
Citation: Altharawi, A.; Alharthy,

K.M.; Althurwi, H.N.; Albaqami, F.F.;

Alzarea, S.I.; Al-Abbasi, F.A.;

Nadeem, M.S.; Kazmi, I. Europinidin

Inhibits Rotenone-Activated

Parkinson’s Disease in Rodents by

Decreasing Lipid Peroxidation and

Inflammatory Cytokines Pathways.

Molecules 2022, 27, 7159. https://

doi.org/10.3390/molecules27217159

Academic Editors: Lee Wei Lim

and Luca Aquili

Received: 8 September 2022

Accepted: 20 October 2022

Published: 23 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Europinidin Inhibits Rotenone-Activated Parkinson’s Disease
in Rodents by Decreasing Lipid Peroxidation and Inflammatory
Cytokines Pathways
Ali Altharawi 1,* , Khalid M. Alharthy 2, Hassan N. Althurwi 2 , Faisal F. Albaqami 2 , Sami I. Alzarea 3 ,
Fahad A. Al-Abbasi 4, Muhammad Shahid Nadeem 4 and Imran Kazmi 4,*

1 Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University,
Al-Kharj 11942, Saudi Arabia

2 Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University,
Al-Kharj 11942, Saudi Arabia

3 Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
4 Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
* Correspondence: a.altharawi@psau.edu.sa (A.A.); ikazmi@kau.edu.sa (I.K.); Tel.: +966-543-970-731 (I.K.)

Abstract: Background: Europinidin is a derivative of delphinidin obtained from the plants Plumbago
Europea and Ceratostigma plumbaginoides. This herb has wide medicinal applications in treating various
diseases but there are very few studies available on this bioactive compound. Considering this back-
ground, the present study is designed for the evaluation of Europinidin against Parkinson’s disease.
Aim: The investigation aims to assess the effect of Europinidin in the rotenone-activated Parkinson’s
paradigm. Methods: To evaluate neuroprotective activity, rotenone (1.5 mg/kg s.c) and europinidin
(10 mg/kg and 20 mg/kg) was administered in rats for 21 days. The behavioural parameters were
performed before sacrificing the rats. On the 22nd day, all the rats were assessed for biochemical
markers (SOD, GSH, MDA, Catalase), neurotransmitter levels (Dopamine, 5-HIAA, DOPAC, and
HVA levels), and neuroinflammatory markers (IL-6, IL-1β and TNF-α). Results: It was found that
rotenone produced significant (p < 0.001) oxidative damage, a cholinergic deficit, dopaminergic loss,
and a rise in neuroinflammatory markers in rats. Conclusion: The study concludes that europinidin
possesses anti-oxidant and anti-inflammatory properties. The results suggest the therapeutic role of
europinidin against rotenone-activated behavioural, biochemical, and neuroinflammatory alterations
in rats.

Keywords: europinidin; oxidative stress; Parkinson’s disease; rotenone

1. Introduction

Parkinson’s disease (PD) is a progressive neuroinflammatory condition triggered by
various factors, mainly genetics, mitochondrial imbalance, oxidative stress, and environ-
mental factors. The characteristic motor symptoms are rigidity, akinesia, bradykinesia,
and tremor, which occur due to loss in the dopaminergic neurons depleting the dopamine
levels in the nigrostriatal area [1,2]. Usually, patients suffering from PD develop Lewy
bodies which are formed by α-synuclein agglomeration, resulting in cognitive deficits [3].
The cause of dopaminergic loss is oxidative stress generated in the brain. The reactive
free radical produced by oxidative damage cause mitochondrial dysfunction resulting in
protein aggregation and eventually cell injury and apoptosis [4,5].

Rotenone is an organic heteropentacyclic compound obtained from the Lonchocarpus
species which is used as an insecticide and pesticide. Rotenone when administered inhibits
the electron transport chain (ETC) system by binding with mitochondrial complex I [6]. It
is the complex-I blocker that has been stated as toxic to dopaminergic neurons both in vivo
and in vitro [7]. It can penetrate the blood–brain barrier because of its lipophilic structure
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and cause aggregation of alpha-synuclein in the brain [8]. Sporadic PD (non-familial) is
mainly caused due to depletion in complex I activity. Rotenone produces pathological
symptoms of PD including loss of dopaminergic neurons, rigidity, postural imbalance,
and behavioral deficits when exposed to systemic circulation [9]. Therefore, rotenone
is a unique inducing animal model as it mimics the early symptoms of Parkinsonism
with that in humans [10]. Long-term use of levodopa may cause motor fluctuations and
dyskinesia, but it is the most effective treatment for PD. A limited number of treatment
options are available for PD, most of which involve restoring the dopaminergic tone in
the striatum. When administered to rodents, levodopa does not provide the same level of
neuroprotection [11].

