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Abstract: DNA nanostructures are well-established vectors for packaging diversified payloads for
targeted cellular delivery. Here, DNA origami rectangular sheets were combined with Herpes Simplex
Virus 1 (HSV1) capsids to demonstrate surface coverage of the particle via electrostatic interactions.
The optimized origami:HSV1 molar ratios led to characteristic packaging geometries ranging from
dispersed “HSV1 pockets” to agglomerated “HSV1 sleeves”. “Pockets” were disguised from cells
in HeLa and B16F10 cells and were 44.2% less infective than naked HSV1 particles. However, the
pockets were 117% more infective than naked HSV1 particles when the origami sheets were coated
with folic acid. We observed infectivity from naked origami, but they are 99.1% less infective with
respect to HSV1 and 99.6% less infective with respect to the pocket complexes. This work suggests
that DNA origami can selectively modulate virus infectivity.

Keywords: DNA origami; herpes simplex virus; folic acid; targeted delivery

1. Introduction

The precise presentation of biomolecules between the surfaces of cells and pathogens
drives their interactions. Bacteria, viruses, and other foreign bodies present characteristic
proteins to facilitate uptake and infection [1–7]. Tailored mimicry of this molecular dialogue
may offer several advances in synthetic biology. First, details of pathogenicity may be better
clarified and emulated. More importantly, controllable pathogenicity may be achieved [8,9]
for improved delivery of therapeutically engineered viruses [10] such as oncolytic viruses
for cancer therapy [11,12], which are limited by neutralizing antibodies from the host,
premature degradation, and liver clearance pathways [13–15].

The ability to mask native surface proteins on a virus while presenting a desired
class of proteins can disguise the virus and modify its uptake. This approach requires a
biocompatible material that can organize the desired proteins at a controllable density while
maintaining coverage over the original surface. Cell membrane coating technologies are
popular for the disguise and delivery of foreign entities into cells but suffer from coating
inefficiencies during fabrication, low-yielding purification from uncoated entities [16],
and inflammation with collateral immunogenicity [17]. Polymeric and silica coatings
have been proposed, but both materials have minimal control over peptide or protein
decoration for cell uptake; they are also toxic towards immune cells via oxidative stress
and pro-inflammatory activation while lacking immunostimulatory stealth [18–20].

DNA nanotechnology uses programmed strands that complimentarily self-assemble
into a coherent structure via base-pair specificity. DNA offers an unrivaled ability to
organize molecules with single nanometer precision [21,22], fabricate structures with high
yield [23,24], and maintain integrity in vivo while delivering therapeutic agents [25–27].
Some reported DNA structures have demonstrated low immunogenicity in vivo [27]. DNA
nanostructures can be fabricated in several ways including “DNA origami” where small
“staple strands” use complimentary forces to fold one long “scaffold strand” into the
programmed shape. An alternative is “ODN or oligonucleotide approach” where short
oligonucleotides self-assemble into the structure [28].
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There are many compelling reports on combining DNA nanostructures with viruses.
DNA origami rectangles have been loaded with cowpea chlorotic mosaic virus (CCMV)
capsid proteins for increased transfection into cells [29]. DNA “nano-stars” have demon-
strated robust avidity to dengue virus (DENV) by precisely organizing aptamers in a
pattern identical to the complimentary DENV glycoprotein distribution to mute their infec-
tivity [30]. Elegant icosahedral DNA structures have demonstrated complete entrapment
and neutralization of hepatitis B and adeno-associated viruses in human cells [31]. A next
step in the field is selective viral infectivity.

Here, we report the ability to disguise herpes simplex virus 1 particles with DNA
origami nanosheets. The origami sheet carries a net negative charge from the phosphate
backbones of the DNA to cover the positively charged HSV1 capsid proteins via electro-
static interactions [32]. We explore and report this packaging mechanism with origami
sheets containing overhanging strands that anchor the targeting ligand folic acid on the
outer surface, as biomarker receptors are a promising avenue in targeted nanomedicine
(Figure 1A) [33–36]. This folic acid decoration efficiently delivers the viral HSV1 particle
cargo to folic acid receptor-positive cell surfaces via the DNA origami (Figure 1B). Without
this decoration, charge repulsion between the origami coating and the cell membranes
prevents HSV1 entry. This work describes an applied nanomaterial that can modulate
delivery of engineered oncolytic viruses; HSV1 is a fundamental backbone for talimogene
laherparepvec (T-VEC)—the first FDA-approved oncolytic virus to combat Stage 3 and
Stage 4 melanomas and lung cancers [12].
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Figure 1. Schematic of Disguised HSV1 through DNA Origami. (A) Wrapping HSV1 in folic acid
(yellow)-adorned DNA origami (blue). (B) In vitro delivery experiments on the (1) disguise of HSV1
and (2) targeted initial uptake into folate-receptor positive cell surfaces.

