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Abstract: In the present study, the complexing properties of ceftazidime with Fe(III) ions in aqueous
solutions were characterized by UV-vis spectrophotometric and potentiometric methods. Using the UV-vis
spectrophotometric method, the absorbance values for Fe(III) ions, a third-generation cephalosporin
antibiotic (ceftazidime), and the Fe(III)-ceftazidime system were determined. Based on pH-metric studies,
the value of the stability constant for the Fe(III)-ceftazidime complex was calculated.
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1. Introduction

Iron(III) ion is the fourth most important transition metal ion in biological systems [1].
It is an essential micronutrient for humans, with critical functions in many cellular processes,
including DNA synthesis, replication, repair, and transcription [2]. Iron functions as a
redox catalyst and occurs as ferrous Fe2+ or ferric Fe3+ inside the cell [3,4]. The deficiency
of iron decreases oxygen delivery to cells, resulting in fatigue, poor work performance, and
decreased immune function [5]. Excess amounts of Fe(III) ions in a living cell can catalyse
the production of reactive oxygen species through the Fenton reaction, which can damage
lipids, nucleic acids, and proteins. The cellular toxicity of Fe(III) contributes to serious
diseases, like Huntington’s, Alzheimer’s, and Parkinson’s diseases [6].

Ceftazidime (Figure 1) is a third-generation cephalosporin antibiotic usually reserved
for the treatment of infections caused by Pseudomonas aeruginosa. It is also used in com-
bination with other antibiotics for the empirical treatment of febrile neutropenia [7,8]. In
general, cephalosporins are usually bactericidal against susceptible bacteria and act by
inhibiting mucopeptide synthesis in the cell wall, resulting in a defective barrier and an
osmotically unstable spheroplast [9]. The mechanism for this effect has not been defini-
tively determined, but beta-lactam antibiotics have been shown to bind to several enzymes
(carboxypeptidases, transpeptidases, endopeptidases) within the bacterial cytoplasmic
membrane that is involved in the cell wall synthesis [10].
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Many cephalosporin antibiotics form stable complexes with d-metal cations. Studying
the metal complexes of antibiotics is of interest for both the design of new combined drugs
and the development of new procedures of drug analysis based on complexation reactions.
By the present time, solid M(Ctzd)Cl ceftazidime complexes, where M = Mn(II), Fe(II),
Co(II), Ni(II), Cu(II), or Cd(II), have been obtained as precipitates from methanol solutions.
Elemental analyses agree with a 1:1 metal to ligand stoichiometry for all the complexes.
The manganese(II) and cobalt(II) complexes are beige and dark red, respectively, while the
iron(II), nickel(II), and copper(II) complexes are green. The cadmium(II) complex is white,
and the complexes are air-stable solids that are insoluble in H2O and other common organic
solvents such as EtOH, benzene, acetone, acetonitrile, ether, DMF, and DMSO. The general
formula [M(ceftaz)(H2O)Cl] has been assigned to the complexes. The insolubility and high
melting points of the complexes (4300 ◦C) suggest that they are polymeric. Thermograms
of the hydrated metal complexes indicate endothermic decompositions in the 150–160 ◦C
range due to the loss of coordinated water and also reveal that the complexes are stable
and have no hydration water or solvent [11]. The synthesis and spectrophotometric and
electrochemical characterization of the complexation of Schiff base (ceftazidime “CFZ”-p-
dimethylaminobenzaldehyde “DAB”) with Cu(II), Co(II), Ni(II), Fe(III), and Ru(III) ions
is also described. The obtained precipitates were filtered, washed with methanol, and
dried in the air. The analytical data show the composition of the metal complex to be
[M(CFZ-DAB)Cln]Cl, where CFZ-DAB is the Schiff base ligand; n = 1 for the Cu(II), Co(II),
and Ni(II) complexes; and n = 2 for the Fe(III) and Ru(III) complexes. The conductance data
indicate that all the complexes are strong electrolytes. The compound (CFZ-DAB) behaves
as a tridentate ligand. However, the obtained complexes have a mononuclear nature. The
electrochemical properties of the metal complexes were investigated by cyclic voltammetry
(CV) using glassy carbon electrode. The oxidation/reduction of metal complexes was
irreversible/reversible and exhibited a diffusion-controlled process depending on the pH.
The dependence of intensities of currents and potentials on the pH, concentration, scan
rate, and nature of the buffer was investigated [12].