Europinidin, an o-methylated derivative of delphinidin obtained from the plant
Plumbago Europea and Ceratostigma plumbaginoides belongs to the family Plumbaginaceae [12].
Plumbago Europea is a perineal herb that has wide medicinal applications in treating var-
ious disease conditions such as cancer, immunosuppressant, dysmenorrhea, hepatitis,
respiratory disorders, edema, and scabies [13–15]. Europinidin, an active phytochemical,
has not been widely studied for its therapeutic applications, and little literature is available.
Moreover, no evidence indicated the influence of europinidin against rotenone-induced
PD in rodents. As far as we know, this is the first research study that investigates the effec-
tiveness of europinidin as a therapeutic agent for rotenone-induced Parkinson’s disorder.
Hence, the scope of the study is to explore the effect of europinidin in the rotenone-activated
Parkinson’s model in rats.

2. Results
2.1. Acute Toxicity Study

Europinidin was considered a safe oral dose. While performing an acute toxicity study,
no mortality or clinical symptoms were observed for 14 days. Therefore, based on acute
oral toxicity studies data, we chose 10 and 20 mg/kg Europinidin for the main study.

2.2. Behavioural Studies
2.2.1. Catalepsy Test

The rotenone-induced group markedly raised (p < 0.001) the catalepsy time when
collated to the controls. The europinidin-treated groups at both doses (10 mg/kg and
20 mg/kg) reduced (p < 0.001) the catalepsy time when correlated to the rotenone-induced
group (Figure 1A).

2.2.2. Open-Field Test

Animals injected with rotenone showed a sharp decline (p < 0.001) in the overall test
activity correlated to the normal group. The europinidin-treated groups at both doses
(10 mg/kg and 20 mg/kg) improved (p < 0.05 and p < 0.001) the total activity measured
when collated to the rotenone-treated group (Figure 1B).

2.2.3. Forced-Swim Test

The rotenone-induced group remarkably raised (p < 0.001) the immobility time when
collated with the controls, whereas the treatment group at both doses (10 mg/kg and
20 mg/kg) notably decreased (p < 0.001) the immobility time when correlated to the
rotenone-induced group (Figure 1C).

2.2.4. Pole Test

Rotenone-treated rats (group II) indicated a marked rise (p < 0.001) in the t-turn and
t-total activity compared to the normal group (Figure 1D,E). Treatment with europinidin
(10 and 20 mg/kg) showed lowered (p < 0.001) measurements (t-turn and t-total) as com-
pared to the rotenone-induced group except for 10 mg/kg europinidin, which showed
lowered t-turn time (p < 0.05).
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Figure 1. Effect of europinidin on behavioural parameters. (A) Catalepsy time, (B) Open field activ-
ity, (C) Immobility time, (D) t-turn, (E) t-total. The data were expressed as mean ± S.E.M. (n = 
6/group). * p < 0.05, *** p < 0.001 when compared with control group; # p < 0.001 when compared 
with rotenone group (one-way ANOVA followed by Tukey’s test). 
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Figure 1. Effect of europinidin on behavioural parameters. (A) Catalepsy time, (B) Open field activity,
(C) Immobility time, (D) t-turn, (E) t-total. The data were expressed as mean ± S.E.M. (n = 6/group).
* p < 0.05, *** p < 0.001 when compared with control group; # p < 0.001 when compared with rotenone
group (one-way ANOVA followed by Tukey’s test).

2.3. Biochemical Analysis
2.3.1. Oxidative Stress Parameters

The rotenone-induced group showed remarkably low (p < 0.001) levels of GSH, SOD,
and CAT and increased the MDA level when collated to the controls. Treatment with
europinidin at both doses (10 mg/kg and 20 mg/kg) significantly elevated (p < 0.05 and
p < 0.001) the level of SOD and GSH, while theCAT level was also raised (p < 0.05 and
p < 0.01) markedly at both doses (10 and 20 mg/kg) as collated to the rotenone group. The
rotenone-induced group remarkably raised (p < 0.001) the MDA level when collated to
controls. The europinidin-treated group at both doses lowered (p < 0.05 and p < 0.001) the
MDA level when correlated to the rotenone-induced group (Figure 2A–D).

