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Abstract: At present, there are many kinds of pollutants, including dyes and heavy metal ions,
in wastewater. It is very important to develop adsorbents that can simultaneously remove heavy
metal ions and dyes. In this study, a renewable composite membrane material was synthesized using
chitosan and treated coal gasification slag. The Cr (VI) maximum adsorption capacity of the composite
membrane was 50.0 mg/L, which was 4.3~8.8% higher than that of the chitosan membrane. For the
adsorption of RhB, the removal rate of the chitosan membrane was only approximately 5.0%, but this
value could be improved to 95.3% by introducing coal gasification slag. The specific surface area of
the chitosan membrane could also be increased 16.2 times by the introduction of coal gasification
slag. This is because coal gasification slag could open the nanopores of the chitosan membrane (from
80 µm to 110 µm). Based on the adsorption kinetics and adsorption mechanism analysis, it was
found that the adsorption of Cr (VI) occurred mainly through the formation of coordination bonds
with the amino groups on the molecular chains of chitosan. Meanwhile, RhB adsorption occurred
through the formation of hydrogen bonds with the surface of coal gasification slag. Additionally,
coal gasification slag can improve the mechanical properties of the chitosan membrane by 2.2 times,
which may facilitate the practical application of the composite membrane. This study provides new
insight into the adsorbent design and the resource utilization of coal gasification slag.

Keywords: coal gasification slag; membrane material; adsorb; heavy metal; dyestuff

1. Introduction

In recent years, the printing, dyeing, and textile industries have developed rapidly,
producing a large amount of wastewater containing dyes and heavy metal ions along
with high productivity [1–3], but the traditional biochemical treatment technology has
limited ability to decolorize dyes and remove heavy metals. The use of a proper adsorbent
can not only remove the color of dyed wastewater but also remove heavy metals, which
have a very important role in the whole treatment process [4]. With continuous research
on adsorption treatment technology, a variety of adsorbents have been discovered and
introduced, playing an increasingly significant role in the effective treatment of printing
and dyeing wastewater [5]. The commonly used adsorbents include activated carbon [6],
metal oxides [7], resins [8], inorganic substances [9], and natural polymeric materials [10].
However, these adsorbent materials face the problems of high wastewater treatment costs,
single response to pollutants, inability to cope with complex pollutants, and limited ability
to remove metal ions.

Based on this, we attempted to select a solid waste coal gasification slag with small
particle size, well-developed porosity, and strong hydrophilicity as a dye adsorbent and
load it on a polymeric organic membrane with a strong response to heavy metals to realize
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solid waste resourceification while effectively treating printing and dyeing wastewater con-
taining heavy metal ions. Coal gasification slag is a solid waste generated in the process of
coal gasification. From a component point of view, it is rich in SiO2, Al2O3, Fe2O3, CaO, and
other inorganic minerals and residual carbon, which is the basis of resource utilization [11].
From the perspective of physical properties, the residual carbon in the gasification residue
has sufficient adsorption space due to its high content, small particle size, large specific
surface area, and rich pore structure [12]. Therefore, coal gasification slag was selected as
the powder adsorption material in this study. Yuan et al. [13] prepared a ZSM-5 molecular
sieve from coal gasification slag and used it for the adsorption of cationic dyes and found
that its removal rate of methylene blue could reach 82.07%. Dong et al. [14] directly trans-
formed industrial coal gasification slag with high heavy metal content into an excellent
adsorbent for the adsorption of malachite green wastewater, and the theoretical maximum
adsorption capacity reached 1787 mg/g. Ma et al. [15] used acid leaching and alkali sol-
ubilization methods to prepare carbon/zeolite composites (C/ZC) from coal gasification
slag by an inducer, and the maximum adsorption capacities of the composites for NH4

+

and PO4
3− were 7.44 mg/g and 6.94 mg/g, respectively, after modification by iron sulfate.

Chitosan (Cs), as a product of the deacetylation of chitin [16,17], is a biodegradable natural
polymer containing amino groups [18,19]. Zia et al. [20] prepared porous poly (L-lactic
acid) (P-PLLA) nanofiber membranes by grafting chitosan with polydopamine (PDA) as an
intermediate layer and used this material for Cu2+ adsorption. Jiang et al. [21] synthesized
glucose/chitosan by ultrasonic-assisted free radical polymerization and adsorbed Cu (II),
Co (II), and other metal ions. Therefore, we selected chitosan as the carrier of gasification
residue to prepare a gasification residue/chitosan composite membrane with a special
reticulation and reusable structure, and use this novel composite as a candidate to solve
the problems of difficult recovery of powder adsorbent, single response of pollutants, poor
adsorption of heavy metals, and high cost of wastewater treatment, and also to achieve the
efficient removal of dyes and heavy metals.