2. Materials

The materials for this research include DNA Origami and ssDNA strands (Integrated
DNA Technologies (IDT), Coralville, IA, USA), M13mp18 scaffold strand (Guild Biosciences,
Dublin, OH, USA), PEG-maleimide-folic acid (NanoCS, New York, NY, USA) Monkey Vero-
propagated Herpes Simplex Virus 1 particles (Bio-Rad, MPP010, Hercules, CA, USA),
HSV1/2 Major Capsid Protein ICP5 Primary Antibody (Santa Cruz Biotechnology, Dallas
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TX, USA), Goat anti-mouse IgG Horseradish Peroxidase (BioLegend, San Diego, CA, USA),
Azure Radiance Q Substrate (Azure Biosystems, Dublin, CA, USA). HeLa and B16F10 cells
were generously gifted by Professor Liangfang Zhang’s Nanomedicine Laboratory (UC San
Diego, San Diego, CA, USA).

3. Methods
3.1. DNA Origami

Plated DNA strands were first centrifuged, then aliquoted to 100 µM with MilliQ
water. Strands were then collected to add with the M13mp18. Strands were then mixed
at a 1:10 M13mp18 to staple strand molar concentration in 1× TAEMg (Tris-base Acetic
acid, EDTA, Mg) buffer. If Folic Acid strands were included in the sample, the strands
were also incubated with the folic-acid DNA strands at a 1:10:10 M13mp18:staple:folic acid
strand molar ratio. The strand mixtures were first heated to 90 ◦C for one minute before
3 h cooling to 4 ◦C. If not immediately used, origamis were stored at 4C.

3.2. DNA-Folic Acid Conjugation

Thiolated ssDNA strands (SH-ssDNA) were also ordered from IDT. In summary, the
ssDNA-SH was incubated with tris (2-carboxyethyl)phosphine (TCEP) at a 1:10 molar
ratio in 50× TAE (Tris-base, Acetic acid, EDTA) for 6 h room temperature, in order to
reduce disulfide bonds from the thiol-tagged ssDNA. Maleimide-PEG-Folic Acid was then
added to the reaction and given overnight to link to the strands at room temperature. The
conjugation reaction was halted and purified by letting the sample run through a spinning
dialysis (3000MWCO) tube in a 2 L beaker with MilliQ Water overnight. Conjugation yield
was verified through a 20% Urea Denature PAGE.

3.3. HSV1-DNA Origami Assembly

HSV1 Particles were obtained from Bio-Rad. For ratio experiments, the HSV1 particles
were previously diluted in 1× Phosphate Buffer (1xPBS, pH 7.5). At the specified ratios,
HSV1 particles and the pre-made DNA Origami were mixed together in 1.5 M NaCl
concentration, diluted as necessary in 1× TAEMg Buffer. After pipetting to promote even
mixture, the complexes were allowed 2 h to react at 4 ◦C. The complexes were either used
in 1% Agarose Gel Electrophoresis for mobility shift assaying, directly added to freshly
cleaved mica substrates for Atomic Force Microscopy, or directly added with DMEM for
cell related experiments.

3.4. Complex Characterization

For all complex characterization methods, every sample, (i.e., DNA Origami, naked
HSV1 capsid particles, and the complexes at different ratios) were characterized under the
same reaction solvent conditions, (1.5 M NaCl, 1xTAEMg buffer) throughout.

