced and could be evenly dispersed
in the polymer spinning solution, thus obtaining the SIM-loaded composite NFMs with the best
morphology and performance.

Keywords: electrospinning; simvastatin; composite nanofiber membranes; drug release

1. Introduction

The controlled/sustained release of drugs can alleviate or avoid the side effects caused
by the initial burst release of drugs, stabilize the blood drug concentration, reduce the
toxic and side effects of drugs, and improve the stability and safety of drug treatments.
Nanotechnology is one of the important means to achieve this goal. Common drug carriers
based on nanotechnology include liposomes, micelles, dendrimers, nanotubes, nanoparti-
cles, nanofibers, and nanogels [1]. Among them, nanofibers prepared by electrospinning
technology can have significant advantages in controlling the drug release rate by chang-
ing nanofiber composition (such as using hydrophobic [2] or hydrophilic materials [3]
as drug carriers), nanofiber microstructure (such as smooth [4], porous [5], beaded [6] or
core-shell [7] fiber structure) or nanofiber membrane macrostructure (such as sandwich
grid structure [8]). In addition, nanofibers as drug carriers must be safe and non-toxic and
have good biocompatibility, mechanical properties, and biodegradability [9]. Therefore,
nanofibers based on biodegradable natural and synthetic polymers [10] are developing
rapidly as drug delivery systems. So far, a large number of biodegradable polymers, such as
polyethylene glycol (PEG) [11], chitosan (CS) [12], polylactic acid (PLA) [13], and polycapro-
lactone (PCL) [14], have been used in electrospinning technology to prepare nanofibers [15],
which makes electrospinning technology have a broad development prospect in the field of
drug delivery.

Electrospinning is a simple and effective technology for preparing nanofibers, which
can control the morphology and structure of nanofibers by adjusting spinning solution
components, spinning process parameters, ambient conditions, and post-processing pa-
rameters. An electrospinning device is mainly composed of a spinning solution supply
device, a spinneret, a high-voltage power supply, and a collector [16]. On applying a
high voltage, a Taylor cone is formed at the spinning nozzle. When the electric field force
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exceeds the surface tension of the Taylor cone, a charged jet is ejected from the tip of the
Taylor cone, which is stretched and solidified, finally forming nanofibers to deposit on the
collector. The structure and chemical composition of electrospun nanofibers are similar to
the natural extracellular matrix, and the high porosity of interconnected fibers can promote
the attachment, migration, and proliferation of cells [17], making them have great potential
in the biomedical field [18].

In the drug delivery system based on electrospinning, the compatibility of drugs and
fiber materials will affect the coating and release of drugs. Accordingly, selecting fiber ma-
terials compatible with drugs can effectively improve the initial burst release of drugs [19],
and the release behavior of drugs can be facilitated by increasing the hydrophilicity of fiber
materials and the compatibility of drugs and fiber materials [20]. PCL is compatible with
other organic polymers, easily soluble in a variety of organic solvents, and widely used in
biomedical materials [21]. However, due to its poor hydrophilicity, pure PCL material is
not conducive to cell adhesion and growth [22]. PEG has good hydrophilicity, biocompati-
bility, and no rejection reaction [23], and its appropriate addition can be used to enhance
the hydrophilicity of materials. Bui et al. [24] prepared PCL/PEG nanofibers containing
curcumin and found that the addition of PEG improved the spinning solution viscosity
made the drug-loaded nanofibers have a porous surface and enhanced the biocompatibility
of the nanofibers. Riaz et al. [25] introduced PEG into the preparation of PCL nanofibers,
which not only reduced the fiber diameter but also improved the crystallinity and wet-
tability of PCL nanofibers. Dehghan et al. [26] prepared PCL/PEG/aloe vera nanofiber
scaffolds, and osteoblast-like cells showed good penetration, growth, and proliferation
capabilities on them.

Simvastatin (SIM) is a liposoluble hydrophobic drug, which can promote the expres-
sion of vascular endothelial factor (VEGF) and bone morphogenetic protein (BMP-2) in vivo
and in vitro, thus promoting the differentiation of osteoblasts and angiogenesis. Meanwhile,
it can also inhibit the role of osteoclasts and be used to repair bone defects [27]. However,
SIM is difficult to dissolve in water and its bioavailability is very low, which limits its role
in promoting osteogenesis. Loading SIM into fibers by electrospinning can improve the
biocompatibility of drug-loaded fiber materials by adjusting the drug release behavior [28]
so that SIM can give full play to its role in promoting osteogenesis. Nevertheless, SIM drug
particles have a large particle size, and are fat-soluble hydrophobic drugs, which have poor
compatibility with fiber materials, cannot be dispersed evenly in the spinning solution,
and cannot be effectively coated in the fibers, so some drugs will be exposed on the fiber
surface and cause the initial burst release of drugs [29].