In this study, the coal gasification slag was first treated at high temperatures and
subsequently loaded on chitosan film to develop a chitosan/coal gasification slag composite
membrane. The composite membrane was characterized by FT-IR, SEM, swelling rate,
mechanical properties, specific surface area, etc. The adsorption effect of the composite
membrane on Cr (VI) and RhB was investigated using Rhodamine B (RhB) and Cr (VI) as
the models of dye and heavy metal in printing and dyeing wastewater. The adsorption
process of the composite membrane on Cr (VI) and RhB was analyzed by kinetic simulation,
and the adsorption mechanism of the composite membrane on Cr (VI) and RhB adsorption
was also provided.

2. Experimental Section
2.1. Experimental Materials

The experimental materials included chitosan (deacetylated ≥ 90%, Shanghai Lanji
Bioreagent Co., Ltd., Shanghai, China), glacial acetic acid (AR, Tianjin Fuyu Fine Chemical
Co., Ltd., Tianjin, China), glutaraldehyde aqueous solution (25 wt%; AR, Tianjin Comio
Chemical Reagent Co., Ltd., Tianjin, China), and coal gasification slag (Shaanxi Geological
and Mineral Research Institute Co., Ltd., Xian, China). K2Cr2O7 (AR, Comio, Tianjin,
China), CuSO4 (AR, Tianjin Tianli Chemical, Tianjin, China), Pb(NO3)2 (AR, Tianjin Tianli
Chemical, Tianjin, China), and CdSO4 (AR, Tianjin Tianli Chemical, Tianjin, China) were
also used in this study.

2.2. Preparation of Samples

Preparation of coal slag-based activated carbon: The industrial gasifier slag collected
from the factory was first dried at 60 ◦C for 24 h, and then the dried coal slag was crushed
(multi-functional grinder, HebiXinyun Equipment Co., Ltd., XY-100, Hebi, China), screened
(200 mesh), and calcinated at a certain temperature in a muffle furnace (box muffle furnace,
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Hefei Kejing Material Technology Co., Ltd., KSL-1200X, Hefei, China) to form the small
size slag. Finally, the sample was named CGS.

Preparation of chitosan/cinder-based activated carbon composite membrane (for the
synthetic route, see Figure 1): A certain amount of chitosan solution (30.0 mL) was first
placed into a three-necked flask, and the system was heated in a 50 ◦C water bath. Under
mechanical stirring, both glutaraldehyde aqueous solution (10.0 mL) and a certain amount
of CGS (0.05, 0.10, 0.15, 0.20, 0.30, 0.60, and 1.20 g) were added into the above solution.
After stirring for a certain time, a certain amount of the mixture was taken out for the
purpose of freeze-drying storage. The serial samples were labeled as F-0.05, F-0.10, F-0.15,
F-0.20, F-0.30, F-0.60, and F-1.20, respectively. A blank film without CGS loading was also
prepared for comparison and denoted as F-0.
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Figure 1. Route for the chitosan/CGS composite membrane.

2.3. Morphological Characterization

The chemical structure of the films was characterized by the Fourier transform infrared
spectroscopy (FT-IR) of the Frontier FT-IR spectrometer (INVENIO, Brook, Germany). The
morphological characteristics of different samples were investigated using a field emission
scanning electron microscope (FE-SEM, FEI Verios 460). The element compositions and
valence states of different samples were examined by X-ray photoelectron spectroscopy
(XPS, AXIS SUPRA system). The specific surface area and pore size distribution of the
composite membrane were measured by a BET-physical adsorption instrument-specific
surface area analyzer (McMeritik (Shanghai) Instrument Co., Ltd., ASAP 2460, Shanghai,
China). The freeze-dried composite membrane was added to pure water at 25 ◦C for
standing water adsorption and removed at a certain interval to determine the swelling ratio.
The mechanical properties of the composite membrane were tested by a servo electronic
tensile tester (high-speed rail, AI-7000-NGD).

2.4. RhB and Cr (VI) Adsorption Experiment

The concentrations of Cr (VI) and RhB were tested by UV spectrophotometry using
the diphenylcarbazide chromogenic method. In total, 60.0 mL Cr (VI) or RhB solution
with a certain concentration were placed in a conical flask. A sample weighing 0.2 g was
added to the corresponding conical bottle. Additionally, the conical flask was placed into a
constant temperature oscillation box (30 ◦C, 120 r/min) for oscillation adsorption. After
absorption for a certain interval, the suspension of approximately 60.0 mL was removed for
centrifugation. After centrifugation, the supernatant was used as the sample to measure
the concentrations of Cr (VI) and RhB.

