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Abstract: Alzheimer’s disease (AD) has been associated with the hallmark features of cholinergic
dysfunction, amyloid beta (Aβ) aggregation and impaired synaptic transmission, which makes
the associated proteins, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE I),
acetylcholine esterase (AChE) and synapsin I, II and III, major targets for therapeutic intervention.
The present study investigated the therapeutic potential of three major phytochemicals of Rosmarinus
officinalis, ursolic acid (UA), rosmarinic acid (RA) and carnosic acid (CA), based on their binding
affinity with AD-associated proteins. Detailed docking studies were conducted using AutoDock
vina followed by molecular dynamic (MD) simulations using Amber 20. The docking analysis of
the selected molecules showed the binding energies of their interaction with the target proteins,
while MD simulations comprising root mean square deviation (RMSD), root mean square fluctuation
(RMSF) and molecular mechanics/generalized born surface area (MM/GBSA) binding free energy
calculations were carried out to check the stability of bound complexes. The drug likeness and the
pharmacokinetic properties of the selected molecules were also checked through the Lipinski filter
and ADMETSAR analysis. All these bioactive compounds demonstrated strong binding affinity with
AChE, BACE1 and synapsin I, II and III. The results showed UA and RA to be potential inhibitors of
AChE and BACE1, exhibiting binding energies comparable to those of donepezil, used as a positive
control. The drug likeness and pharmacokinetic properties of these compounds also demonstrated
drug-like characteristics, indicating the need for further in vitro and in vivo investigations to ascertain
their therapeutic potential for AD.

Keywords: Alzheimer’s disease; Rosmarinus officinalis; AChE; BACE I; Synapsin I, II, III; docking

1. Introduction

AD is a debilitating disorder characterized by the progressive loss of cognition, learn-
ing and memory. It is the most common age-related neurodegenerative disorder which can
lead to the loss of bodily functions and death [1]. The major neuropathological hallmarks of
AD include the amyloid beta aggregates, which occur extracellularly, and the abnormally
phosphorylated interneuronal fibrillar tau proteins [2]. Although there is a high prevalence
of sporadic AD, several genetic factors govern the progression of the disease, particu-
larly mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2
(PSEN2), resulting in familial forms of AD (fAD) [1]. In addition, dysfunctional signaling
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of acetylcholine (ACh), deteriorated synaptic transmission and increased production of Aβ

by β-site amyloid precursor protein cleaving enzyme 1 (BACE1) are integral in mediating
AD progression [3,4].

In recent years, plant and other natural product-derived lead compounds have gar-
nered significant attention. These natural products, including herbs and spices, possess
various phytochemicals which serve as potential sources of natural antioxidants and neu-
roprotectants and are devoid of the potentially life-threatening side effects characteristic
of the existing approved drugs [5,6]. The currently available drugs for the symptomatic
treatment of AD, such as donepezil, tacrine, rivastigmine, and galantamine, demonstrate
observable adverse reactions such aa hepatotoxicity and gastrointestinal effects including
vomiting, diarrhea, and nausea, reducing their suitability to be used by the patients [7,8].

Rosmarinus officinalis (R. officinalis) from the family Lamiaceae is a woody perennial
herb, indigenous to the Mediterranean region, and has been widely used as a condiment in
addition to its application for diverse medicinal purposes, being particularly recognized
as a stimulant, mild analgesic, choleretic, anticancer, and hepatoprotective agent [9,10].
R. officinalis has gained sufficient attention among the herbs and the spices as a rich source
of phytochemicals such as carnosic acid (CA), rosmarinic acid (RA), ursolic acid (UA),
and camphor, which demonstrate antioxidant, anti-inflammatory, and anticarcinogenic
properties [11–13]. It also exhibits analgesic, anti-anxiety and memory -nhancing effects,
necessitating further research on its active constituents for the development of therapeutic
agents against nervous system disorders like AD, Parkinson’s disease and epilepsy [14].

RA, a phenolic ester, is abundantly present in the herbs belonging to the family Labiatae.
It possesses various biological and pharmacological activities, including anti-oxidant, anti-
mutagenic, and anti-apoptotic activities [15]. RA also plays a beneficial role against AD
through the suppression of Aβ aggregation [16]. Additionally, it has been found to be
effective against copper (II)-induced neurotoxicity through the formation of an original
ternary association between amyloid β and Cu (II) [17]. A recent study also highlights the
prevention of fibrillization and the assembly of β sheets in tau protein, thereby suggesting
its therapeutic potential against AD [18].

CA, another polyphenolic diterpene derived from rosemary, is known to reverse the
Aβ25–35-induced loss of cell viability in human neuroblastoma SH-SY5Y cells [19]. It also
plays a protective role in cognitive impairment due to Aβ-induced neurotoxicity observed
in animal models [20,21]. Furthermore, CA was also found to play a role in the attenuation
of the risk of ApoE4-associated AD [22].