Agarose Gel Electrophoresis Mobility Shift Assay (AMSA) AMSA was implemented
using a 1% Agarose/1xTAEMg gel. The gel was immersed in 1xTAEMg as the running
buffer. The gel was stained with 0.5 µg/mL Ethidium Bromide. After 20 µL of each sample
was loaded into each well in the gel, the gel was run at 90 V (constant voltage) for one hour.
To prevent heat-denaturing of the DNA Origami higher order structure from electrophoresis
adverse heating effects, the gel electrophoresis box was covered and surrounded by dry ice
pellets. After the run, the gel was exposed to ultraviolet light for imaging.

Dynamic Light Scattering (DLS) 100 µL of each sample was loaded into a microvolume
cuvette, and all DLS measurements were done on a Malvern Zetasizer Nano ZS.

Atomic Force Microscopy (AFM) AFM was performed under room temperature dry
conditions. Then, 5 µL of the sample was drop casted onto a freshly cleaved mica surface
and incubated at room temperature for several minutes. The substrate was washed with
2 mM Mg (Ac)2 solution and dried by compressed air.
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3.5. Cell Cultures

HeLa cervical cancer cells and B16F10 mouse melanoma cells were cultured in Dul-
becco’s Modified Eagle Medium (DMEM) with 10% Fetal Bovine Serum, 1% Penicillin-
Streptomycin at 37 ◦C at 5% CO2, and were permitted at least 3 passages before use
in experiments.

3.6. Viral Plaque Assay

300,000-cell monolayers were first seeded into 6-well plates. After reaching 90–100%
confluency, media was decanted and the cells were washed once in ice cold 1× Phosphate
Buffer Saline (PBS) before infected with HSV1, DNA Origami, or HSV1-DNA Origami
complexes for 2 h at 37 ◦C, 5% CO2. The plates were gently rocked every 30 min to
promote even distribution of inoculum. Inoculum was then aspirated and the cells were
overlaid with 0.3% Agarose/DMEM and provided 4–6 days for incubation. ImageJ particle
analysis was used for plaque counting. Images for processing were converted to 8-bit
type before threshold adjustments were held constant for every sample. These plaque
formation in the images were then counted through the ImageJ particle analysis tool
(Figure S7). Our statistical analysis utilized Welch’s t-test, which assumes unequal variance
between samples.

Infectivity rate is generally quantified as Plaque Formation Units per volume (PFU/mL).
This rate is found by relativizing (P) plaque number by (D) dilution factor of the pathogen
and (V) total inoculum volume [37] as described below as Formula (1):

PFU
ml

=
P

D ∗ V
(1)

For the complexes, the infectivity was calculated using Formula (2):

PFU
ml

=
P

φ ∗ V
(2)

where φ =

(
DOrigami

)
(DHSV1)(

DOrigami
)
+ (DHSV1)

(3)

where this formula is described in the discussion section with derivation specified in the
supporting information.

3.7. In vitro Structural Stability Experiments

All dilutions and packing ratios were replicated as identical to the viral plaque assay
experiments. In summary, origami, origami-Folic acid, and HSV1-packed complexes of
both origami cases were incubated in same FBS and antibiotic content in DMEM at 37 ◦C for
2 h, then further analyzed through 1% Agarose Gel Electrophoresis. As a control, these were
compared to complexes identically prepared, yet incubated at 4 ◦C and in extra 1xTAEMg
as opposed to the cell culture media.

3.8. Western Blotting

1,000,000 cells were seeded into individual T-25 flasks and were provided several days
to reach 85–90% confluency. Flasks were then inoculated with HSV1 and Origami-HSV1
complexes and overlaid with sufficient media for one week (a total volume of 4 mL). The
media was collected after the infection period and then spun down at 1000× g for 15 min.
The top 75% of this supernatant was extracted and mixed with reducing SDS loading buffer
(50 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 1% 2-mercaptoethanol, 12.5 mM EDTA,
0.02% bromophenol blue). Samples were run in an SDS Bis-Tris gel at 165 V for 45 min,
then transferred to a nitrocellulose membrane at 15 V for 30 min. Membranes were blocked
in 5% milk/0.1% PBST for one hour, incubated with HSV1 ICP5 Major Capsid Protein
at a 1:1000 ratio in Milk/PBST overnight at 4 ◦C, then incubated for 2 h with goat anti-
mouse IgG-Horseradish Peroxidase at a 1:1000 ratio for 2 h rocking at room temperature.
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Membrane was then rinsed with deionized water before reacted with Azure Radiance
Q Chemiluminescent substrate for 5 min. Autoradiography films were exposed to the
membrane for ten seconds before image processing.