Adsorbing capacity : qt =
V(C0 − Ct)

m
,
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Removal rate : η =

(
1 − Ct

C0

)
× 100%,

where C0 and Ct are the initial mass concentration of RhB and Cr (VI) and the mass
concentration at moment t (mg/L), respectively; qt is the adsorption amount of material
on RhB and Cr (VI) at moment t (mg/g). V is the volume of RhB and Cr (VI) added (L),
respectively, m is the mass of adsorbent material (g), and η is the removal rate.

3. Results and Discussion
3.1. Adsorption Performance Analysis

In order to investigate the adsorption performance of coal gasification slag, 0.2 g of
coal gasification slag were added into 60.0 mL (40.0 mg/L) RhB or Cr (VI) solution. It can
be seen from Figure 2a that the adsorption of Cr (VI) by coal gasification slag can reach a
dynamic equilibrium after approximately 10 min. In this study, the removal rate of Cr (VI)
was determined to be 25.0%. As can be seen from Figure 2a, the removal rate of Cr (VI) by
blank film F-0 can reach more than 80.5% within 10 min, and the adsorption equilibrium is
reached within 40 min. At equilibrium, the removal rate of Cr (VI) was 95.5%, indicating
that F-0 has a good adsorption effect on Cr (VI).

It can be seen from Figure 2b that RhB adsorption by coal gasification slag can achieve
a 98.0% removal rate within 5 min and a 100% removal rate within 10 min. However, the
adsorption effect of blank membrane F-0 on RhB was poor, and the removal rate was less
than 5.0% when the adsorption equilibrium was reached (Figure 2b). In conclusion, the
coal gasification slag had a good adsorption effect on RhB, but the adsorption effect on Cr
(VI) was poor.
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Figure 2. (a) Cr (VI) adsorption over CGS and F-0. Reaction conditions: Cr (VI) (40 mg/L, 60 mL),
adsorbent (0.2 g). (b) RhB adsorption over CGS and F-0. Reaction conditions: RhB (40 mg/L, 60 mL),
adsorbent (0.2 g).

The removal results of Cr (VI) by different composite membranes are shown in Figure 3.
When the initial concentration of Cr (VI) was 20 mg/L and the adsorption reached the
equilibrium state, the adsorbing capacity of Cr (VI) by F-0.30 and F-0 was 5.93 mg/g
and 5.85 mg/g, respectively (Figure 3a). When the initial concentration of Cr (VI) was
40 mg/L and the adsorption reached the equilibrium state, the adsorbing capacity of Cr
(VI) by F-0.30 and F-0 was 11.78 and 11.46 mg/g, respectively (Figure 3b). When the initial
concentration of Cr (VI) was 60 mg/L and the adsorption reached the equilibrium state,
the adsorbing capacity of Cr (VI) by F-0.30 and F-0 was 17.66 and 17.51 mg/g, respectively
(Figure 3c). When the initial concentration of Cr (VI) was 80 mg/L and the adsorption
reached the equilibrium state, the adsorbing capacity of Cr (VI) by F-0.30 and F-0 was 23.45
and 23.16 mg/g, respectively (Figure 3d). When the initial concentration of Cr (VI) was
100 mg/L and the adsorption reached the equilibrium state, the adsorbing capacity of Cr
(VI) by F-0.30 and F-0 was 29.31 and 29.13 mg/g, respectively (Figure 3e).
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Figure 3. Different composite membranes adsorbed different initial concentrations of Cr (VI). (a–e) the
initial concentrations of 20, 40, 60, 80, and 100 mg/L, respectively. Reaction conditions: Cr (VI) (60 mL),
adsorbent (0.2 g). (f) The adsorption results of different composite membranes on RhB. Reaction
conditions: RhB (40 mg/L, 60 mL), adsorbent (0.2 g).

Figure 3f shows that although the RhB adsorbing capacity of the blank film F-0 was
less than 0.60 mg/g, the RhB adsorbing capacity of the composite film gradually increased
with the amount of coal gasification slag. When the additional amount of coal gasification
slag was 0.60 and 1.20 g, the adsorption of RhB by F-0.60 and F-1.20 reached 90% at
60 min and reached the adsorption equilibrium at 120 min, and the adsorbing capacity
was 11.20 mg/gat this time. When the adsorption time reached 180 min, the composite
membrane with the best adsorption effect was F-0.30, and its adsorbing capacity was
11.44 mg/g. These results indicate that the loading of coal gasification slag can provide
chitosan film with the ability to adsorb organic dye RhB.