Stearic acid (SA) is a kind of fatty acid widely existing in nature, which has good
biocompatibility and is often used to prepare liposome biomaterials [30]. In this study,
based on our previous work [31], SIM was first dissolved in SA solution, and then SA/SIM
solution was dropped into the PCL/PEG spinning solution for electrospinning, which
could make SIM disperse more evenly in the spinning solution, improve the compatibility
between SIM and materials, and enhance the morphology and performance of nanofiber
membranes (NFMs). Therefore, the effects of the addition of SIM and SA on the morphology,
structure, and properties of electrospun PCL/PEG NFMs were investigated, and the effects
of SA addition on the mechanical properties, wettability, and drug release properties of
SIM-loaded composite NFMs were further studied.

2. Materials and Methods
2.1. Materials

Polycaprolactone (PCL, Mw = 80000 Da) and penicillin-streptomycin (P&S) were pur-
chased from Shanghai Yuanye Biochemical. Co., Ltd., Shanghai, China, Polyethylene glycol
(PEG, Mw = 2000 Da) was obtained from Suzhou Sinopharm Co., Ltd., Suzhou, China, Stearic
acid (SA, Analytical pure) and sodium dodecyl sulfonate (SDS) (purity ≥ 95%) were pur-
chased from Aladdin Co., Ltd., Hong Kong, China, Simvastatin (SIM, cell culture grade) was
provided by Merrill Co., Ltd., New York, NY, USA, Tetrahydrofuran (THF) and anhydrous
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ethanol (AE) (analytically pure) were purchased from Jiangsu Qiangsheng Functional Chem-
istry Co., Ltd., Suzhou, China, N-butanol (Analytical Reagent) was purchased from Wuxi
Zhanwang Chemical Reagent Co., Ltd., Wuxi, China, Phosphate buffer saline (PBS, PH 7.4)
was purchased from Corning Co., Ltd., Glendale, CA, USA, Minimum essential medium-Alp
(α-MEM) was purchased from Shanghai BasalMedia Technologies Co., Ltd., Shanghai, China,
Fetal bovine serum (FBS) was purchased from Thermo Fisher Scientific, Waltham, MA, USA,
Almar blue was purchased from Yeasen Biotechnology (Shanghai) Co., Ltd., Shanghai, China,
Calcein acetoxy methyl ester (Calcein-AM) was purchased from Shanghai Beyotime Institute
of Biotechnology, Shanghai, China. Mouse pre-osteoblasts (MC3T3-E1) were provided by
Soochow University.

2.2. Preparation of Nanofiber Membrane

According to our previous work [31], a certain amount of PCL granulates and PEG
flakes were dissolved in the mixed solvent of THF and AE with a ratio of 5:1, stirred
with a magnetic stirrer (HJ-6A, Gongyi Yuhua Instrument Co., Ltd., Zhengzhou, China) at
room temperature until uniform clarification to configure PCL/PEG solution with a total
solute mass fraction of 25 wt%, in which the mass ratio of PCL:PEG was 8:2. Meanwhile,
some SA granulates were dissolved in AE, and stirred in a water bath at 60 ◦C until SA
solution was homogeneous and clear. After cooling to room temperature, a certain mass
of SIM powders was added to the SA solution and stirred evenly to prepare SA/SIM
solution with a 3 wt% mass fraction of SA and 5 wt% mass fraction of SIM. Finally, 0.16 g
of SIM powders and 4 mL of SA/SIM solution were added separately to centrifuge tubes
containing 20 mL PCL/PEG solution and uniformly dispersed by utilizing an ultrasonic
machine (SL-5200DT, Nanjing Shunliu Instrument Co., Ltd., Nanjing, China) for 10 min to
prepare SIM/PCL/PEG and SA/SIM/PCL/PEG solutions with equal drug content.