4. Results and Discussion

DNA Origami Design. The DNA Origami sheet design was adopted from one of
Rothemund’s original DNA rectangle designs [24]. These sheets were first fabricated
by mixing 235 staple strands that fold a scaffold strand into 70 × 90 nm rectangles by
hybridizing with multiple regions on the scaffold and each other [24]. The scaffold strand
is M13mp18 ssDNA, a bacteriophage genome strand that is conventionally used for most
origami scaffolds due to its extensive length (7413 nucleotides) [24,28]. Rectangles were
successfully formed after annealing all strands together from 90 ◦C to 4 ◦C in the span
of three hours (Figure 2A). We further installed 12 “overhanging” polyA strands that
tether covalently conjugated folic-acid polyT strands for cell-targeting demonstrations
(Figures 1, 2B and S1).
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Figure 2. AFM Images of our DNA origami, HSV1 particles, and the resulting complexes after
mixing. (A,B) Origami and folate-decorated origami sheets. Salt bi-products from formed origami
were observed as seen in (B). (C) HSV1 particles (D) Origami:HSV1 “pockets” established at a
2:1 Origami:HSV1 molar ratio (E) 20:1 ratio “sleeves” and (F) 50:1 ratio “sleeves” where many excess
sheets are left unbound. Green arrows show unbound sheets in the packing reactions while red
arrows show products of the HSV1-origami “sleeve” complexes.

DNA Origami-HSV1 Particle Packing. These origami rectangles were then mixed with
commercially prepared HSV1 capsid particles from 2:1 to 50:1 molar ratios, where the HSV1
particles previously had their envelope and glycoproteins removed to expose the positive
charged capsid by the manufacturer (Figure 2C). The charge-mediated union between the
origami and HSV1 particles consistently resulted in specific packing morphologies. The
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comparable dimensions between the sheets (70 × 90 nm) and the HSV1 capsids (90–100 nm
in diameter) allowed us to hypothesize that 2:1 and 3:1 origami:HSV1 molar ratios can
sufficiently cover the virus. Under these proportions, the particles were wrapped in
dispersed, rounded, “pocket-like” structures as seen via atomic force microscopy (AFM)
(Figure 2D). However, as we decreased HSV1 content so that the ratio shifted towards
10:1, 20:1 and 30:1, the packaged complexes assembled into elongated or “sleeve-like”
structures, where capsid aggregates were packaged into many origami sheets at once with
minimal unbound sheets remaining in the reaction (Figure 2E). Yet, at higher 40:1 and
50:1 ratios, these sleeve structures were sustained while many unbound origamis were
observed, suggesting that a critical packing ratio between the HSV1 particles and DNA
sheets had been surpassed (Figure 2F).

These packing behaviors were further validated with 1% agarose gel electrophoresis
mobility shift assays (AMSA). There was no visible band from the lane loaded with naked
HSV1 particles because their positive charge prevented them from traveling along the same
electrophoretic direction as origami-related samples. (Figure 3A,B). On the other hand, the
origami band displayed lower mobilities as the HSV1 particles were packaged within the
origami structures. As previously realized in the AFM micrographs, AMSA confirmed a
critical ratio between 35:1 and 40:1 provided the sudden lighter mobility of the 40:1 and
45:1 packing ratios with respect to the other loaded ratios (Figures 3A and S3).

Dynamic Light Scattering measurements further validated this capsid coating be-
havior. When complexed at a 2:1 origami:HSV1 ratio, 55.4% of size dimensions were
98.51 nm in diameter with 44.3% 308 nm in diameter. These measured sizes are com-
parable to the dimensions of single-particle and dimerized aggregates. However, we
chose to use the DLS data of higher packing ratios as a supplement provided that micron
range dimensions—as was seen in the sleeves—lead to less accurate scattering properties
(Figures 3B,C and S2A–D).

Dynamic light scattering also confirmed the behavior of the HSV1 capsids alone. If
the capsid particles were otherwise not disperse in the solvent, as is seen with the detected
110 nm size measurement, which is both expected of the capsids and the majority of the
detected size of the sample, there was occasional dimerization (as is seen with 200 nm
detected sizes), but no agglomeration or submicron to micron clustering was observed.
This implies that when the capsids are packed into larger sized aggregates by the origami,
it is not due to their propensity to aggregate alone.