The above results indicate that loading coal gasification slag can not only provide F-0
with the ability to adsorb organic dye RhB but also affect the adsorption effect of F-0 on
Cr (VI), realizing the function of the composite film to adsorb both heavy metal ions and
organic dyes simultaneously. The adsorbing capacity of Cr (VI) by F-0.30 at 2 min was
significantly higher than that of the F-0 (Table 1), indicating that the introduction of CGS
can accelerate the adsorption of Cr (VI) by the composite membrane. This conclusion was
also reflected in the equilibrium time of different concentrations of Cr (VI) adsorbed by
different samples.

Table 1. Comparison of Cr (VI) adsorbing capacity of F-0 and F-0.3 at 2 min and equilibrium.

Sample Initial Concentration (mg/L)
Adsorbing Capacity (mg/g)

2 min End

F-0.3

20 5.12 5.85
40 10.06 11.78
60 15.41 17.66
80 19.32 23.45
100 24.03 29.31

F-0

20 4.87 5.85
40 9.05 11.46
60 13.82 17.51
80 18.22 23.16
100 21.96 29.13
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3.2. Adsorption of Cr (VI) in Mixed Metal Ions

The adsorption results of the composite membrane on mixed metal ions are shown in
Figure 4. The concentrations of Cd (II) and Cu (II) in the mixed solution did not decrease
after adding the adsorbent, indicating that the adsorption effect of the composite membrane
on Cd (II) and Cu (II) was not obvious (Figure 4a,b). The initial concentration of Pb (II) in
the mixed solution was lower (Figure 4d) due to the reaction between Pb (II) and SO4

2−

in the mixed solution to form PbSO4 precipitate, resulting decreased Pb (II) concentration.
In the mixed solution, the adsorption effect of the composite membrane on Cr (VI) was
significantly better than that of other metal ions, and the concentration of Cr (VI) in the
mixed solution decreased from 1.6 mg/L to almost zero, reflecting the selective adsorption
of the composite membrane on Cr (VI) (Figure 4c).
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3.3. Other Influencing Factors

The effects of temperature, pH, and adsorbent dosage on Cr (VI) adsorption were
investigated (Figure 5). The adsorption effect of F-0 on Cr (VI) was similar to that of F-0.30
when the pH was neutral (6~7), and the adsorption amount of F-0.30 on Cr (VI) remained
stable when the pH fluctuated (acidic or alkaline), close to 12.0 mg/g. This was due to
the presence of CGS, which helped F-0.30 buffer the external pH changes (Figure 5a). As
the ambient temperature increased, the adsorption of Cr (VI) by F-0 and F-0.30 showed a
decreasing trend (Figure 5b), indicating that the adsorption of Cr (VI) by F-0 and F-0.30
is an exothermic reaction. The adsorption capacity of the adsorbent decreased with the
increase in the amount of adsorbent added, but the removal rate increased (Figure 5c).
This is because when the content of pollutants in the solution is fixed, the amount of
adsorbent added increases, and the amount of adsorption per unit mass decreases. The
different initial concentrations of RhB also affect the adsorption of RhB on the composite
membrane (Figure 5d). As the initial concentration of RhB increased, the overall trend
of the RhB removal rate of F-0 and F-0.30 gradually decreased. This is because when the
initial concentration of RhB is low, the composite membrane does not reach the adsorption
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saturation state, which can adsorb RhB well. When the initial concentration of RhB further
increases, the adsorption site on the surface is full. RhB will further transfer to the interior
of the material. However, due to the blockage of the surface, RhB cannot transfer further
to the interior of F-0.30, so the adsorption amount decreases [22]. In this work, the main
role of RhB adsorption was in the coal gasification slag, and relevant research shows that
the material for RhB was in a neutral pH range (6~8), so this article does not discuss it in
detail [23].
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Figure 5. (a) The variation of Cr (VI) adsorption by an adsorbent at different pH. Reaction conditions:
Cr (VI) (40 mg/L, 30 mL), adsorbent (0.1 g), and temperature (20 ◦C). (b) The variation of Cr (VI)
adsorption by adsorbent at different temperatures. Reaction conditions: Cr (VI) (40 mg/L, 30 mL),
adsorbent (0.1 g), and pH (No adjustment). (c) The adsorption results of Cr (VI) by adding adsorbent.
Reaction conditions: Cr (VI) (40 mg/L, 30 mL), pH (not adjustable), and temperature (20 ◦C). (d) The
effect of initial concentration on the removal rate and adsorption capacity of RhB. Reaction conditions:
30.0 mL. Reaction time: 60 min.