The configured three different spinning solutions were transferred to a 10 mL syringe
separately for electrospinning, respectively. The syringe needle (18 G, 1.2 mm) was con-
nected to the positive pole of the DC high-voltage power supply, while the stationary
copper collector with silicon paper on the surface was connected to the negative pole
of the DC high-voltage power supply. The electrospinning parameters were: the flow
rate was 1 mL/h, the applied voltage was 15 kV, and the collecting distance was 15 cm.
All electrospinning experiments were carried out at 25 ◦C and relative humidity of 55%
for a certain period of time until the spinning solution was completely spun to prepare
PCL/PEG NMFs, SIM/PCL/PEG NFMs and SA/SIM/PCL/PEG NMFs with a drug load-
ing capacity of 0.16 g, respectively. The codes of NFMs obtained by electrospinning and
their corresponding spinning solution components were shown in Table 1.

Table 1. Codes of electrospun NFMs and their corresponding spinning solution components.

Electrospun NFM Code Spinning Solution Composition

NO.0 25 wt% PCL/PEG (PCL:PEG = 8:2)

NO.1 25 wt% PCL/PEG (PCL:PEG = 8:2)
0.16 g SIM

NO.2 25 wt% PCL/PEG (PCL:PEG = 8:2)
5 wt% SIM/3 wt% SA containing 0.16 g SIM

2.3. Characterization

The dynamic viscosity and electrical conductivity of spinning solutions were charac-
terized by a viscometer (SNB-1, Shanghai Nirun Technology Co., Ltd., Shanghai, China)
at a constant speed of 60 r/min and a conductivity meter (DDS-307A, Shanghai INESA
Analytical Instrument Co., Ltd., Shanghai, China), respectively. The measurement was
repeated five times at room temperature.

The morphology of NFMs was investigated by scanning electron microscopy (SEM,
Hitachi S-4800, Tokyo, Japan). 10 SEM images and 50 nanofibers at random in each SEM
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image of every specimen were used for fiber diameter distribution analysis of NFMs by
Image J software (National Institute of Mental Health, Bethesda, MD, USA).

The mixture of a crushed specimen and KBr powder was pressed into sheet-like
specimens, which were characterized by a Fourier transform infrared (FTIR) spectroscopy
(Perkin Elmer SpectrumGX, Shelton, CT, USA) with 64 scans and a wavenumber range of
500–4000 cm−1.

The specimens with a length of 4 cm and a width of 1 cm were prepared from different
NFMs, and 10 specimens with the thickness measured and recorded were prepared for
each NFM. And then the tensile test of each specimen was carried out, using a universal
material testing instrument (INSTRON-3365, INSTRON, Norword, MA, USA) at the speed
rate of 20 mm/min and with a clamping distance of 20 mm. The Young’s modulus of the
specimen was expressed by the slope of its stress-strain curve, and the tensile strength of
the specimen was calculated according to the following equation [32]:

specimen tensile strength(MPa) =
specimen tensile f orce(N)

specimen thickness(mm) ∗ specimen width(mm)

The water contact angle (CA) of different specimens was measured by a Krüss DSA100
apparatus (Krüss Company, Hamburg, Germany). The volume of droplet used for static
CA was 6 µL. The average CAs were calculated by measuring 10 specimens for each NFM.

2.4. In Vitro Drug Release Test

The PBS solution containing SDS (0.5 wt%) was used as the in vitro release medium.
The addition of SDS was to increase the solubility of hydrophobic SIM, which was con-
ducive to its release in the medium [33]. Two kinds of the SIM-loaded NFMs (NO.1 and
NO.2) were cut into circular specimens with a diameter of 15 mm. Five specimens were
taken from each NFM and placed in a 50 mL centrifuge tube respectively. After adding
10 mL of release medium respectively, these centrifuge tubes were transferred to a shaking
table (FLY-100/200, Shanghai Shenxian Thermostatic Equipment Factory, Shanghai, China)
at 37 ◦C with a shaking speed of 60 rpm. At the required time interval, 2 mL of the release
mediums were withdrawn for SIM release rate analysis, and the same amount of fresh
release mediums was replenished for sustaining the incubation. The OD value of each
release specimen at 239 nm was detected with an ultraviolet (UV) spectrophotometer (Cary
5000, Agilent, Santa Clara, CA, USA). And then the SIM release amount of each specimen
at each time point was determined according to the calibration curve of SIM in the release
medium, and the cumulative release rates of SIM-loaded NFMs were confirmed.