2.3.2. Acetylcholinesterase Activity (AChE)

Rotenone administration remarkably increases (p < 0.001) the AChE level when col-
lated to the normal. Treatment with europinidin at both doses (10 and 20 mg/kg) showed a
significant decline (p < 0.05 and p < 0.01) in AChE activity when collated with the rotenone
group (Figure 3).
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2.4. Effect of Europinidin on Neurotransmitter Levels

Rotenone administration revealed a pronounced decrease (p < 0.001) in dopamine
and 5-HIAA and a rise in HVA and DOPAC levels when collated to normal animals. The
europinidin-treated group at both doses elevated (p < 0.01 and p < 0.001) the levels of
dopamine and 5-HIAA, while a considerable decline (p < 0.001) in the level of DOPAC and
HVA was noted when collated to the rotenone group (Figure 4A–D).
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Figure 4. Effect of europinidin on neurotransmitter levels. (A) Dopamine, (B) DOPAC, (C) HVA
concentrations, (D) 5-HIAA concentrations. The data were expressed as mean ± S.E.M. (n = 6/group).
** p < 0.01, *** p < 0.001 when compared with the control group; # p < 0.001 when compared with the
rotenone group (one-way ANOVA followed by Tukey’s test).

2.5. Effect of Europinidin on Neuroinflammatory Markers

Administration of rotenone markedly increased (p < 0.001) the IL-1β, TNF-α, and
IL-6 levels when collated to the normal group. The europinidin-treated group at both
doses decreases (p < 0.001) IL-1β, IL-6, and TNF-α levels as collated to the rotenone group
(Figure 5A–C).
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Figure 5. Effect of europinidin on neuroinflammatory parameters. (A) TNF-Alpha, (B) IL-1ß, (C) IL-6.
The data were expressed as mean ± S.E.M. (n = 6/group). *** p < 0.001 when compared with the
control group; # p < 0.001 when compared with rotenone group (one-way ANOVA followed by
Tukey’s test).

3. Materials and Methods
3.1. Chemicals and Reagents

Europinidin, rotenone (Sigma-Aldrich), chemicals (Modern Lab, Maharashtra, India),
and kits for tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β were
analyzed by a rat enzyme-linked immunosorbent assay kit (Sigma-Aldrich, Louis, MO,
USA) and used to quantity.

3.2. Animals

Male Wistar rats (150–180 g) were acclimatized for a week. The rats were grouped
and stored in propylene cages at standard room temperature (24 ± 5 ◦C) with relative
humidity (50–65%) under a 12–12 h light/dark cycle. Pellet food and free access to water
were provided to rats. The study was passed by the institutional ethics committee for
animals (IAEC/918/CPCSEA/01) and carried out following CPCSEA guidelines.

3.3. Experimental Plan

A total of 24 rats were segregated into 4 groups, each group containing 6 rats.
Cluster I: Normal group received sunflower oil (s.c).
Cluster II: Rotenone −1.5 mg/kg s.c.
Cluster III-IV: Rotenone + Europinidin −10 and 20 mg/kg/p.o.
Rotenone was subcutaneously dosed (1.5 mg/kg) for 21 days [16,17]. Treatment groups

received Europinidin in both doses for 21 days, 1 h before rotenone injection (Figure 6).
The rats were subjected to behavioral tests after 24 h of the last rotenone injection and then
immediately euthanized under light anesthesia. The brains were collected and cleaned
with cold saline and stored in formalin solution at 4 ◦C.

3.4. Acute Toxicity Study

The study followed OECD guideline no. 423. All the animals were examined for
14 days for sign of toxicity. The rats were also examined for any clinical signs, including
changes in behaviour and body weight [18]. Europinidin was given orally in rats as per the
previously published toxicity studies [19–21].
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3.5. Behavioural Assessment
3.5.1. Catalepsy Test

The Catalepsy/Bar test was performed by placing the horizontal bar 9 cm above the
surface. The paws were kept on the bar by holding and lowering the forepaws until the tail
reached the ground. The time at which the front paws touched the ground was noted by a
stopwatch. The sessions were video-recorded for evaluating the time and comparing the
performance of each rat. The cut-off time for each rat was fixed to 3 min [22,23].

3.5.2. Open-Field Test

The test contains a rectangular open field with a floor covered with cloth which was
divided into 25 squares (20 × 20 cm). The rats were kept in the middle square and observed
for locomotor activity. The distance displaced by the rat, no rearing, time taken at the initial
position, and the number of entries in the central square was noted. The overall activity of
the test was calculated [24,25].