While Folic Acid-functionalized origamis displayed loading capabilities like the un-
functionalized origamis, AMSA experiments clarified that the critical packing ratio shifted
from 35:1 to near 20:1 (Figure 3B). We believe the extra positive charge from the folic acid
led to a diminished efficiency in electrostatic packaging between the negatively-charged
DNA sheets and the positively-charged virus capsid [38]. Regardless of the sudden change
in band mobility after the 20:1 ratio, the bands continued to decrease in intensity even
as 30:1, 40:1 and 50:1 ratios were explored. This may be due to a wider distribution of
packing morphologies such as a combination of pockets, longer sleeves, and shorter sleeves
(Figures 3B and S4). Moreover, the decreased band intensity is caused by the majority of
the loaded sample remaining in the well rather than traveling down the gel matrix; there
are thus complexes of larger sizes under these ratios. This distribution behavior was further
validated through DLS and confirmed the increased polydispersity index (PDI) values of
0.81, 0.96 and 1.00 for 30:1, 40:1 and 50:1 ratios, respectively. The PDI values for lower ratios
ranged between 0.55 to 0.71.

The AFM images at both low and high magnification, in combination with the DLS
data presented in Figures 2 and 3, indicate that higher ratios of origami to HSV1 particles
promote linear, “sleeve-like” assemblies. This conformation is most likely due to patchy
aggregation before full outer coverage: The higher amount of available origami sheets
allows some of them to bind in between particles as electrostatic patches first [39], bridging
the particles together while residual sheets cover remaining exposed and positive charged
regions on the capsid particles’ surfaces [40,41]. The presence of sleeves is made possible
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due to more available free origami sheets, but it is not necessarily the preferred assembly,
as is exemplified by the high PDI values from DLS and the persistent presence of pockets
at these higher ratios.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. Electrostatically HSV1 particle-loaded DNA Origami. (A) 1% Agarose Mobility Shift Assay 
(AMSA) analysis of HSV1-loaded origami shows a sudden change in mobility between 35:1 and 40:1 
origami:HSV1 ratios from otherwise decreased mobility, suggesting the critical packing ratio and 
(B) Folic-Acid adorned origami similarly loaded with HSV1 particles, where 20:1 is the demon-
strated critical packing ratio. Both (A,B) also show a decreased mobility from the free M13mp18 
scaffold strand to the fully annealed DNA Origami in the first two left lanes of both gels. (C) Dy-
namic Light Scattering validation of HSV1 particle and DNA Origami size dimensions where occa-
sional dimerized configurations were observed. Data also confirms the complex package sizes at a 
2:1 ratio origami-HSV1 and 3:1 ratio of origami Folic Acid to HSV1 complexes. No leftover origamis 
are observed, but agglomeration is noted. 

Dynamic Light Scattering measurements further validated this capsid coating behav-
ior. When complexed at a 2:1 origami:HSV1 ratio, 55.4% of size dimensions were 98.51 nm 
in diameter with 44.3% 308 nm in diameter. These measured sizes are comparable to the 
dimensions of single-particle and dimerized aggregates. However, we chose to use the 
DLS data of higher packing ratios as a supplement provided that micron range dimen-
sions—as was seen in the sleeves—lead to less accurate scattering properties (Figures 3B,C 
and S2A–D). 

Dynamic light scattering also confirmed the behavior of the HSV1 capsids alone. If 
the capsid particles were otherwise not disperse in the solvent, as is seen with the detected 
110 nm size measurement, which is both expected of the capsids and the majority of the 
detected size of the sample, there was occasional dimerization (as is seen with 200 nm 
detected sizes), but no agglomeration or submicron to micron clustering was observed. 
This implies that when the capsids are packed into larger sized aggregates by the origami, 
it is not due to their propensity to aggregate alone.  