UA, a natural pentacyclic triterpenoid, which is also present in abundant levels in
R. officinalis, provides health benefits against oxidative stress, inflammation and fibro-
sis [23,24]. Derivatives of UA also exert cholinesterase-inhibiting potential [25]. Studies
conducted on an Aβ-induced mouse model also demonstrated the role of UA in the
prevention of cognitive impairment through the amelioration of oxidative stress and inflam-
mation [26]. RA and UA have also been reported to alleviate the cognitive deficits, synaptic
dysregulation and the associated neurodegeneration in an Aβ-induced AD model, thereby
reiterating their therapeutic significance against AD [27]. Their structures are depicted in
Figure 1.

The computer-aided in silico approach has been widely employed for the initial stages
of drug discovery. The prediction analysis of the best possible drug candidates for various
diseases through the in silico approach [28–30] is not only efficient and cost-effective but
also reduces errors in the final steps. The present study was designed to identify the
potential drug targets of the three major constituents of R. officinalis, i.e., RA, CA and
UA. These compounds have shown neuroprotective effects in a previous study by our
group [27], therefore, to get further insight on their potential protein targets, the current
study was planned and their binding potentials with acetylcholine esterase (AChE), β-site
amyloid precursor protein cleaving enzyme 1 (BACE1), and synapsin I, II and III were
assessed. In AD, AChE causes the breakdown of acetylcholine in the synapses, resulting in
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disrupted cholinergic transmission. It also interacts directly with amyloid beta to increase
its deposition into insoluble plaques [31].
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BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) is another prime AD
target protein as it is involved in the generation of amyloid beta, which aggregates into
plaques and thereby contributing to AD pathology. BACE1 inhibition in early stages of
AD can help in slowing the production of amyloid beta [32]. Similarly, synaptic loss has
been implicated in the cognitive alterations associated with AD. Restoration of the levels of
synaptic proteins such as synapsin I, II and III can serve as a treatment strategy against AD,
thereby making them target proteins [33].

Donepezil has been used as a positive control as it is a second-generation cholinesterase
inhibitor approved by the FDA for the treatment of mild, moderate and severe AD and
is widely prescribed to control the dementia associated with AD. It acts by the reversible
inhibition of the enzyme acetylcholinesterase thereby reducing the associated neurodegen-
eration and synaptic loss [34,35]. Various studies have also shown significant effects of
donepezil on BACE1 expression. A study by Sarno et al. reported significant reduction and
downregulation in the protein expression of BACE1 in patients treated with chronically
with donepezil. This effect may be interpreted as evidence of disease modification [36]. It
is also evident that various analogues of donepezil also exhibit inhibitory activity against
BACE1 [37]. Donepezil was thereby used for a comparative assessment of the binding
potential of RA, UA and CA against protein hallmarks of AD.

Molecular docking simulations are among the most widely accepted methods for
computer-aided drug designing as they predict receptor–ligand interactions at the molecu-
lar level, thereby helping to identify potential drug candidates in a comparatively short
period of time. These tools provide assistance for the wet lab experiments by generating
a list of promising candidates on which experiments can be performed in an informed
fashion, hence reducing the overall cost of drug discovery [38,39].

Moreover, a reliable molecular docking analysis depends on the accuracy of the
adopted scoring function that is used to determine the binding mode and site of a lig-
and, predict binding affinity and identify the potential drug leads for a given protein
target [40]. Perhaps an imprecision in the binding site of the target protein and selection
of an inappropriate docking pose and inconsistency with MD simulations are the most
frequently encountered issues associated with docking studies [41]. Numerous software
tools, based on different algorithms and physicochemical approximations, have been devel-
oped for molecular docking in recent years. Among these, AutoDock Vina is one of the
most widely cited, open-source applications reported to exhibit the best docking power
among all the docking methods tested in a comparative assessment of scoring functions
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(CASF) 2013 [42]. It also exhibited the best scoring power as assessed by its estimation
of binding affinity among ten common docking programs [43]. However, it has certain
shortcomings and has been found to struggle with the correct identification and scoring
of the crystal structures of ligands in benchmark studies [44]. In addition, it does not
support modeling specific features such as macrocycles or explicit water molecules. Recent
amendments have implemented this functional deficiency in AutoDock Vina 1.2.0 and
combined the scoring function of AutoDock 4.2, along with the concurrent docking of
multiple ligands and a batch mode for docking a sizeable count of ligands [45]. Integration
of a scoring function correction term improves the protein–ligand docking and screening
accuracies that substantially facilitate the prediction abilities for the docking of AutoDock
Vina and screening tasks based on CASF-2016, DUD-E and DUD-AD [46]. Amendments in
certain empirical parameters may also improve the ligand ranking of AutoDock Vina [47].
Similarly, hardware acceleration can minimize the irregular computations and reduce the
execution runtimes of AutoDock [48].