3.5.3. Pole Test

The test is generally used in rodents to determine disorientation in movement. It
consists of a vertical wooden pole (50 cm) with its base confined in a home cage. The
rats were kept on the pole and the time to descend the pole was noted. The rats were
given training sessions for 2 days prior to starting the test. On the test day, five trials were
performed and the mean of trials was used for calculation. The time taken by each rat to
align downward (time to turn) and the time to descend were noted [26,27].

3.5.4. Forced-Swim Test

The test consists of a cylindrical tank filled with water with a depth of at least 35 cm.
The rats were trained prior to performing the main test by placing the rats in the water-
filled tank. On the next day, the test session was done by placing the rats in the tank for
5 min. The test was video-recorded to assess the following parameters: immobility time
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(i.e., no body movements), swimming (i.e., motions by forepaws that displaced water), and
climbing (i.e., vigorous movement to force out from the side of the tank wall). The water
was changed and cleaned during every session [28,29].

3.6. Biochemical Analysis
3.6.1. Homogenization of Brain

On the 22nd day, after a behavioural assessment, the animals were separated for
estimation of biochemical, neurotransmitter levels, and neuroinflammatory markers. The
collected brains were homogenized using phosphate buffer. The supernatant was obtained
by centrifugating the homogenate at 15,000–25,000 rpm for 25 min. The resultant mixture
was used for further analysis.

3.6.2. Malondialdehyde (MDA) Estimation

MDA is the end product that describes the extent of lipid peroxidation. The centrifuge
tube contains homogenate, acetic acid (20%), dodecyl sulfate (8%), and thiobarbituric acid
(0.8%). The reaction tube was boiled at 90 ◦C for 60 min, cooled, and centrifugated at
1500–2000 rpm for 15 min. The mixture was estimated spectrometrically at 532 nm. The
amount of MDA produced was estimated and expressed as nmol/g [30,31].

3.6.3. Reduced Glutathione (GSH)

GSH was evaluated by the following process described by Ellman et al. [32]. In the
reaction tube, homogenate (0.1 mL), trichloroacetic acid (10%), and Ellman’s reagent (5,
5–0-dithiobisnitro benzoic acid in sodium citrate and phosphate buffer) was mixed. The
mixture was centrifugated at 2000 rpm for 15 min. The absorbance was recorded at 412 nm
by a UV spectrophotometer. The results were presented as nmol/GSH/g of tissue [33].

3.6.4. Superoxide Dismutase (SOD)

The assay principle works on the reduction of nitrobluetetrazolium (NBT) by the
superoxide dismutase. To the supernatant, xanthine oxidase was added to the mixture of
nitrobluetetrazolium (NBT) and phosphate buffer in the reaction tube and was incubated.
The SOD was presented as units/mg protein, and 1 unit of SOD activity is calculated by
the amount of protein that inhibited 50% NBT reduction [34,35].

3.6.5. Catalase Activity (CAT)

To 0.5 mL supernatant, 2 mL phosphate buffer and 1 mL hydrogen peroxide (H2O2)
were added to the cuvette. The absorbance was estimated spectrophotometrically at 240 nm
for 30 s. The activity was presented as mmoles of H2O2 oxidized per minute per milligram
protein [36,37].

3.6.6. Estimation of Acetylcholinesterase Activity (AChE)

It is an indirect method for the determination of acetylcholine in tissues. To 0.5 mL
homogenate, 0.2 M phosphate buffer, and dithiobis- nitrobenzoic acid (DTNB) were mixed
to the reaction tube. The absorbance of the reaction mixture was recorded spectroscopically
at 412 nm. After a few mins, acetylthiocholine was mixed and the change in the absorbance
was noted [38,39].

3.6.7. Neurotransmitter Levels

The neurotransmitters include dopamine (DA), 3,4-dihydroxyphenylacetic acid
(DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), which
were estimated by an enzyme-linked immunosorbent assay (Rat ELISA) kits following
standard assay procedure.
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3.6.8. Neuroinflammatory Markers

The cytokines such as IL-6, IL-1β, and TNF-α were determined by respective ELISA
kits. The protein from the homogenate was separated and pipetted in an antibody-coated
ELISA plate. The level of cytokines was measured by following the standard assay proce-
dure (Ray Bioassay kit).