3.4. Analysis of the Relationship between Structure and Adsorption Property

Figure 6a shows the infrared spectra of chitosan (Cs), blank film F-0, coal gasification
slag CGS, and F-0.30. In the spectrum of sample CGS, fewer groups were found because the
CGS needs to be calcined at 800 ◦C in the preparation process, and the peak at 1090 cm−1

belonged to the shear vibration peak of the CH-CH2 on the Si-CH-CH2 group. The wide
peak at 3120 cm−1 was related to the stretching vibration peak of C-H. The F-0 showed
a stretching vibration peak of C=N at 1538 and 1635 cm−1 [18], indicating that the Schiff
base is formed by the reaction between chitosan and glutaraldehyde (Figure 6b) [24]. The
stretching vibration peak of C-O-C was also found at 1040 cm−1. The stretching vibration
peak of primary amine C-NH2 was located at 1395 cm−1. CGS loading had no obvious effect
on the infrared peak of the composite film, which indicates that CGS has no destructive
effect on the structure of the composite film. It also indicates that the binding modes of
CGS and composite film are mainly physical embedding and hydrogen bond cross-linking.
This conclusion was verified in the following characterization analysis.
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Figure 7 is the SEM image of the prepared sample. Figure 7a shows that the surface
of F-0 is flat and smooth with a small number of stacked ridges, which is in line with the
typical characteristics of freeze-dried samples. Figure 7b shows that the interior of F-0
exhibits an irregular porous structure with pore sizes ranging from 20 to 80 µm. This is due
to the fact that F-0 can sublimate the solid water in the material directly to gaseous water
during the freeze-drying process. This allows the material to retain the shape it had when
it was frozen while leaving empty spaces where the original solid ice would have been,
and these conditions promote the formation of a laminar porous structure in F-0. Figure 7c
clearly shows that the surface of F-0.30 is inlaid with CGS spherical particles, indicating that
CGS is successfully loaded in the structure of the composite film. Figure 7d shows that the
interior of F-0.30 presents a three-dimensional network structure. It can be clearly seen that
the AC is attached to the inner layer of the composite film, which further proves that CGS
is successfully loaded in the inner layer of the composite film. Compared with the internal
structure of F-0, the pore size of the internal structure of F-0.30 is larger and reaches up
to 110 µm, indicating that the load of CGS can stretch the pore structure of the composite
membrane, which is beneficial for pollutants to enter the membrane and maintain full
contact with the membrane material, thus accelerating the removal of pollutants.
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According to the results of SEM, we can speculate that CGS loading may increase
the specific surface area of the composite film, and the adsorption performance of the
membrane material is closely related to its specific surface area. As can be seen from
Figure 8a, the specific surface area of the composite film is significantly increased after
adding CGS, and the specific surface area of F-0 is calculated to be 0.4139 m2/g, but that of
F-0.30 is 6.6996 m2/g. Figure 8b shows that the number of F-0 nanopores is relatively small,
and the number of F-0.30 nanopores is significantly increased after adding CGS, indicating
that adding CGS can stretch the nanopores of the composite film, which is conducive to
improving the adsorption capacity and adsorption rate of pollutants of the composite film.
This conclusion can be further illustrated by the swelling property. Figure 8c shows the
swelling properties of different samples. It can be seen from Figure 8c that the equilibrium
swelling rate of the composite film decreases to a certain extent after loading CGS, indicating
that the interaction force between CGS and the composite film is hydrogen bonds, which
is consistent with the infrared spectrum analysis results above (Figure 6b). CGS occupied
a certain number of hydrogen bond-forming sites in the composite film, resulting in a
decrease in the swelling rate of the composite film. However, the time for the composite
membrane to reach swelling equilibrium was shorter after loading CGS. That is to say, the
adsorption rate of the composite membrane to the aqueous solution was improved. The
reason is that the CGS load increased the pore size of the membrane inside the membrane,
thus accelerating the water absorption rate of the composite membrane. This was also the
reason why the adsorption rate of Cr (VI) of the composite membrane was faster than that
of the F-0.
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Figure 8. (a) The specific surface area of F-0 and F-0.3, (b) the pore size distribution of F-0 and F-0.3,
and (c) the swelling rate of the samples. Reaction conditions: distilled water (30 mL), composite
membrane (0.1 g).