For a better efficiency of computer aided drug designing, MD simulations coupled
with docking studies could improve the binding mode prediction and scoring of the protein–
ligand complexes and ultimately aid the discovery of lead compounds. Thereby the current
study applied computer aided molecular docking analysis and simulation coupled with
the prediction of drug likeness and pharmacokinetic properties to assist in elucidating the
therapeutic potential of these compounds against AD.

2. Results
2.1. Molecular Docking Studies of Rosmarinic, Carnosic and Ursolic Acid on BACE1, AChE,
Synapsin I, II and III

Molecular docking studies were used to estimate the receptor–ligand interaction
geometrics for the selected compounds. The docking scores for RA, CA, UA and donepezil
with interacting BACE1, AChE and synapsin I, II and III residues, including hydrogen
bonds and van der Waals interacting residues, are stated in Table 1. The potential of RA,
CA and UA against the AD target molecules was linked with the binding energy of the
interactions and the associated hydrogen bonding (Table 1).

Table 1. 3D Docking interaction of R. officinalis active compounds with the target proteins.

Target Ligand Binding Energy Interacting Residues

AChE Rosmarinic
acid −9.56

H Bonds: Phe 293, Phe 336, Tyr 335, Asn 85, Glu 200
Pi-Pi interaction: Phe 295, Trp 84
Pi-Sigma: Tyr 339

AChE Carnosic acid −7.91

H Bonds: Ser 123, Tyr 335
Alkyl Bonds: Val 71, Pro 86
Pi-Sigma: Trp 84
Carbon-Hydrogen bond: Gly 119

AChE Ursolic acid −9.17 H Bonds: Tyr 131, Tyr 122, Phe 293
Pi- Alkyl Bonds: Trp 84, Tyr 70, Tyr 339

AChE Donepezil −9.17

H Bonds: Tyr 122, Phe 293, Arg 294
Alkyl Bonds: Leu 287, Trp 284
Pi-pi stacking: Trp 84
Carbon-hydrogen bond: Ser 291, Val 292, Tyr 335

BACE1 Rosmarinic
acid −7.45 H Bonds: Tyr 76, Gly 235, Arg 240

BACE1 Carnosic acid −5.85
H Bonds: Asp 37, Asp 233
Alkyl Bond: Val 337, Tyr 203, Tyr 76, Phe 113
Carbon-hydrogen bond: Gly 39
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Table 1. Cont.

Target Ligand Binding Energy Interacting Residues

BACE1 Ursolic acid −5.48 H Bonds: Phe 113
Alkyl Bonds: Tyr 76

BACE1 Donepezil −8.27 H Bonds: Tyr 71, Gly 34, Arg 235
Van der waals: Asp 228, Thr 329

Synapsin I Rosmarinic
acid −8.49

H Bonds: Asp 120, Lys 403, Gln 399, Ser 275, Asn 338
Pi-anion: Asp 10, Arg 186
Alkyl Bond: His 123

Synapsin I Carnosic acid −7.13
H Bonds: Phe 222
Alkyl Bonds: Val 219
Pi-pi interaction: His 188

Synapsin I Ursolic acid −5.69 H Bonds: His 123, Ser 275
Alkyl Bonds: Ala 193, His 188, Pro 393

Synapsin I Donepezil −6.5
H Bonds: Lys 225
Alkyl Bonds: His 188, Val 388, Pro 393, Lys 336, Leu 375, Ile 385
Pi-Anion: Glu 373, Lys 269, Lys 279

Synapsin II Rosmarinic
acid −7.02 H Bonds: Arg 76, Ser 281, Asp 10, His 78, His 164

Carbon-hydrogen bonds: Gln 77, Glu 86

Synapsin II Carnosic acid −5.08

H Bonds: Asp 120
Alkyl Bonds: Ala 124, Leu 394, His 188
Salt bridge: Arg 186
Carbon hydrogen bond: His 123, Pro 393, His 188, His 274

Synapsin II Ursolic acid −6.02
H Bonds: Gln 399
Carbon-hydrogen bond: Leu 394
Alkyl Bonds: Ala 124, His 123, Pro 393

Synapsin II Donepezil −6.50
H Bonds: Arg 76
Alkyl Bonds: Arg 293, His 78, His 164, His 13
Carbon-hydrogen Bond: Asp 10, Leu 284, Asp 228, Ser 165

Synapsin III Rosmarinic
acid −8.05

H Bonds: Lys 106, Lys 254, Lys 150, Thr 184, Gly 152, Glu 186
Alkyl Bonds: Lys 160, Ile 266
Carbon-hydrogen bond: Ala 156, Gly 157, Glu 267,

Synapsin III Carnosic acid −4.59

H Bonds: Ala 316, Asp 292, Asn 317
Alkyl Bonds: Lys 315, Val 354, Phe 286, Ile 364, Val 246, Ile 287, Lys 258
Salt bridge: Lys 352, Arg 307
Pi-pi interaction: Trp 314

Synapsin III Ursolic acid −5.73
H Bonds: Gly 312, Asn 313
Alkyl Bonds: Ala 316, Phe 286
Carbon-hydrogen Bond: Ser 309