3.7. Statistical Analysis

All the statistical values were presented as mean ± SEM. The data were estimated by
one-way ANOVA followed by Tukey’s test using GraphPad prism 5.0. One-way ANOVA
was used for estimating the significance among the two groups by setting the criteria at
p < 0.05.

4. Discussion

Europinidin, an antioxidant, scavenges the reactive oxygen species generated in the
mitochondria which may decrease oxidative damage [40]. The current investigation for the
first time proved that europinidin ameliorated rotenone-induced Parkinson’s disease in
animals at 10 mg/kg and 20 mg/kg dose levels. Previous findings show that the rotenone
induction model reproduces behavioral, inflammatory, and biochemical alterations in rats
which are similar to PD symptoms [41–43]. Rotenone passes through the BBB and modifies
the neurological, behavioral, and oxidative pathways of PD [44]. Rotenone administration
impaired the motor performance and cognitive functions as displayed in behavioral tests,
i.e., catalepsy, pole test, open-field test, and the Morris water test, which were in line with
previous investigations [45,46]. Treatment with europinidin dose-dependently improved
the learning ability and corrected cognitive deficits, proving the role of europinidin in
modulating the deficit signaling pathway.

Several reports have emphasized the effect of oxidative stress as a crucial factor in de-
teriorating dopaminergic neurons [47]. The results showed that administration of rotenone
ameliorated oxidative damage by decreasing SOD, GSH, and catalase activity and elevating
MDA levels in the rat striatum, which were in line with the earlier research studies [48,49].
Treatment of europinidin at both doses (10 mg/kg and 20 mg/kg) significantly restored the
antioxidant level by decreasing the oxidative damage produced in the neurons.

Various research findings showed that the cholinergic system plays a key role in
regulating neurological functions such as learning, motor performance, memory, and
sleep [50,51]. Acetylcholinesterase, a specific enzyme marker mainly located in postsynaptic
synapses, hydrolyzes acetylcholine (Ach) into acetic acid and choline. In line with earlier
reports, the current study results also showed that rotenone administration markedly
increases AChE activity [52,53]. A concomitant decline in AChE activity leads to a rise in
the synaptic acetylcholine level that is required to modulate cognitive performance. Our
study suggests that rats treated with europinidin dose-dependently reduced AChE activity,
thereby minimizing the hydrolyzation and conversion of acetylcholine so that a sufficient
amount of Ach could be available in the synaptic cleft.

Oxidative damage is the major cause of the depletion of neurotransmitters, mainly
dopamine, which essentially plays a role in controlling functional movements and signals
transmission [54]. In the present study, rotenone significantly decreased dopamine levels
and also altered the concentrations of its metabolites, which were similar to previous
findings [55,56]. Treatment with europinidin dose-dependently restored the levels of
neurotransmitters near to normal, indicating improvement in the neuronal and behavioural
functions and the anti-oxidant role of europinidin in PD.

Several reports have shown that inflammation has a major role in the progression
of PD. The activation of the neuroinflammatory pathway triggers the expression of the
cytokines including IL-1b, TNF-α, and IL-6 in the microglia [57]. In line with earlier
findings, the present study showed a sharp rise in inflammatory cytokine levels in the
rotenone- activated group [58,59]. Treating with europinidin at both doses displayed a
significant decline in the cytokine level, which proved that europinidin possesses anti-
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inflammatory properties. Europinidin antioxidant qualities may be responsible for its
protective benefits in rats suffering from rotenone-induced neurotoxicity. These findings
also suggest that europinidin may also contribute to the anti-inflammatory property by
preventing oxidative stress and cytokine levels, improving cholinergic function, and up-
regulating DA release and mitochondrial deficits in the brain. As a result, europinidin
antioxidant therapy attenuates oxidative damage underlying mitochondrial dysfunction
and may be beneficial in treating PD. We will be performing future molecular-level studies
to confirm this mechanism.

5. Conclusions

The study revealed that the neuroprotective effect of europinidin in rotenone-activated
Parkinson’s disease was due to its ability to overturn cognitive deficits and behavioural
patterns, alter the oxidative injury by restoring the antioxidant enzymes, decreasing the
neuroinflammation, and recovering the neurotransmitter level. Hence, europinidin could
be a good candidate and can be used as a therapeutic agent in treating PD. Further studies
should be done on finding the molecular mechanism of europinidin associated with neu-
roprotection by considering higher dose levels. Further europinidin at a higher dose, i.e.,
20 mg/kg showed greater protection against rotenone activated dysfunctions.
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