3.5. Adsorption Kinetics and Mechanism Analysis

Figure 9 shows the fitting diagram of the adsorption kinetics of Cr (VI) on the F-0 and
the composite membrane. Figure 10 shows the finishing of the fitting results. It can be seen
from Figures 9a and 10c that the adsorption of Cr (VI) by F-0 and the composite membrane
does not conform to the first-order kinetics because the correlation coefficient R2 between
the fitting results and the first-order kinetics is less than 0.9. The correlation coefficients R2

between the fitting results and the second-order kinetics are all greater than 0.9, indicating
that the adsorption process of Cr (VI) by F-0 and the composite membrane conforms to the
second-order kinetics and the equilibrium adsorption capacity (qe,2) calculated based on
the fitting results of the second-order kinetics is closer to the actual measured adsorption
capacity (qe,exp) (Figure 10a,b). Additionally, the value of k for second-order dynamics
is greater than that for first-order dynamics (Figure 10d). Generally speaking, second-
order kinetics involves the sharing or transfer of electron pairs between the adsorbent and
adsorbent, so the adsorption process of Cr (VI) by blank and composite membranes belongs
to the chemisorption and may involve the formation of coordination bonds. To verify this
conclusion, we tested the X-ray photoelectron spectroscopy (XPS) of the F-0 samples before
and after Cr (VI) adsorption.
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Figure 9. (a) First-order kinetic simulation of Cr (VI) adsorption by the composite membrane.
Reaction conditions: Cr (VI) (20 mg/L, 60 mL), composite membrane (0.2 g). (b) Second-order kinetic
simulation of Cr (VI) adsorption by the composite membrane. Reaction conditions: Cr (VI) (20 mg/L,
60 mL), composite membrane (0.2 g). (c–f) XPS spectra of F-0 before and after the Cr (VI) adsorption.
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Figure 9c shows the full spectrum of XPS before and after F-0 adsorbed Cr (VI). It can
be seen from the figure that there are characteristic peaks of C, N, and O before and after F-0
adsorbed Cr (VI), and the characteristic peak of Cr2p appears after adsorption. Figure 9d shows
the high-resolution Cr2p-XPS map. The XPS peaks at 579.98 eV and 583.94 eV binding energy
correspond to Cr (VI) in Cr2O7

2− and CrO4
2− [25]. However, we found that the binding

energy positions of peaks were significantly larger than those of the standard binding
energy, indicating that the electrons adsorbed by Cr2O7

2− may have been transferred
to F-0. Figure 9e shows the high-resolution C1s-XPS map. The XPS peak at 285.78 eV
corresponds to C-OH in chitosan. After the adsorption of Cr (VI), the binding energy of the
corresponding peak of C-OH increases, indicating that the electron cloud around C-OH
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decreases, and the O-supplied electron pair in the reaction C-OH forms a coordination
bond with Cr (VI). Figure 9f shows the high-resolution N1s-XPS map. The XPS peaks at
400.51 eV and 399.55 eV correspond to imino (-NH for short) and nitrogen-to-carbon single
bonds (N-C) in F-0, respectively. After the adsorption of Cr (VI), the binding energy of
the corresponding peak of -NH increases, indicating that the electron cloud around -NH
decreases, and the N-supplied electron pair in -NH forms a coordination bond with Cr (VI).
Meanwhile, the binding energy of the corresponding peak of N-C is decreased and shifted,
indicating that the electron cloud density on the N-C structure is increased. The reason is
that the electrons of Cr2O7

2− can be transferred to F-0 after the formation of chemical bonds
between Cr (VI) and C-OH and -NH, which is consistent with the previous high-resolution
Cr2p-XPS map analysis results. The above XPS analysis results are in good agreement with
the kinetic analysis results.

