Poly(ε-caprolactone)-Based Graft Copolymers: Synthesis Methods and Applications in the Biomedical Field: A Review
Abstract
:1. Introduction
2. General Synthesis Methods of Functionalized PCL
2.1. Synthesis of a Functionalized Caprolactone
2.2. PCL Backbone Modification
2.2.1. Anionic Modification
2.2.2. Surface Modification
2.2.3. Reactive Extrusion
3. Case Study: Syntheses and Characterizations of PCL-Based Graft Copolymers
3.1. PCL-g-PEG Copolymers
3.2. PCL-g-Poly (Meth)acrylic Graft Copolymers
3.2.1. PCL-g-Poly Methyl Methacrylate (PCL-g-PMMA)
3.2.2. PCL-g-P(2-N,N-Dimethylaminoethyl Methacrylate) (PCL-g-PDMAEMA)
3.2.3. PCL-g-P(N-Isopropylacrylamide) (PCL-g-PNIPAAm)
3.2.4. PCL-g-P(MEO2MA-co-OEGMA)]-b-PEG-b-[PCL-g-P(MEO2MA-co-OEGMA) (tBG1) and PEG-b-[PCL-g-P(MEO2MA-co-OEGMA)]-b-PEG (tBG2)
3.2.5. Methoxypoly(ethylene glycol)-b-PCL-g-P(2-(guanidyl) ethyl methacrylate) (MeOPEG-b-PCL-g-PGEM) (PECG)
3.3. Other PCL-Based Graft Copolymers
3.3.1. PCL-g-Polystyrene (PCL-g-PS)
3.3.2. PCL-g-PCL and PCL-g-Poly Lactic Acid (PCL-g-PLA)
3.3.3. PCL-g-Poly Lysine
3.3.4. PCL-g-Poly N-Vinyl Caprolactam (PCL-g-PNVCLac) and PCL-g-Poly N-Vinyl Pyrrolidone (PCL-g-PNVP)
3.3.5. PCL-g-Dextran
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
αCl-CL | α-chloro-ε-caprolactone |
ATRP | Atom Transfer Radical Polymerization |
BMPCL | γ(2-bromo-2-methyl propionyl)-e-caprolactone |
CL | Caprolactone |
DMA | N,N-dimethyl acrylamide |
DMAEMA | Dimethylaminoethyl methacrylate |
DMAET | Dimethylamino ethane thiol |
GMA | glycidyl methacrylate |
HMDI | Hexamethylene diisocyanate |
ITP | Iodine Transfer Polymerization |
MAA | Methacrylic acid |
MEO2MA | 2-(2-methoxyethoxy) methacrylate |
MeOPEG | Methoxy PEG |
MeOPEGMMA | MethoxyPEG methyl methacrylate |
MMA | Methyl methacrylate |
nBuA | n-butyl acrylate |
NIPAAM | N-isopropylacrylamide |
NVCLac | N-vinyl caprolactame |
OEGMA | Oligo ethyleneglycol methyl ether methacrylate |
PCL | Poly ε-caprolactone |
PCL-I | Iodized PCL |
PCL-yne | Poly (α-propargyl-CL-co-CL) |
PEG | Polyethyleneglycol |
PLA | Poly acide lactique |
PMMA | Poly methyl methacrylate |
PS | Polysrtyrene |
PVP | Poly vinyl pyrrolidone |
tBuMA | Tertio butyl methacrylate |
TeSCL | γ-triethylsilyloxy-ε-caprolactone |
TMS | Trimethyl silyl |
TOSUO | 1,4,8-trioxa [4.6]spiro-9-undecanone |
Z | N-carboxybenzyl |
References
- Mamidi, N.; García, R.G.; Martínez, J.D.H.; Briones, C.M.; Martínez Ramos, A.M.; Tamez, M.F.L.; Del Valle, B.G.; Segura, F.J.M. Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS Biomater. Sci. Eng. 2022, 8, 3690–3716. [Google Scholar] [CrossRef] [PubMed]
- Mamidi, N.; Delgadillo, R.M.V.; Barrera, E.V.; Ramakrishna, S.; Annabi, N. Carbonaceous nanomaterials incorporated biomaterials: The present and future of the flourishing field. Compos. Part B Eng. 2022, 243, 110150. [Google Scholar] [CrossRef]
- Calvo, P.; Thomas, C.; Alonso, M.J.; Vila-Jato, J.; Robinson, J.R. Study of the mechanism of interaction of poly(ϵ-caprolactone) nanocapsules with the cornea by confocal laser scanning microscopy. Int. J. Pharm. 1994, 103, 283–291. [Google Scholar] [CrossRef]
- Chawla, J.S.; Amiji, M.M. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 2002, 249, 127–138. [Google Scholar] [CrossRef]
- Lemmouchi, Y.; Schacht, E.; Kageruka, P.; De Deken, R.; Diarra, B.; Diall, O.; Geerts, S. Biodegradable polyesters for controlled release of trypanocidal drugs: In vitro and in vivo studies. Biomaterials 1998, 19, 1827–1837. [Google Scholar] [CrossRef]
- Xiao, Y.; Yuan, M.; Zhang, J.; Yan, J.; Lang, M. Functional Poly( -caprolactone) Based Materials: Preparation, Self- Assembly and Application in Drug Delivery. Curr. Top. Med. Chem. 2014, 14, 781–818. [Google Scholar] [CrossRef]