2.5. In Vitro Biocompatibility Test

Cell cultures were carried out using MC3T3-E1, which were cultured in complete
medium (including 90 wt% α-MEM medium, 10 wt% FBS, and 1 wt% P&S). NFMs were
cut into circular specimens with a diameter of 15 mm. The specimens were fumigated with
methanol at 37 ◦C for 2 h, then transferred to an ultraviolet lamp for sterilization for 30 min,
and then put in the sterile operation platform for air drying before being put into the
bottom of a 24-well plate. Afterward, 1 mL of cell suspension with a certain concentration
was vertically dropped into each well, and 5 specimens were set for each NFM. The 24-well
plate with the cells planted was put into the incubator for culture, and the culture medium
was updated every two days. Cells cultured on tissue culture polystyrene (TCPs) were
used as controls.

Alamar blue, as a cell-proliferation assay, was used to detect the proliferation activity
of MC3T3-E1 cells. The cells were seeded on the NFMs at a cell density of 1×104 cells/well,
placed in a cell incubator (37 ◦C, 5 % CO2), and incubated for 1, 3, 5, and 7 days. At
the corresponding time, the 24-well plate was taken out, the medium in the well plate
was aspirated, and 200 µL of Alamar blue solution (containing 90 wt% α-MEM medium
and 10 wt% Alamar blue indicator) was added to each well, which was put into the cell
incubator for 2 h. Afterward, 100 µL of the medium was shifted from each well to a black
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96-well plate. The fluorescence value of the solution in the well plate was measured by a
microplate reader (Synergy HT, Bio-Tek Instruments, Winooski, VT, USA), the wavelength
was set to 590 nm, and the proliferation of living cells was investigated by a confocal laser
scanning microscope (CLSM, Fv1000, Olympus, Tokyo, Japan).

3. Results and Discussion
3.1. Property Characterization of Spinning Solutions

When different polymers are mixed in a solvent, the polymer solution can behave as a
mixed clear solution or an unmixed emulsion [34–38], while PCL/PEG solution is a clear
solution, in which PEG is uniformly dispersed as small droplets in the continuous phase of
PCL [39]. The viscosities and conductivities of the three spinning solutions were shown in
Table 2. It could be found that the viscosities of NO.1 and NO.2 spinning solutions with
SIM decreased, especially the viscosity of NO.2 spinning solution with SA/SIM solution
decreased significantly and its conductivity increased obviously. This might be because, in
the NO.0 spinning solution, the molecular chains of PCL were fully entangled, but PCL was
incompatible with PEG-2000, which made PEG disperse in the continuous phase of PCL in
the form of droplets. When SIM was added to the NO.0 spinning solution, the molecules of
hydrophobic SIM were close to the dispersion phase of the same hydrophobic PCL under
the van der Waals force and electrostatic force, resulting in their soft agglomeration and
flowing together, thus playing the role of dredging and lubrication, as shown in Figure 1.
This would dredge the entangled PCL molecular chains and reduce the entanglement
degree of PCL molecular chain, thus reducing the viscosity of the NO.1 spinning solution.
When SA/SIM solution was added to the NO.0 spinning solution, the entanglement degree
of the PCL molecular chain was similarly reduced, and the overall concentration of the
spinning solution was also reduced, resulting in a significant decrease in the viscosity of
the NO.2 spinning solution. Moreover, the conductivity of the NO.2 spinning solution
increased due to more free ions in the added SA/SIM solution.

Table 2. Viscosities and conductivities of different spinning solutions.

Spinning Solution Code Viscositiy (mPa.S) Conductitivity (µS/cm)

NO.0 307 7.79
NO.1 275 8.15
NO.2 126 14.19

Molecules 2022, 27, x FOR PEER REVIEW 5 of 14 
 

 

10 wt% Alamar blue indicator) was added to each well, which was put into the cell incu-

bator for 2 h. Afterward, 100μL of the medium was shifted from each well to a black 96-

well plate. The fluorescence value of the solution in the well plate was measured by a 

microplate reader (Synergy HT, Bio-Tek Instruments, USA), the wavelength was set to 

590 nm, and the proliferation of living cells was investigated by a confocal laser scanning 

microscope (CLSM, Fv1000, Olympus, Japan). 