Synapsin III Donepezil −7.28

H Bonds: Lys 106, Thr 184
Alkyl Bonds: Ala 218, Val 256, Lys 150, Phe 110, Tyr 182, Pro 107
Carbon-hydrogen bond: Gly 152, Ser 191
Pi anion: Asp 194, Lys 160

2.1.1. RA and UA Exhibit Binding Energy Comparable to Donepezil in Binding
Interactions with AChE

The binding interaction of RA, CA and UA with AChE revealed that amongst the other
compounds, RA, with a binding energy of −9.56, had a better affinity than CA (binding
energy: −7.91) and UA (binding energy: −9.17). However, the binding energy of UA was
the same as that of donepezil and it was found to bind to the same binding pocket as that
of donepezil, forming hydrogen and alkyl bonds with similar residues and suggesting the
binding and inhibition of AChE (Table 1). Interestingly, both UA and donepezil formed
hydrogen bonds with Tyr 122 and Phe 293 (Figure 2).
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Figure 2. Molecular docking interaction models of AChE (PDB ID: 4PQE) with donepezil and ursolic
acid. 2D structures of the compounds are shown by line and stick models with the surrounding amino
acids of AChE. The interactions are denoted by the following colors: hydrogen bonding interactions
(green), alkyl bonds (pink) and bumps (red). AChE; Acetylcholinesterase.

2.1.2. RA Exhibits Strong Binding Interactions Strikingly Similar to Donepezil with BACE1

RA was found to have the lowest binding energy in comparison to CA (Binding energy:
−5.85) and UA (binding energy: −5.48) in interaction studies with BACE1. With a binding
energy of −7.45, it exhibited a strong binding potential comparable to that of donepezil
(binding energy: −8.27) (Table 1). It also bound to similar residues and at the same binding
site as that of donepezil (Figure 3).
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2.1.3. RA Exhibits Strong Binding Interactions with Synapsin I, II and III

Docking studies of RA, CA and UA with synapsin I also demonstrated a stronger
binding affinity of RA with synapsin I in comparison to UA, CA and donepezil. The
binding energy of the interaction of RA with synapsin I was −8.49 which was even lower
than that of donepezil (binding energy: −6.5) (Table 1).

Similarly, RA had a binding energy of −7.02 in its binding with synapsin II, which
was lower than that of UA (binding energy: −6.02) and CA (−5.08) and comparable to that
of donepezil (binding energy: −6.50). This suggests a stronger binding potential of RA to
synapsin II.

In interactions with synapsin III, RA demonstrated a higher binding potential with a
binding energy of −8.05. UA, CA and donepezil exhibited higher values, showing their
comparatively lower binding potential (Table 1). A study of the interacting residues further
revealed that RA exhibited binding with synapsin I, II and III through the same binding
pocket as that of donepezil (Figure 4).
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2.2. Molecular Dynamic Simulation Studies of Rosmarinic, Carnosic and Ursolic Acid on BACE1,
AChE, Synapsin I, II and III

An MD simulation was conducted to evaluate the flexibility and overall stability
of docked complexes. RMSD and RMSF graphs were generated to determine the resid-
ual deviations and fluctuations in the complexes. Figures reveal the residual deviation
and fluctuations of docked complexes. An increasing trend was observed in all the com-
plexes, having diverse RMSD values at the equilibrium state (starting) of 0 to 25 ns in the
simulation period.

In the docked poses of compounds with AChE, RA, CA and UA demonstrated stable
complexes throughout the simulation time in comparison to that of donepezil. Stability
trends can be observed in the RMSD plots. The RMSD values of the docked poses with
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BACE I also had values of less than two, showing good reproducibility of the docked pose.
The RMSD profile of synapsin I and II also exhibits a good binding orientation, as the
values are less than three. CA exhibited a less stable binding with synapsin III than RA and
UA, which showed a similar RMSD profile to that of donepezil (Figure 5I).
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The overall MD results also showed the fluctuations during the simulation time.
The graphs suggested that most of the complexes had little fluctuation throughout the
simulation period. The RMSF results of compounds with AChE reveal that UA had
fluctuations comparable to those of donepezil throughout the simulation period. CA
exhibited comparatively higher fluctuations, depicting a less stable bond.

The BACE1 RMSF profile with the compounds showed that UA had the highest bind-
ing stability with BACE1. Comparative analyses revealed that RA also exhibited fluctuating
peaks similar to those of CA, while donepezil was observed to have the highest number of
fluctuated peaks signifying its poor stability. RA also exhibited the least fluctuated peaks in
the RMSF profile with synapsin I and II and III (Figure 5II). The stable behaviors of docked
complexes throughout the MD trajectories validate the docking results, thereby increasing
their efficacy.