This work aimed to evaluate the complexation properties of a cephalosporin antibiotic
(ceftazidime) with Fe(III) ions in an aqueous solution. The absorbance values for Fe(III)
ions, ceftazidime, and the Fe(III)-ceftazidime system were determined by the UV-vis
spectrophotometric method. The value of the stability constant for the Fe(III)-ceftazidime
system was calculated using the potentiometric method.

2. Results and Discussion

The electronic absorption spectra for ceftazidime water solution in the range of
200–360 nm revealed absorbance features at ca. 235sh, 257, 283sh, and 300sh nm within the
pH range of 1.82–12.03 (Figure 2a). The presence of isosbestic points (at ca. 235, 245, 250,
and 300 nm) confirms the existence of equilibria between the various deprotonated forms
of ceftazidime [13,14].

The electronic absorption spectra for the Fe(III) chloride water solution in the range
of 250–500 nm revealed absorbance features at ca. 337 nm at the pH 0.97 (Figure 2b). The
hydrolysis of the Fe(III) ions was already observed above pH 1.0 and corresponded to
the literature data. As indicated by the reference data, the formation constants of the
aqua-hydroxido complexes [Fe(OH)]2+ and [Fe(OH)2]+ are equal to log β10-1 = −2.68 and
log β10-2 = −6.48, respectively [15–19].

Figure 2c shows the course of spectrophotometric titration in the range of pH = 0.97–2.04
at wavelengths of 300–500 nm. The Fe(III)-ceftazidime complexes are formed in a very acidic
medium (at pH < 1.0) just at the beginning of titration. The absence of an absorption band at
about 337 nm, at the pH 0.97—characteristic of free Fe(III) ions (Figure 2d)—is evidence of the
formation of complexes. Above pH 2.0, a precipitate appears.
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imino)acetamido)-8-oxo-3-(pyridinium-1-ylmethyl)-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-

Figure 2. (a) UV spectra of ceftazidime within the pH range of 1.82–12.03, Cceftazidime = 1.0·10−5 M;
(b) UV-vis spectra of Fe(III) ions within the pH range of 0.97–2.04, CFeCl3·6H2O = 1.8·10−3 M; (c) UV-vis
absorption spectra of the Fe(III)-ceftazidime system, within the pH range of 0.97–2.04; CFeCl3·6H2O

= 1.8·10−3 M, Cceftazidime = 3.6·10−3 M; (d) The distribution diagram of species as a function of
pH for the complex formed in the Fe(III)-ceftazidime system at a ligand–Fe(III) molar ratio of 5:1,
Cceftazidime = 3.6·10−3 M obtained from potentiometric data.

Calculations based on potentiometric titrations in the presence of the metal ion at a
pH of approximately 2.00 confirmed the formation of the [FeLH2]4+ complex in an aqueous
solution. The value of the determined overall stability constant is log β [FeLH2]4+ = 11.88
{Fe3++2H++L− = [FeLH2]4+}. The related stability constant is equal to log KFe

[FeLH2]
4+ =

11.88 − 7.62 = 4.26 based on the equation log KFe
[FeLH2]

4+ = log β112 − log β012. In the

literature, the values of the stability constants for Ni(II) and Cu(II) ions with ceftazidime
are log β NiCtzd+ = 4.04 and log β Ni(Ctzd)2 = 6.41, log β CuCtzd+ = 5.03, respectively [13].
In the Hyperquad model were used the dissociation constants of ceftazidime, previously
determined by pH-metric titration (log β [LH3]2+ = 9.23, log β [LH2]+ = 7.62, log β [LH]
= 4.82) [13], where [LH3]2+ non-deprotonated all active groups, viz., two carboxyl (at the
six-membered dihydrothiazine ring and at the methyl-ethoxy group), amine, and amide