3. Results and Discussion 

3.1. Property Characterization of Spinning Solutions 

When different polymers are mixed in a solvent, the polymer solution can behave as 

a mixed clear solution or an unmixed emulsion [34-38], while PCL/PEG solution is a clear 

solution, in which PEG is uniformly dispersed as small droplets in the continuous phase 

of PCL [39]. The viscosities and conductivities of the three spinning solutions were shown 

in Table 2. It could be found that the viscosities of NO.1 and NO.2 spinning solutions with 

SIM decreased, especially the viscosity of NO.2 spinning solution with SA/SIM solution 

decreased significantly and its conductivity increased obviously. This might be because, 

in the NO.0 spinning solution, the molecular chains of PCL were fully entangled, but PCL 

was incompatible with PEG-2000, which made PEG disperse in the continuous phase of 

PCL in the form of droplets. When SIM was added to the NO.0 spinning solution, the 

molecules of hydrophobic SIM were close to the dispersion phase of the same hydropho-

bic PCL under the van der Waals force and electrostatic force, resulting in their soft ag-

glomeration and flowing together, thus playing the role of dredging and lubrication, as 

shown in Figure 1. This would dredge the entangled PCL molecular chains and reduce 

the entanglement degree of PCL molecular chain, thus reducing the viscosity of the NO.1 

spinning solution. When SA/SIM solution was added to the NO.0 spinning solution, the 

entanglement degree of the PCL molecular chain was similarly reduced, and the overall 

concentration of the spinning solution was also reduced, resulting in a significant decrease 

in the viscosity of the NO.2 spinning solution. Moreover, the conductivity of the NO.2 

spinning solution increased due to more free ions in the added SA/SIM solution. 

Table 2. Viscosities and conductivities of different spinning solutions. 

Spinning Solution Code  Viscositiy (mPa.S) Conductitivity (μS/cm) 

NO.0 307 7.79 

NO.1 275 8.15 

NO.2 126 14.19 

 

Figure 1. Molecular chain entanglement and molecular diagram in different spinning solutions 

(NO.0 (a), NO. 1 or NO.2 (b)). 

3.2. Morphology Analysis of SIM and SA/SIM Particles 

Figure 1. Molecular chain entanglement and molecular diagram in different spinning solutions
(NO.0 (a), NO. 1 or NO.2 (b)).

3.2. Morphology Analysis of SIM and SA/SIM Particles

The SEM images of SIM and SA/SIM particles were shown in Figure 2. It could be
found that after SIM particles were dissolved in the SA solution, the size of SA/SIM particles
was significantly smaller, which was conducive to their dispersion in the spinning solution.
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Figure 2. SEM images of SIM (a) and SA/SIM particles (b).

3.3. Morphology Characterization of NFMs

The morphologies of NFMs were investigated by SEM. Figure 3 displayed SEM images
of NFMs and their corresponding nanofiber diameter distributions. As shown in Figure 3a,
the nanofiber diameter distribution of NO.0 NFM was relatively uneven, and some fibers
were curved and sticky. It was because of the slower evaporation of the solvent during the
spinning process and the larger viscosity of NO.0 spinning solution, causing the polymer
molecular chains excessively entangled and the poor fluidity of the spinning solution,
which made some fibers unable to be effectively stretched under the action of electric field
and bonded together. As shown in Figure 3b, the average fiber diameter of NO.1 NFM
was smaller than that of NO.0 due to the relatively small viscosity of the NO.1 spinning
solution. However, its fiber diameter distribution was more uneven, which was because the
NO.1 spinning solution contained SIM particles with large size, which had poor solubility
and uneven dispersion in the spinning solution, resulting in a large difference in fiber
thickness. Furthermore, it could also be observed in Figure 3b that there were some tiny
spikes on the fiber surface, which was caused by the fact that some SIM particles were too
large to be completely coated. As shown in Figure 3c, the fiber morphology of NO.2 NFM
was smoother and straighter, no tiny spikes be observed on the fiber surface, and its fiber
diameter distribution was more uniform, which was mainly because of the smaller viscosity
and higher conductivity of NO.2 spinning solution, and the smaller size of SA/SIM particles
in the spinning solution. The size of SIM particles loaded on the nanofibers in Figure 3b
was smaller than that in Figure 2a, which might be because, during the preparation of the
spinning solution, SIM would be partially dissolved in the solution after full stirring, which
made the size of the large SIM particles smaller.
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3.4. Fourier Transform Infrared (FTIR) Analysis