Figure 11 shows the fitting diagram of the adsorption kinetics of RhB on blank film F-0
and composite film. Figure 12 shows the fitting results. Because F-0 does not adsorb RhB,
we did not analyze its adsorption kinetics. It can be seen from Figures 11a,b and 12c that
the adsorption of RhB by composite membrane conforms to first-order and second-order
kinetics because the correlation coefficient R2 between the fitting results and first-order and
second-order kinetics is close to 0.9. Moreover, the equilibrium adsorption capacity (qe)
calculated from the fitting results of first-order kinetics and second-order kinetics is very
close to the actual measured adsorption capacity (qe,exp) (Figure 12a,b). Interestingly, the
second-order kinetic constant k is greater than the first-order kinetic constant when the
loading of CGS is low, and the value of first-order kinetic k is greater than the second-order
kinetic when the loading of CGS is high (Figure 12d), which indicates that the physical
adsorption capacity of the composite membrane is stronger when the loading of CGS is
increased. According to the above results, we speculate that the adsorption of RhB on
CGS is between physical adsorption and chemical adsorption, and the adsorption mode is
mainly hydrogen bonds. Because the blank film F-0 does not adsorb RhB, the adsorption
of RhB by the composite film may be due to the presence of coal gasification slag (CGS).
Therefore, in order to further analyze the mechanism of RhB adsorption by the composite
membrane, we analyzed the Zeta potential, Raman spectrum, and infrared spectrum before
and after CGS adsorption of RhB.
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Figure 11. (a) First-order kinetic simulation of RhB adsorption by composite membrane. Reaction
conditions: RhB (40 mg/L, 60 mL), composite membrane (0.2 g). (b) Second-order kinetic simulation
of RhB adsorption by composite membrane. Reaction conditions: RhB (40 mg/L, 60 mL), composite
membrane (0.2 g). (c) Zeta potential before and after RhB adsorption by CGS. Reaction conditions:
RhB (40 mg/L, 60 mL), CGS (0.2 g). (d) Raman spectrum before and after RhB adsorption by CGS.
Reaction conditions: RhB (40 mg/L, 60 mL), CGS (0.2 g). (e) FTIR spectrum before and after RhB
adsorption by CGS. Reaction conditions: RhB (40 mg/L, 60 mL), CGS (0.2 g).
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2 vs. R2
2.

(d) k1 vs. k2.

The Zeta potential value of CGS is −1.41 mV (Figure 11c), and the whole material is
electronegative. Because RhB is a cationic dye, if it is absorbed in the form of ions, the Zeta
potential value of CGS will increase after adsorbing RhB. However, the electronegativity
of CGS increases to −1.38 mV after the adsorption of RhB, which is almost unchanged
compared with that before adsorption. This indicates that RhB may be adsorbed on the
surface of CGS in molecular form. Figure 11d shows the Raman spectra before and after
CGS adsorption of RhB. As can be seen from the figure, the spectral bands at 1315 cm−1

and 1600 cm−1 are assigned to the D peak and G peak of CGS, respectively. The D peak
represents the edge and defect site of the molecule (or lattice) containing carbon, and the G
peak represents the in-plane stretching vibration of C hybridized by carbon atom sp2 [26].
CGS and RhB are carbon-containing substances, and both have sp2 hybrid C. After the
adsorption of RhB, the intensity of peak D and peak G of CGS increases, indicating that RhB
is adsorbed on the surface or inside of CGS, leading to increasing the carbon content in CGS.
However, these two peaks do not undergo chemical shifts, indicating that the adsorption
of RhB in the CGS structure is not chemisorption either. Figure 11e shows the FT-IR spectra
before and after RhB adsorption by CGS. Before the adsorption of RhB, the infrared peaks
at 3120 cm−1, 1390 cm−1, and 1636 cm−1 are the stretching vibration peaks of the C-H bond
in CGS, the in-plane bending vibration peak of the C-H bond, and the stretching vibration
peak of C = C bond on olefin. After the adsorption of RhB by CGS, these peaks of CGS do
not change significantly, and two small infrared absorption peaks appeared at 3441 cm−1

and 1134 cm−1, both of which are -OH on RhB [27]. Other functional groups of RhB do not
appear on FT-IR spectra, indicating that RhB is mainly absorbed in the pores of CGS. The
reason for this phenomenon is that the pore structure of CGS is very small (2–5 nm), with a
capillary phenomenon.

3.6. Mechanical Strength and Cyclic Performance Investigation

From Figure 13a, it can be obtained that F-0 can withstand fracture stress of 388.41 N/mm,
and F-0.30 can withstand fracture stress of 851.42 N/mm. It can be seen that the tensile
capacity of the composite film is enhanced by 2.2 times after adding CGS, and it can be
seen that CGS can improve the mechanical properties of the composite film to a certain
extent. From the adsorption cycle of the composite membrane, Figure 13b shows that the
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adsorption rate and removal rate decrease after six cycles of F-0. After loading CGS, the
material has a better adsorption cycle effect, and the removal rate of Cr (VI) by F-0.30 can
still reach approximately 90% after six cycles of adsorption resolution. Figure 13c is the
RhB adsorption cycle graph. It can be seen that after six cycles of adsorption, the removal
rate of both RhB by F-0 and F-0.30 decrease to some extent, but the removal rate of F-0.30 is
still 46.8% in the sixth cycle, while that of F-0 is only approximately 10%, and both of them
have a better effect on the adsorption of RhB compared with that of F-0.3. The above results
prove that the introduction of coal gasification slag can enhance the recycling performance
of the composite membrane.
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4. Review of Adsorption Mechanism and Comparison of Properties