2.3. Binding Free Energies of Interactions

An energetic analysis was conducted to acquire the binding affinities using the
MM/GBSA method with the protein–ligand complexes. The scores obtained from the
MM/GBSA calculations are shown in Table 2. The overall binding free energies of the
complexes of AChE with all the ligands was ~40 kcal/mol, expect for ursolic acid with
∆Gbind = −43.7367 kcal/mol, which revealed the most stable complex following the mea-
surement of the docking affinities trend, as shown in Figure 6.
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Table 2. MM-GBSA binding free energy of of R. officinalis active compounds with the target proteins.

AChE ∆Gcomplex ∆Greceptor ∆Gligand ∆Gbind

Rosmarinic acid −46,014.79 −45,849.86 −124.2334 −40.6927

Carnosic acid −9927.076 −12,735.73 2850.116 −41.4654

Ursolic acid −12,566.42 −12,652.49 129.8068 −43.7367

Donepezil −12,641.44 −12,680.03 81.1693 −42.5805

BACE

Rosmarinic acid −34,885.23 −34,728.67 −132.9516 −23.6095

Carnosic acid −5294.862 −5588.338 2835.457 −2541.98

Ursolic acid −8016.414 −5540.046 134.2603 −2610.629

Donepezil −8008.447 −5585.226 115.4342 −2538.656

Synapsin-I

Rosmarinic acid −28,807.57 −28,635.99 −121.7649 −49.8122

Carnosic acid −3588.86 −6284.642 2750.101 −54.3182

Ursolic acid −6185.364 −6295.104 132.3759 −22.6355

Donepezil −28,678.94 −28,607.5 −48.6825 −22.7567

Synapsin-II

Rosmarinic acid −29,054.36 −28,900.69 −118.5544 −35.1146

Carnosic acid −29,031.46 −28,950.41 −57.2692 −23.7774

Ursolic acid −6071.435 −6187.76 134.8061 −18.4811

Donepezil −6133.151 −6183.642 68.3527 −17.8623

Synapsin-III

Rosmarinic acid −27,429.88 −27,273.57 −123.8107 −32.4908

Carnosic acid −2686.096 −5320.382 2641.009 −6.723

Ursolic acid −5793.038 −5918.352 130.956 −5.6419
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BACE1 exhibited the lowest binding free energy (∆Gbind) values and showed the
most stable complexes against all ligands. UA with a ∆Gbind value of −2610.6 kcal/mol
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demonstrated the most stable bond in comparison to RA (−23.6095), CA (−2541.98) and
donepezil (−2538.656), in consistence with the results of RMSD and RMSF.

The binding free energy of CA with synapsin I was −54.3 kcal/mol, which is lower
than that of RA, UA and donepezil and depicts the stability of the complex. However, RA
showed favorable binding energies with that of synapsin II and III. With a binding energy
of −35.1 kcal/mol with synapsin II and −32.49 kcal/mol with synapsin III, it exhibited
more stable complexes than those of donepezil, UA and CA (Table 2, Figure 6).

2.4. Drug Likeness Analysis of CA, RA and UA

The prediction of the drug likeness of the compounds was carried out through a
Lipinski filter, ADMETSAR and SwissADME to analyze their drug-like characteristics and
assess their pharmacokinetic properties. All of the three compounds exhibited properties
indicative of their potential to be used as therapeutic agents. Their molecular masses were
less than 500 Daltons and they displayed less than five hydrogen bond donors and less than
ten acceptors. The molar refractivity as well their cLogP values were also in accordance
with the Lipinski rule. The compounds demonstrated comparable results on all other
parameters of the Lipinski filter, ADMETSAR and SwissADME, thereby suggesting their
drug likeness and suitability to be suggested as therapeutic agents against AD (Table 3).

Table 3. Drug likeness of the active compounds of Rosmarinus officinalis.

Carnosic Acid Rosmarinic Acid Ursolic Acid

Lipinski Rule of Five

Molecular Mass 332.44 360.32 456.71

Hydrogen Bond Donors 1 5 2

Hydrogen Bond Acceptors 4 8 3

Log P 4.18 1.53 7.005

Molar Refractivity 98.60 81.95 152.11

ADMET analysis

Human intestinal absorption + + +

Caco2 permeability + - +

Subcellular localization Mitochondria Mitochondria Mitochondria

OATP1B1 & OATP1B3 inhibitor + + +

CYP inhibitory promiscuity - - -

Carcinogenicity - - -

Ames mutagenesis - - -

Estrogen receptor binding + + +

Androgen receptor binding - + +

Thyroid receptor binding + + +

Glucocorticoid receptor binding + + +
+ presence, - absence.

3. Discussion

The current study was performed to elucidate the therapeutic potential of three major
constituents of the polar nature of R. officinalis, i.e., RA (polyphenol), CA (labdane-type
diterpene) and (UA) pentacyclic triterpenoid. Therefore, molecular docking was performed
with these compounds to reveal their binding affinity and interaction with the target
proteins of AD in comparison to donepezil.