While Folic Acid-functionalized origamis displayed loading capabilities like the un-
functionalized origamis, AMSA experiments clarified that the critical packing ratio shifted 

Figure 3. Electrostatically HSV1 particle-loaded DNA Origami. (A) 1% Agarose Mobility Shift Assay
(AMSA) analysis of HSV1-loaded origami shows a sudden change in mobility between 35:1 and 40:1
origami:HSV1 ratios from otherwise decreased mobility, suggesting the critical packing ratio and
(B) Folic-Acid adorned origami similarly loaded with HSV1 particles, where 20:1 is the demonstrated
critical packing ratio. Both (A,B) also show a decreased mobility from the free M13mp18 scaffold
strand to the fully annealed DNA Origami in the first two left lanes of both gels. (C) Dynamic
Light Scattering validation of HSV1 particle and DNA Origami size dimensions where occasional
dimerized configurations were observed. Data also confirms the complex package sizes at a 2:1 ratio
origami-HSV1 and 3:1 ratio of origami Folic Acid to HSV1 complexes. No leftover origamis are
observed, but agglomeration is noted.

Infectivity Analysis in vitro. After establishing these structural and packing prop-
erties, we studied the virulence of origami-HSV1 and Folic-Acid-Origami-HSV1 com-
plexes using the 3:1 origami:HSV1 molar packing ratio. Plaque assays were implemented
here because they are the gold standard for titering and characterizing infectivity rate of
pathogens [37,42–44]. To summarize the process, cell monolayers are infected with the
pathogen and then cleaned and further fixed in agarose-media to localize plaque formations.
The epicenters of infections are within the monolayers and identified as plaque [37]. Here,
HeLa cells were used as a model cell line due to their density in folic acid receptors [45].
When HeLa cultures were inoculated, there was a 46.8% heightened plaque formation from
folate-decorated HSV1-origami pockets above naked HSV1 particles alone. Surprisingly,
there was a 42.1% less plaque formation when the HSV1 particles were masked in undeco-
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rated origami (Figure 4A,B). We believe that this muted formation is due to negative charge
repulsion between the cell membranes and the phosphate backbones of the bare origami
surfaces [29,46].
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lence of the origami, HSV1, and HSV1-Origami complexes. To elucidate this, the infectiv-
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Figure 4. In vitro analysis of Origami-HSV1 complexes. (A) Plaque assay of HeLa cells showing
HSV1 in origami-Folic Acid led to heightened plaque formation above HSV1, but also showed muted
plaque formation for HSV1 wrapped in bare origami. (B) Quantified plaque formation numbers from
those observed in panel A as is described in the methods section and Figure S6. (C) The infectivity
rates (Plaque Formation Unit/mL) shows that DNA Origami plaque leads to negligible infectivity
relative to HSV1 and complexes, and that HSV1 wrapped in origami-Folic Acid is the most infective
above native HSV1 (* denotes Welch’s unpaired t-test, p = 0.0293). (D) Plaque Assays of Mouse
Melanoma B16F10 show heightened plaque formation from HSV1 in folic acid decorated origami
complexes alongside decreased plaque formation from HSV1 in bare origami as compared to HSV1
alone. (E) Quantified plaque formation numbers of infected B16F10. (F) Resulting infectivity rate
(Plaque Formation Unit/mL) of B16F10 outlining comparable behavior as those results from the
HeLa plaque assays (* denotes Welch’s unpaired t-test, p = 0.0065, ** denotes Welch’s unpaired t-test
p = 0.0370). Error bars are the standard deviation.

There was plaque formation in the HeLa cells when they were inoculated with the
naked origami sheets—either bare or further decorated with the folic acid. (Figure 4A,B).
Yet, both cases resulted in fewer plaque formations than HeLa cells inoculated with the
naked “scaffold strand,” M13mp18 (Figures 4B and S6). Prior work has shown that foreign
M13mp18 strands can become internalized and persist in eukaryotic cell lines [47–49]. Our
data show that the M13mp18 strands generated 300% more plaque than the bare origami
and 89.3% more than folate-decorated origami due to suppressed exposure of the strand
from hierarchical folding with the staple strands. While both origami designs produced
plaque, the folate-functionalized origami generated an average of 121% more plaque than
the bare origami suggesting a forced uptake of the origami through folic acid reception.

However, plaque formation numbers alone are an incomplete outline on the virulence
of the origami, HSV1, and HSV1-Origami complexes. To elucidate this, the infectivity
rate is generally quantified as Plaque Formation Units per volume (PFU/mL). This rate
is found by relativizing (P) plaque number by (D) dilution factor of the pathogen and (V)
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total inoculum volume [37]. This applies directly to the HeLa inoculated with the origami
sheets, Folate-decorated origami sheets, and naked HSV1 particles (Formula (1)).