Molecules 2022, 27, 7226 4 of 7

groups; [LH2]+ deprotonated a carboxyl group at the six-membered dihydrothiazine ring;
and [LH] deprotonated two carboxyl groups. The hydrolysis constants of Fe(III) (log β
[Fe(OH)]2+ = −2.68; log β [Fe(OH)2]+ = −6.48) were taken from the data [15]. The ionic
product of water pKw included in the equilibrium model was 13.77 [20]. The additional
protonated and deprotonated complexes introduced to the equilibrium model were rejected
during the procedure refinement. Figure 2d shows a representative species distribution
for the Fe(III)-ceftazidime system based on the potentiometric determination of both the
overall protonation constants of ceftazidime [13] and the stability constant of the complex.

We read in the literature that similar [Fe2(ceftazidime)3Cl2(H2O)(OH)] complexes have
been synthesized, but in a solid product. A solution of ceftazidime and Fe(III) was added
to hot ethanol. The solution was refluxed, filtered, and dried, which led to the formation
of a solid product [21]. In the work are given physical measurements and analytical data
of the complexes (elemental analysis, colour). The conformational changes and binding
of ceftazidime in response to transition metals were identified by IR, electronic spectra,
ESR, and magnetic susceptibility. Also, thermal analysis of ceftazidime and its metal
complexes was conducted based on thermo-gravimetric and differential analysis curves.
The mechanism of decomposition and kinetic parameters were evaluated. From magnetic
measurement and spectral data, octahedral structures were proposed for permanent Fe(III)-
ceftazidime complexes. The authors of the article also stated that ceftazidime complexes
show higher positive antibacterial activity compared to antifungal activity. Other studies
indicate the detrimental effects of iron overload in the setting of viral infections: the viruses
seem to prosper in the presence of unbound iron. Therefore, iron chelation appears to
be a potential and logical beneficial adjuvant therapy for viral infections in an era of
multidrug-resistant viruses [22]. The pathogens require iron as a nutrient; iron deprivation
serves as an innate immune mechanism against invading pathogens [23]. On the bases
of Overtone’s concept and chelation theory, most metal complexes have higher activity
than free ligands [24]. Thus, it can also be assumed that the activity of Fe(III)-ceftazidime
complexes in an aqueous solution will be higher than that of commercial ceftazidime.

The UV-vis spectrophotometric and potentiometric methods confirmed the possi-
bility of forming a mononuclear complex in a mixture of ceftazidime with Fe(III) ions
in an acidic medium. The results of our research could be helpful in identifying active
sites of biomolecules, determining metal–ligand coordination, and designing biochemical
syntheses, drugs, and biomarkers in medicine.

3. Materials and Methods
3.1. Reagents

Ceftazidime ((6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(2-carboxypropan-2-yloxyimino)
acetamido)-8-oxo-3-(pyridinium-1-ylmethyl)-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxy
late) was obtained from Sigma-Aldrich (St. Louis, MO, USA). Carbonate-free 1.0 M NaOH
solution was purchased from J.T. Baker (Radnor, PA, USA). Perchloric acid solution from
Laborchemie Apolda (Apolda, Germany) was standardized by titrations with NaOH. A
standard solution of sodium perchlorate monohydrate (Laborchemie Apolda, Germany)
was used to adjust the ionic medium. Argon of high purity (Linde, Dublin, Ireland) was
used. Iron(III) chloride was obtained from Sigma-Aldrich, and 1.0 M HCl solution was
prepared from concentrated hydrochloric acid (Avantor Performance Materials, Gliwice,
Poland). All solutions were prepared in double-distilled water.