The acquired FTIR spectra of SIM, SA, SA/SIM, and different NFMs were presented
respectively in Figure 4. The characteristic peaks of SIM (Figure 4a) were the ester group
(C=O) vibration at 1691 cm−1, symmetric C-H and asymmetric stretching vibrations at
2872 cm−1 and 2966 cm−1, and O-H stretching vibration at 3550 cm−1. The FTIR spectra of
SA (Figure 4b) displayed the characteristic peck produced by C=O stretching vibration in
fatty acids at 1699 cm−1, and O-H stretching vibration peaks of fatty acids at 2844 cm−1 and
2917 cm−1. The FTIR spectra of NO.0 NFM (Figure 4d) exhibited the C-O-H stretching vi-
bration of PEG at 1108 cm−1, C=O stretching vibration of PCL at 1724 cm−1, and symmetric
and asymmetric methylene stretching vibrations of PCL at 2865 cm−1 and 2943 cm−1. After
adding SIM to SA and polymer (Figure 4c,e,f), the peak value of ester group (C=O) vibration
of SIM moved to 1724 cm−1, and the peak value of O-H vibration almost disappeared at
3550 cm−1, indicating that there were SIM drugs in SA/SIM powders, NO.1 NFM and
NO.2 NFM [40], and the SIM drugs were coated in the polymer. Meanwhile, there were
no new characteristic peaks in SA/SIM, NO.1 and NO.2, illustrating that there was no
chemical reaction between SA, PCL, PEG, and SIM in the process of mixing, dissolving,
and spinning, which was a pure physical combination.

3.5. Mechanical Properties of NFMs

The mechanical properties of NFMs were characterized as shown in Figure 5 and
Table 3. The tensile behavior exhibited by the three different NFMs is common, as reported
in different literature [41–43]. It could be seen from Figure 5 that during the stretching
process, the beginning of the curve was a straight line, where the elastic deformation was
first triggered until the stress exceeded the elastic limit and entered the yielding phase. At
this stage, the plastic deformation increased sharply, the curve growth became slow, and
the stress and strain fluctuate slightly before the larger plastic stress caused the NFMs to
fracture. The similar Young’s modulus of NO.0 and NO.1 NFMs could be observed in the
initial segments of the curves, and Young’s modulus NO.2 NFM was smaller, which made
it have a small stiffness. And the reduction in the stiffness of NO.2 NFM was likely due to
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the fact that the molecular chains of NO.2 NFM were less entangled and the consequent
low cohesive forces made the material more deformable. In addition, NO.1 NFM had the
smallest fracture strength and elongation at break, on account of the extremely uneven
distribution of fiber diameters and the potentially larger SIM particles integrated into the
fibers, causing the fracture at the weak section of the fibers. It was worth noting that the
fracture strength of NO.2 NFM increased to 1.24 ± 0.03 MPa and its elongation at break
increased to 43.89 ± 2.15% by appending SA/SIM particles, which benefited from the finer
and uniformly distributed fiber diameter [44]. Besides, as a joint result of the homogeneous
mixing of polymers in NO.2 NFM and the bonding points between the blended fibers [45],
NO.2 NFM had the best tensile resilience and dimensional stability.
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Table 3. Tensile properties of NFMs.

NFM Thickness
(mm)

Young’s Modulus
(MPa)

Fracture Strength
(MPa)

Elongation at Break
(%)

NO.0 0.11 ± 0.03 0.10 ± 0.09 0.93 ± 0.05 35.27 ± 3.98
NO.1 0.16 ± 0.04 0.09 ± 0.07 0.85 ± 0.09 31.04 ± 1.76
NO.2 0.11 ± 0.03 0.06 ± 0.07 1.24 ± 0.03 43.89 ± 2.15

3.6. Wetting Properties of Nanofiber Membranes

The contact angle (CA) characterization of NFMs and schematic diagram of material
migration during electrospinning were shown in Figure 6. It could be seen that the CA of
NO.0 NFM was the largest, and the CA of NO.2 NFM was the smallest, indicating that the
hydrophilicity of NO.2 NFM was the best. This was because NO.0 NFM was composed of
hydrophobic PCL and hydrophilic PEG, which were evenly distributed in a single fiber, as
shown in Figure 6d, but the mass fraction of PCL was larger than that of PEG, resulting in
the relatively poor hydrophilicity of NO.0 NFM. Compared with NO.0 NFM, NO.1 and
NO.2 NFMs contained hydrophobic SIM and SA/SIM respectively, but their hydrophilicity
was significantly improved. This might be because during the spinning process, under the
action of electrostatic force and van der Waals force, hydrophobic SIM or SA/SIM were soft
agglomerated with hydrophobic PCL, making hydrophobic substances agglomerate inside
the fiber, while PEG with good hydrophilicity tended to migrate to the environment with
high humidity outside the fiber, and finally dispersed outside the fiber. The process was
shown in Figure 6e. In addition, since the CA increased with the increase of the roughness
of the material surface [46], the hydrophilicity of NO.2 NFM with a smooth surface was
better than that of NO.1 NFM.
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3.7. Analysis of Drug Release Performance