However, because the origami and HSV1 particles are simultaneously administered
at differing dilution factors when the packed complex is the inoculum, a parallel function
is necessary to compensate for both entities. (Formula (2)) shows the justification and
derivation of parallel function further detailed in the Supplementary Information).

These results indicate that the plaque-forming origami sheets did not contribute to
infectivity rates comparable to the native HSV1 particles and the complexes—either bare or
further adorned with folic acid (Figure 4C). In fact, naked origami was at least 99.7% less
infective than complexes and 99.3% less infective than naked HSV1. This claim is further
supported in that the naked origamis were inoculated at the same dilution factors as the
origamis involved in the complex inoculums.

The infectivity rates of these complexes against B16F10 mouse melanoma cells were
also tested under identical conditions as those with the HeLa cells. Because the HSV1 parti-
cles are natively propagated in Vero cells and are therefore ape-derived, we hypothesized
it would be increasingly difficult for them to establish initial infectivity in a mouse cell
line [50] unless coerced inside by folic-acid mediated uptake. While HeLa and B16F10 are
from different species, both are folic acid receptor-positive [51]. Indeed, B16F10 infection
experiments showed similar plaque formation behaviors as observed during the HeLa
experiments, but the infectivity of the folic acid-decorated origami-HSV1 pockets led to a
127% increase over the native HSV1 (Figure 4D–F). The B16F10 line formed at least 30 more
plaque formations than HeLa, but their sizes were significantly smaller than those in the
HeLa line (Figure 4A,D). The smaller plaque sizes are in fact due to infection attenuation
from the virus [52] likely because the HSV1 is infecting a species foreign to its own origin
(Figure 4D).

Validation of HSV1-Origami Complex stabilities in vitro. We next tested if the in-
creased plaque from the HSV1-Origami-Folic Acid complexes was due to their short sta-
bility in vitro, i.e., a mere accumulation of the origami and HSV1 plaque formations from
full-dismantlement in cell culture conditions. There are three approaches to resolve this
question. First, we implemented Western blotting to directly monitor changes in the con-
centration of produced HSV1 ICP5—the major capsid protein. This is an accurate method
to measure HSV1 based on delivery methods because the origami would not contribute to
the ICP5 band (wrapped in bare or decorated origami, or administered completely naked).
The Western Blot confirmed that the folate-adorned origami wrapped HSV1 led to the most
ICP5 protein even over naked HSV1 particles (Figure 5A).

Second, AMSA analysis was implemented on the complexes to examine their structural
stability under cell culture conditions. Incubation of DNA origami in standard cell culture
conditions (10% FBS, Dulbecco’s Modified Eagle Medium, 1% Pen-Step under 37 ◦C at 5%
CO2) led to (1) denaturation of the structure and (2) digestion of the structural DNA due to
nuclease activity and diminished cationic stability [53,54]. We therefore incubated origami
and origami-HSV1 complexes under these conditions while strictly matching incubation
time periods and dilutions as was performed in the plaque assays. We then compared
these samples to those left at the bench under the same time. There was no mobility shift
when the origami was loaded with HSV1 and then incubated under cell culture conditions
(Figure 5B). While the band intensity slightly decreased suggesting some digestion activity,
the remaining origami structures do maintain their binding to the HSV1 particles due to the
unshifted band. If the band lowered to its original level when unloaded, then this would
suggest that the free-floating origami is exposed and infective to the cells on their own.
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Figure 5. Validated HSV1 delivery and packaging stability of the Origami-HSV1 complexes in vitro.
(A) Western Blot characterization on produced ICP5 HSV1 Major Capsid after HSV1 infection based on
delivery or masking method. (B) Validated stability of the Folate-adorned Origami-HSV1 complexes
in vitro under cell culture conditions identical to the conditions during the plaque assay inoculum
stage. The corresponding table legends for (A,B) indicate the present entities and conditions for each
sample in each lane.