A schematic diagram of the adsorption mechanism of the composite membrane for
RhB and Cr (VI) is shown in Figure 14, from which it can be seen that the experimentally
prepared CGS was loaded on the chitosan composite membrane, and it can be proved by
the data of BET, tensile force, and SEM that the composite membrane loaded with CGS
has the advantages of increased specific surface area, enhanced mechanical properties, and
increased nanopores, which provide more adsorption sites for the adsorption of pollutants.
After the adsorption of Cr (VI), the binding energy of the corresponding peak of C-OH
increases (Figure 9e), indicating that the electron cloud around C-OH decreases and the
O in C-OH provides electron pairs to form coordination bonds with Cr (VI), while the N
spectrum shows that the N in -NH provides electron pairs to form coordination bonds with
Cr (VI) (Figure 9f), and Cr (VI) is formed as Cr2O7

2− and CrO4
2− etc. RhB is adsorbed in

the molecular form on the surface and in the void of CGS, and if it is adsorbed in ionic
form in CGS, the electronegativity of CGS increases after adsorption of RhB, while the
electronegativity of CGS changes very little before and after adsorption. Then, based on the
physical and chemical characteristics of CGS, the abundant pore size and the large specific
surface area, it was inferred that the adsorption of RhB by CGS was physical adsorption.
This is consistent with the simulation calculation results of adsorption kinetics. Therefore,
when pollutants such as RhB and Cr (VI) in water come into contact with the composite
membrane, the amino group on the molecular chain of chitosan can adsorb Cr (VI) by
coordination reaction, while the hydrogen bonding and void space of CGS can adsorb
RhB in water. The composite membrane can adsorb two different pollutants by hydrogen
bonding and chemical interaction and thus can remove the pollutants in water.
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Figure 14. Schematic diagram of adsorption mechanism of RhB and Cr (VI) by the composite
membrane.

The following is the comparison of adsorption properties between other similar mate-
rials and materials prepared in this work (Table 2).

Table 2. Comparison of adsorption of pollutants by different composite films.

Author Membrane Materials Contaminants Removal Rate (%) Adsorption
Amount (mg/g) Literature

Gharbani
CS, graphite carbon

nitride/polyvinylidene
difluoride

RhB
72.7 (2 mg/L,
pH = 3, and

2.0 g g-C3N4)
4.16 [28]

Zhao PVDF, CS, CNTs-COOH RhB
99.0 (10 mg/L,
pH = 2, dosage

0.5 g)
2.0 [29]

Kirisenage
acrylate polymer
nanostructured
graphitic carbon

As 1.5 [30]
NH4+ 0.27

Park
chitosan-coated iron
oxide nanoparticles Cr (VI)

14.45 (intermittent
system) [31]

14.1 (continuous
inflow system)

Queirós

Al(OH)3/PVDF-HFP
MIL-88-B(Fe)/PVDF-

HFP
UiO-66-NH2/PVDF-

HPP

Cr (VI)
12 5.0

[32]
62 3.0

97 (5 mg/L) 3.0

This article CS/CGS

Cr (VI)
97.7 (100 mg/L,

60 mL, Adsorbent
(0.2 g))

50.0 This article

RhB 96.2 (40 mg/L,
60 mL, 0.2g)

11.5 (40 mg/L,
60 mL, 0.2 g) This article

5. Conclusions

In this study, a composite membrane was successfully prepared by a one-step method
using chitosan and coal gasification slag as raw materials. From SEM images, the prepared
composite membrane has a three-dimensional network structure, and coal gasification
slags are stably loaded in the network structure of the composite membrane. The Cr (VI)
adsorption rate of the composite membrane can reach 98.9%, and the Cr (VI) adsorption rate
can be accelerated by coal gasification slag. During RhB adsorption, the adsorption rate of
the blank membrane is only 5%, while the RhB adsorption rate of the composite membrane
can reach 95.3%. After the analysis of the specific surface area and pore size distribution,
it was found that the specific surface area of the composite membrane was 16.2 times
higher than that of the blank membrane. Meanwhile, the coal gasification slag could spread
the nanopores of the composite membrane; thus, coal gasification slag could improve the
adsorption capacity and adsorption rate of the composite membrane for pollutants. After
the analysis of adsorption kinetics and adsorption mechanism, it was found that Cr (VI) is
adsorbed mainly by forming the coordination bond with the amino group on the chitosan
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molecular chain, while RhB is adsorbed by forming the hydrogen bond with gasification
residue surface. Moreover, coal gasification slag can increase the mechanical properties of
the composite film by approximately three times, and the adsorption removal rate of Cr
(VI) is close to 90% after six cycles of application to improve the practical application value
of composite membrane.
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