The SIM release curves of NO.1 and NO.2 NFMs were shown in Figure 7. It was
found that the drug release rate of NO.1 NFM was 19.80% within 1 h, and its cumulative
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release rate reached 84.76% at the 24th hour. In contrast, the cumulative drug release rate of
SIM/polyethylene oxide NFM reached 98.86% within 12 h [30], which showed that as the
carrier of SIM, the PCL/PEG hybrid phase was conducive to alleviating the phenomenon
of initial burst release of drugs and achieving a longer-term sustained drug release. After
adding SA/SIM, compared with those of NO.1 NFM, the cumulative drug release rates of
NO.2 NFM at 1 and 24 h were reduced to 14.99% and 74.44%, respectively, and the initial
burst release of drugs was significantly further alleviated. Since the drug release behavior
mainly follows the classical Fick’s law, the drug released from the initial stage of the two
drug-loaded NFMs is mainly from the drug particles distributed or exposed on the fiber
surface. However, NO.1 NFM was fabricated by directly adding SIM into the PCL/PEG
spinning solution, and the poor solubility of SIM particles in the PCL/PEG solution made
them unevenly dispersed in the spinning solution. Accordingly, some large particles of
SIM were not effectively coated, which accelerated the drug release rate and produced the
initial burst release of drugs. While NO.2 NFM used SA solution to increase the solubility
of SIM, and reduced the particle size of SIM, making it evenly distributed in the spinning
solution and finally effectively coated in the fiber. Therefore, NO.2 NFM could alleviate the
initial burst release of drugs.
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3.8. Biocompatibility of NMFs

The biocompatibility characterization of NO.2 NFM was shown in Figure 8. It could be
observed from Figure 8a that the fluorescence values of cells on NO.2 NFM increased with
time, which revealed that MC3T3-E1 cells continued to proliferate in the NFM, indicating
the good biocompatibility of NO.2 NFM. Moreover, Figure 8b displayed the CLSM micro-
graph of MC3T3-E1 cells cultured on No.2 NFM for 2 and 6 days, which further proved
that No.2 NFM had good biocompatibility.
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4. Conclusions

In this study, the combination of PCL and PEG became a hybrid biomaterial composite
with acceptable mechanical properties and good biocompatibility. SA with good biocompat-
ibility was innovatively added to increase the dispersion uniformity of SIM in the spinning
solution, thus improving the compatibility between SIM and polymers, and enhancing the
morphology and performance of SIM-loaded PCL/PEG NFMs. Accordingly, the effects
of the addition of SIM and SA on the spinning solution properties were investigated, and
the effects of SA addition on the morphologies, mechanical properties, wettability, and
drug release properties of SIM-loaded composite NFMs were further studied. The results
showed that after SIM was dissolved in SA solution, the particle size of SIM was signifi-
cantly reduced and could be evenly dispersed in the polymer spinning solution, which
made NO.2 spinning solution have the smallest viscosity and the highest conductivity.
Therefore, NO.2 NFM had the best fiber morphology, the most uniform fiber diameter
distribution, the optimum mechanical properties and the relative best hydrophilicity. The
initial drug burst release from NO.1 NFM was alleviated during the drug release from
NO.2 NFM, and both of the two drug-loaded NFMs had reached sustained release for more
than 20 days, suggesting that NO.2 NFM might be a potential candidate in the application
of drug delivery system. In addition, the proliferation of MC3T3-E1 cells on NO.2 NFM
exhibited good biocompatibility. However, compared with TCPs, NO.2 NFM did not
significantly promote cell growth, which would limit its application in tissue engineering.
In our future work, the methods and processes of preparing SA/SIM loaded PCL/PEG
NFMs with other fiber structures (such as core-shell structures) will be explored to make
them more suitable for tissue engineering.
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