We used AutoDock Vina for the current analysis, which applies an automated protocol
for the prediction of receptor–ligand binding and has thereby been widely applied in
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computer-aided drug designing [49]. For typical systems, AutoDock is run several times
to give several docked conformations, and am analysis of the predicted energy and the
consistency of results is combined to identify the best solution. AutoDock Vina generates
more accurate binding poses, while a better binding affinity is formed in AutoDock4;
perhaps both the programs are highly successful for a huge data set of diverse protein–
ligand complexes [50]. We chose best the pose of the protein–ligand-complexes on the basis
of the highest scoring from top 10 poses of the ligand binding sites.

All the selected ligand molecules (CA, RA, UA) were docked successfully against their
targets (AChE, BACE1, synapsin I, II, III). The ligand molecules that had the lowest binding
energy or docking score were considered as the best ligand molecules in inhibiting the
target receptor, as a lower binding energy corresponds to higher binding affinity.

AD pathology has been attributed to cholinergic dysfunction according to the ‘cholin-
ergic hypothesis’, which believes cholinergic deficit to be the major culprit for short-term
memory deficits [51]. In our study, we have targeted AChE as an important AD-associated
protein, as it hydrolyzes acetylcholine (ACh) and causes the termination of cholinergic
signaling. Its inhibition has been widely studied and most of the drugs for AD, such as
donepezil, galantamine and rivastigmine, are inhibitors of AChE [52]. Among the other
drugs, donepezil is a highly selective and reversible inhibitor of AChE, which is effec-
tive in improving cognitive and behavioral deficits in AD patients [53]. The interaction
of donepezil with AChE occurs along the active-site gorge of the enzyme involving the
catalytic site, the acyl pocket and the peripheral anionic binding site, through the adoption
of outward–inward–inward orientations. The interaction comprises of reversible axial
displacement and the reorientation of donepezil at the active site, mediated by water
molecules. [54]. This study reveals the high affinity of RA and UA towards AChE, as
depicted by their binding energies of −9.56 and −9.17 respectively (Table 1). MD simula-
tion also optimized the interactions to predict complex flexibility and to investigate the
stability of the complex, which revealed a stable confirmation as observed in RMSD and
RMSF plots. MM-GBSA binding free energy values also support the docking studies, as
UA exhibited the lowest binding free energy value of −43.73 in comparison to RA, CA
and donepezil. Additionally, UA and donepezil were also observed to interact with AChE
through three amino acids, specifically Tyr, Phe, Trp. An analysis of the interacting residues
further revealed that both the compounds formed hydrogen bonds with AChE through Tyr
122 and Phe 293 (Figure 2). The potential of UA in the attenuation of amyloid-beta-induced
neurotoxicity through the regulation of the NF-κB signaling pathway is also evident [55].
It has also been reported to alleviate cognitive and synaptic deficits and restore adult hip-
pocampal neurogenesis in an amyloid-beta-induced AD mouse model [27]. The obtained
results thereby propose the significant potential of UA against AD.

Higher levels of BACE1 are also associated with AD; thereby, it is targeted as an
important protein for AD mitigation [56]. A significantly higher expression of BACE1 is
evident and contributes to the higher Aβ production in the AD brain in comparison to
normal aging brains [32,57]. BACE1 is formed in the endoplasmic reticulum as an immature,
glycosylated, pro-BACE1 propeptide, exhibiting an open and closed confirmation [58]. The
ProBACE1 matures in the Golgi apparatus through the cleavage of the pro-domain, thereby
resulting in activation of BACE1 [59]. This cleavage makes the catalytic active site accessible
to substrate allowing BACE1 to exhibit its full enzymatic activity [60]. Activated BACE1
comprises four potential N-glycosylation sites and six cysteine residues which form three
disulfide bonds that are essential for the activity of the enzyme [61]. It also exists in a
flap-open conformation and a flap-closed conformation. The flap-open confirmation is
more energetically stable, however, BACE1 adopts a flap-closed confirmation upon binding
to the substrate. This shift in confirmation involves the breakage of hydrogen bonds
between the oxygen of Tyr71 and the nitrogen of Gly74, the nitrogen of Lys75 and the
oxygen of Glu77, and the Tyr71 hydroxyl with the Lys107 oxygen. This destabilization
permits the interaction of the enzyme with its substrates. The Tyr 71 side chain interacts
with the indole nitrogen of Trp 76, and the substrates can interact with the enzyme through
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a cleft. A bottleneck formation by Thr72, Arg235, Ser328, and Thr329 serves as a specificity
mechanism requiring some flexibility in the substrate [62,63].