3.2. Spectrophotometric Measurements

Electronic spectra under argon were recorded on a Cary 50 Bio spectrophotometer,
equipped with a fibre-optic device (with a path length of 1 cm, 5 mm), (Varian Pty. Ltd.,
Mulgrave, Australia). This enabled the study of equilibrium systems spectrophotomet-
rically, simultaneously with pH measurements controlled by a Titrando 905 automatic
titration (Metrohm, Herisau, Appenzell Ausserrhoden, Switzerland) kit with a combined
InLab Semi-Micro (Mettler Toledo, Columbus, OH, USA) polymer microelectrode. Due to
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the highly disturbing absorption of the nitrate ion at about 300 nm, all the UV experiments
were carried out in a perchlorate medium, which was enabled by a combined polymer
microelectrode. The ionic strength (I = 1.0 M) was adjusted with NaClO4. The electrode
was calibrated with buffers at pH 4.00 and 7.00 before use. The fibre-optic probe, 5 mm long,
corresponding to a path length of 1 cm, was dipped directly into the thermostated titration
vessel (a constant temperature of 25.0 ± 0.1 ◦C was maintained). A stream of pure argon
was passed over the sample surface to obtain oxygen and carbon dioxide solutions freely.
After each addition of carbonate-free NaOH and an appropriate time delay to equilibrate
the system, the pH and EMF were controlled. The spectrum was recorded with a slow scan
(300 nm min−1) at selected pH values.

The tests were first performed for the metal in the absence of the ligand (the total
concentration of FeCl3 · 6H2O was equal to 1.8·10−3 mol·L−1). Next, the ligand was
examined in the absence of the metal (the total concentration of ceftazidime was equal to
1.0·10−5 mol·L−1). The solutions containing Fe(III) ions and ceftazidime were prepared
with a ligand–metal molar ratio of 2:1 for two samples of the solution (the total metal
concentrations were 1.8·10−3 mol·L−1 and 3.6·10−4 mol·L−1, respectively), and with a
ligand–metal molar ratio of 1:2 (the total metal concentration was 7.1·10−4 mol·L−1). UV-
vis spectra were recorded in the range of 200–900 nm, in an aqueous solution, and ionic
strength I = 1.0 M (NaClO4). The studies were carried out at 25.0 ± 0.1 ◦C in a closed
thermostated vessel, in anaerobic conditions under argon. The titrations were performed
with the carbonate-free 1.0 M NaOH.

3.3. pH-Metric Titrations

Potentiometric titrations were conducted by using an automatic titrator system, the
Titrando 905 (Metrohm, Herisau, Appenzell Ausserrhoden, Switzerland). An LL Biotrode
combined glass electrode (Metrohm, Herisau, Appenzell Ausserrhoden, Switzerland) was
calibrated with NaOH regarding the hydrogen ion concentration [25]. The solution of
the acid was calibrated alkalimetrically and determined by the Gran method [26,27]. The
measurements were carried out in a thermostated vessel at a constant temperature of
25.0 ± 0.1 ◦C and an ionic strength of 0.5 M (KCl). All titrations were carried out in
aqueous solutions in 4 mL samples. Pure argon was passed over the solution surface.

The system was tested at ceftazidime–Fe(III) molar ratios of 5:1 and 10:1 at a pH of approxi-
mately 2.00 (the total concentration of ceftazidime was equal to 3.6 × 10−3 M) (Figure S1). The
fitting procedure using the Hyperquad 2013 software allowed the calculation of the concentration
formation constants according to the formula: βmlh = [MmLlHh]/[M]m[L]l[H]h. The goodness
of fit was checked by the objective function U = Σi=1,m Wi ri

2, where W is the weight, r is a
residual (equal to the difference between observed and calculated EMF values), m is the number
of experimental points, and n is the number of refined parameters. The weighting factor Wi is
defined as the reciprocal of the estimated variance of measurements, dependent on the estimated
variances of EMF and volume readings. The value of the normalized sum of squared residuals, δ
= U/(m − n), was compared with the χ2 (chi-squared) test of randomness at a number of degrees
of freedom equal to m − n [28]. The speciation diagrams were simulated via the HySS 2009
software [29].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27217226/s1: Figure S1: The pH-titration curves for
the Fe(III)-ceftazidime system, with a ligand–Fe(III) molar ratio of 5:1, Cceftazidime = 3.6 × 10−3 M.
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