Each inoculum led to consistent plaque numbers, and thus we implemented mathe-
matical predictions on the resultant infectivity of these complexes including if the origami
completely detached from the HSV1 particles or completely stuck with them during admin-
istration in vitro. If the complexes dissociated before they reached the cells for infection,
then the plaque from the complexes would have resulted in numbers similar to the sum
of the plaques from the origamis and HSV1 particles alone. However, if they remained
completely intact prior to reaching the cell, then the resultant plaque from the complex
might resemble plaque formed but with the plaque from the origamis alone subtracted
(Figure S8). When we modeled both of these cases and compared them with the empirical
results, neither of the complex infectivity rates compared with the predicted detachment
cases. On the other hand, they resulted in heightened infectivity numbers than those in the
fully attached case but it is crucial to note that we did not account for the continuous pro-
duction of the HSV1 particles—leading to more infectivity—when the complexes are fully
attached. The results suggest that the HSV1-Origami complexes maintained their packing
integrity when employed for infections against the cell lines, and that enhanced infectivity
form the folic acid-adorned Origami-HSV1 pockets is due to the increased efficiency of
their uptake.

Here, for the first time, HSV1 particles were wrapped in DNA origami and evaluated
for controllable viral delivery. Inspired by past demonstrations on DNA origami’s electro-
static affinity towards positively charged viral plant capsid particles, we corroborated the
translatability of this binding interaction with a larger mammalian viral capsid particle [29].
When the particles are wrapped in bare origami sheets, their recognition and uptake into
cells are noticeably diminished by a 44.2% decreased infectivity rate. This muted infectivity
further supports previous reports on DNA origami’s potential to inhibit viral infections
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by structurally covering and thereby trapping virus cores [30,31]. On the other hand,
when wrapped in origami that is outwardly functionalized with folic acid, folate-receptor
mediated uptake allowed the viruses to have increased HSV1 protein production and 117%
heightened infectivity. This therefore reveals unique and potentially therapeutic value in
the context of engineered, antitumor viral infections. Plaque assays were used to monitor
the infectivity of the Origami-HSV1 complexes and the origami sheets themselves. While
origami sheets displayed plaque forming and infective behavior, we validated that (1) their
infectivity is negligible relative to native HSV1 and (2) they maintained packing integrity
in vitro. Thus, the origami sheets did not individually contribute to the enhanced infectivity
of the HSV1-wrapped origami complex in folic acid. Future work may investigate the
administration of these complexes during longer inoculation times both in vitro and in vivo
to further elucidate their stability. Different packaging mechanisms besides electrostatic
binding can be explored. Perhaps most importantly, these results encourage future research
on DNA nanotechnology—specifically origami—in a system where pathogenicity is more
rigorously examined. Although more recent reports continue to demonstrate the non-
toxic and low immunogenicity of DNA origami when administered in vivo [27,55], more
stringent characterizations on origami geometries and potential adverse effects should be
investigated. This will be a large stride in the global effort to introduce DNA Origami—and
DNA Nanotechnology altogether—into serious consideration for therapeutic translatability.

5. Associated Content

Proof and derivation for complex infectivity. Bright field confocal micrographs taken
12 h after HeLa is inoculated. DNA strand sequences. Twenty percent Denature gel
characterizing the ssDNA-Folic Acid conjugation efficiency. M13mp18 plaque assay re-
sults. ImageJ plaque assay analysis. Modeled predicted versus empirical infectivity rates
(PFU/mL) of HSV1 and HSV1-Origami complexes, either assuming full-detachment dur-
ing inoculum and full-attachment during inoculum period. Sequenced staple strands for
DNA Origami. Supplementary Dynamic Light Scattering data on complexes based on
packing ratio.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217162/s1, Figure S1: 20% Urea Denature PAGE on
Folic Acid-DNA conjugation. Figure S2: Supplementary DLS measurements of our origami:HSV1
complexes based on molar packing ratio. Figure S3: Further 1% AGE validation of Origami-HSV1
loading depending on molar ratios. Figure S4: Low Magnification Atomic Force Micrographs of
DNA Origami-HSV1 Complexes Figure S5: HeLa cells 24 h post infection. Figure S6: Plaque Assay
result of HeLa inoculated with naked M13 strands at the same concentration as inoculated origami.
Figure S7: Plaque Assay Plaque counting using ImageJ. Figure S8: Predicted infectivity rates based
on complex stability or instability in vitro, as compared with empirical results. DNA Origami staple
strand sequences.
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