The interaction of RA with BACE1 has a binding energy of −7.45 (Table 1), which was
further validated with the stable orientation depicted by MD simulation results. Interest-
ingly RA was also found to interact with BACE1 through the same amino acids as that of
donepezil at a similar binding site (Figure 3). RA comprises five major functional groups
through which it interacts with the target proteins: a carboxy group, an unsaturated C–C
bond, two phenol hydroxy groups, an alkoxy group, and an ester moiety [64]. Analysis
of the interacting residues revealed that both RA and donepezil interact with BACE1 at a
similar binding site, forming hydrogen bonds with similar residues. RA forms hydrogen
bonds with BACE1 through Gly 235, Tyr 76 and Arg 240 while donepezil exhibits hydrogen
bonds with BACE1 through Gly 34, Tyr 71 and Arg 235. The results of the MD simulation
also demonstrated the stable binding orientation of RA with BACE1, as evident from the
RMSD, RMSF profiles, as well as the binding free energy values. A study on RA derived
from Salvia fruticosa reported neuroprotective effects against amyloid-beta-induced neuro-
toxicity through the inhibition of BACE1 [65]. These results thereby indicate the promising
effect of RA in BACE1 inhibition, suggesting its potential against AD.

RA also showed the highest binding affinity for synapsin I, II and III in comparison to
the other compounds (Table 1). Synaptic impairment and loss of synapses are the major
consequences of AD [66]. Synapsin proteins play crucial roles in synaptic maturation
and plasticity, however, the dysregulation of their expression is reported by several stud-
ies [33,67]. The involvement of synapsin I in the up-regulation of BACE1 activity and
modulation of elevation of APP/BACE1 interaction that promotes the Aβ production
indicates disturbed molecular mechanism(s) and the formation of aggregates in AD [68].
Interestingly, our findings demonstrate a strong affinity of RA towards both BACE1 and
synapsin I. Therefore, we postulated RA as a promising agent that can suppress abnormal
Aβ production by targeting BACE1 and synapsins in AD, however, further in vivo and
in vitro studies on the molecular interactions are warranted. Moreover, MD simulations
are more accurate and provide a flexible binding model of the receptor and ligand along
with an estimation of the effect of surrounding explicit water molecules. Despite being
comparatively more time consuming and incurring a higher computational cost [69,70],
they are routinely incorporated as favorable approach for drug design. Likewise, the
integration of structure-based virtual screening (SBVS) is robust, convenient and is one of
the most promising in silico techniques for drug design [71]. Nonetheless, lead discovery
based on virtual screening has been found to yield false positive results, and therefore
should be followed by biological assays for a more holistic approach [72].

UA, CA and RA also satisfied the drug likeness criteria as predicted through the
Lipinski filter and ADMETSAR and SwissADME analyses, which revealed their potential
pharmacokinetic properties. The absorption profiles showed that all of these compounds
are predicted to undergo human intestinal absorption while the permeability of UA and
CA for Caco-2 also represents their passage through biological barriers [73,74]. They were
also found to exhibit the promiscuous inhibition of OATP1B1 and OATP1B3 transporters,
which are involved in the metabolism of drugs. Toxicity profiles also exhibited the absence
of carcinogenicity and mutagenesis potential, which ultimately demonstrates the potential
of the studied compounds as being comparable to already recognized medicates for AD
(Table 3).

Our study showed that the active compounds UA, RA and CA of R. officinalis exhibit
significant potential by docking with the AD target proteins AChE, BACE1 and synapsin I,
II and III. These findings indicate the need for further in vitro and in vivo investigations to
ascertain their therapeutic potential for the safe and effective treatment of AD.
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4. Materials and Methods
4.1. Molecular Docking Simulations

In our study, RA, CA and UA were tested for their interaction with BACE1, AChE,
synapsin I, II and III. The 3D structures of BACE1 (PDB ID: 2WJO), ACHE (PDB ID: 4PQE)
and synapsin III (PDB ID: 2P0A) were acquired from the RCSB Protein data bank (PDB)
(https://www.rcsb.org/) accessed on 15 February 2022 [75]. Synapsin I and II structures
were generated through AlphaFold (https://alphafold.ebi.ac.uk/) accessed on 15 February
2022 [76]. The 3D structures of RA, CA and UA were constructed using ArgusLab (http:
//www.arguslab.com/arguslab.com/ArgusLab.html) accessed on 18 February 2022 [77].
AutoDOCK Vina [49] was employed to assess the structure of the receptor–ligand complex
and to ascertain the feasibility of the structural topographies necessary for the interaction
of the compounds derived from R. officinalis with AD target proteins. It allows for the
exploration of possible key active site residues involved in the intermolecular interactions
with the ligand. The automated docking models generated were visualized using BIOVIA
Discovery Studio 2017 R2 [78]. The best pose was chosen based on the highest scoring from
the top 10 poses of ligand binding sites.

4.2. Molecular Dynamics Simulation Analysis

All the simulations and analyses were done using Amber20 (https://ambermd.org/)
accessed on 20 February 2022 [79]. Partial charges were calculated through antecham-
ber package using semi-empirical method ‘bcc’ and missing parameters were generated
through General Amber Force Field (GAFF) [80] using the LEap module. The FF14SB
force field was used for proteins and GAFF was used for ligand parameterization. The
structures were solvated in a 12 Å box of TIP3P water, crystal water molecules were re-
moved following the docking protocol and existing charges were neutralized by adding
sodium ions.

For MD simulation, the system was briefly minimized using 100 steepest descent
and 200 conjugate gradient cycles with a restraint force of 100 kcal/mol on water, sodium,
substrate, and hydrogen atoms, followed by another minimization of protein heavy atoms
with a 5 kcal/mol force constant. The system was heated with 5 kcal/mol force restraints
on α-carbon from 25 K to 298 K for 20ps using a canonical ensemble and then equilibrated
for 1ns without restraints using NPT, followed by the production of MM MD for a total of
25 ns. All bonds involving hydrogen atoms were constrained using SHAKE to remove fast
bond stretching motions and by using larger time steps (0.002 ps). To approximate longer
range interactions, the particle mesh Ewald method was used with a cut off value of 8.0 Å.
Trajectories were saved at every 100 picoseconds and analyzed at a stable potential energy.
Free energy calculations and other physical parameters such as root mean square deviation
(RMSD) and root mean square fluctuation (RMSF) were carried out to gain structural insight
into the complexes. The structures were visualized using Pymol (https://pymol.org/2/)
accessed on 22 February 2022 [81] and Xmgrace (http://plasma-gate.weizmann.ac.il/
Grace/) accessed on 22 February 2022 [82] was used for plotting.

4.3. Binding Free Energy Calculation Using MM/PBSA and MM/GBSA

To study the protein–drug complex energetics and stability, binding free energy
calculations are a significant tool to measure the strength of drug binding to a protein.
The energetics were calculated from 50 snapshots only, due to expensive computational–
time. Molecular mechanics–Poisson-Boltzmann surface area (MM-PBSA) and molecular
mechanics–generalized-born surface area (MM–GBSA) are two efficient methods in AM-
BER to calculate binding free affinity. MM–GBSA estimates favorable binding free energies
and can be calculated in the following useful way:

∆Gbind = ∆Gcomplex − ∆Greceptor − ∆Gligand (1)

∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆Gsolv − T∆S (2)

https://www.rcsb.org/
https://alphafold.ebi.ac.uk/
http://www.arguslab.com/arguslab.com/ArgusLab.html
http://www.arguslab.com/arguslab.com/ArgusLab.html
https://ambermd.org/
https://pymol.org/2/
http://plasma-gate.weizmann.ac.il/Grace/
http://plasma-gate.weizmann.ac.il/Grace/
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∆EMM = ∆Einternal + ∆Eele + ∆Evdw (3)

∆Gsolv = ∆Epolar−solvation + ∆Enon−polar (4)

The total binding free energy (∆Gbind) is the energy difference between the com-
plex bound state (∆Gcomplex) and the individual free receptor (∆Greceptor) and the ligand
(∆Gligand) as stated in Equation (1). The total free energy binding (∆Gbind) is further decom-
posed, according to law of thermodynamics, into the change in enthalpy ∆H and entropy
T∆S. The enthalpy change ∆H is calculated through MM–GBSA whereas entropy changes
are subsumed into ∆Gsolv, which is part of ∆H as in Equations (2)–(4) [83–85].

4.4. Prediction of Drug Likeness of CA, RA and UA

The Lipinski filter (http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp)
was accessed on 10 March 2022, to carry out the drug likeness prediction of CA, RA and
UA in accordance with the Lipinski rule of 5 [86]. This rule helps to predict the drug
likeness of molecules on the basis of their compliance with two or more of the following
rules: molecular mass < 500 Daltons, cLogP < 5, hydrogen bond donor < 5, hydrogen
bond acceptor < 10 and molar refractivity between 40 and 130. Additionally, adsorption,
distribution, metabolism, excretion and toxicity (ADMET) properties of the compounds
were predicted using the ADMETSAR (http://lmmd.ecust.edu.cn/admetsar2/) accessed
on 12 March 2022 and SwissADME (http://www.swissadme.ch/) accessed on 14 March
2022, which serve as important tools for the estimation of the pharmacokinetic properties
of compounds to predict their drug likeness [87,88]. These tools provide assistance in
determining the candidate compounds for drug discovery and development. The SDF
(structure data format) files and canonical SMILES (simplified molecular-input line-entry
system) of CA, RA and UA were downloaded from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) accessed on 10 March 2022 [89] to calculate the drug likeness
and ADMET properties using default parameters.

5. Conclusions

The active compounds UA, RA and CA of R. officinalis showed significant potential
by binding with AD target proteins AChE, BACE1 and synapsin I, II and III. Our study
showed UA and RA as potent inhibitors of AChE and BACE1, while their drug likeness and
pharmacokinetic properties also demonstrated their drug-like characteristics, indicating the
need for further in vitro and in vivo investigations to ascertain their therapeutic potential.
We believe that this study can contribute to developing new therapeutic strategies for the
safe and effective treatment of AD.
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