- Nakamura, T.; Iwasaki, Y.; Tanaka, Y.; Fukabori, T. Dynamics of Pleural Effusion Estimated through Urea Clearance. Jpn. J. Med. 1987, 26, 319–322. [Google Scholar] [CrossRef] [Green Version]
- MWoodruff, A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef] [Green Version]
- Dash, T.K.; Konkimalla, V.B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control Release 2012, 158, 15–33. [Google Scholar] [CrossRef]
- Benedict, C.V.; Cook, W.J.; Jarrett, P.; Cameron, J.A.; Huang, S.J.; Bell, J.P. Fungal degradation of polycaprolactones. J. Appl. Polym. Sci. 1983, 28, 327–334. [Google Scholar] [CrossRef]
- Gan, Z.; Liang, Q.; Zhang, J.; Jing, X. Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym. Degrad. Stab. 1997, 56, 209–213. [Google Scholar] [CrossRef]
- Lefebvre, F.; David, C.; Wauven, C.V. Biodegradation of polycaprolactone by micro-organisms from an industrial compost of household refuse. Polym. Degrad. Stab. 1994, 45, 347–353. [Google Scholar] [CrossRef]
- Rutkowska, M.; Dereszewska, A.; Jastrzȩbska, M.; Janik, H. Biodegradation of polycaprolactone in plant treatment active sludge. Macromol. Symp. 1998, 130, 199–204. [Google Scholar] [CrossRef]
- Rutkowska, M.; Jastrzębska, M.; Janik, H. Biodegradation of polycaprolactone in sea water. React. Funct. Polym. 1998, 38, 27–30. [Google Scholar] [CrossRef]
- Fukushima, K.; Abbate, C.; Tabuani, D.; Gennari, M.; Rizzarelli, P.; Camino, G. Biodegradation trend of poly(ε-caprolactone) and nanocomposites. Mater. Sci. Eng. C 2010, 30, 566–574. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, X.; Yang, H. Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: Characterization and their use as drug carriers for a controlled delivery system. Biomaterials 2003, 24, 3563–3570. [Google Scholar] [CrossRef]
- Turunen, M.P.K.; Korhonen, H.; Tuominen, J.; Seppälä, J.V. Synthesis, characterization and crosslinking of functional star-shaped poly(ε-caprolactone). Polym. Int. 2002, 51, 92–100. [Google Scholar] [CrossRef]
- Wang, J.-L.; Wang, L.; Dong, C.-M. Synthesis, crystallization, and morphology of star-shaped poly(ε-caprolactone). J. Polym. Sci. Part Polym. Chem. 2005, 43, 5449–5457. [Google Scholar] [CrossRef]
- Li, X.; Ryu, W.; Kim, H.; Ree, M. Precise Synthesis, Properties, and Structures of Cyclic Poly(ε-caprolactone)s. Polymers 2018, 10, 577. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, L.; Liu, B.; Han, B.; Duan, Z.; Qi, C.; Park, D.W.; Kim, I. Synthesis of High Molecular Weight Cyclic Poly(ε-caprolactone)s of Variable Ring Size Based on a Light-Induced Ring-Closure Approach. Macromol. Rapid Commun. 2015, 36, 1646–1650. [Google Scholar] [CrossRef]
- Coudane, J.; Berghe, H.V.D.; Mouton, J.; Garric, X.; Nottelet, B. Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review. Molecules 2022, 27, 4135. [Google Scholar] [CrossRef] [PubMed]
- Braud, C.; Bunel, C.; Garreau, H.; Vert, M. Evidence for the amphiphilic structure of partially hydrogenolyzed poly(?-malic acid benzyl ester). Polym. Bull. 1983, 9, 198–203. [Google Scholar] [CrossRef]
- Coulembier, O.; Degée, P.; Hedrick, J.L.; Dubois, P. From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives. Prog. Polym. Sci. 2006, 31, 723–747. [Google Scholar] [CrossRef]
- Guerin, P.; Vert, M.; Braud, C.; Lenz, R.W. Optically active poly (\-malic-acid). Polym. Bull. 1985, 14, 187–192. [Google Scholar] [CrossRef]
- Guerin, P.; Francillette, J.; Braud, C.; Vert, M. Benzyl esters of optically active malic acid stereocopolymers as obtained by ring-opening polymerization of (R)-(+) and (S)-(-)-benzyl malolactonates. Makromol. Chem. Macromol. Symp. 1986, 6, 305–314. [Google Scholar] [CrossRef]
- Barbosa, M.E.M.; Cammas, S.; Appel, M.; Ponchel, G. Investigation of the Degradation Mechanisms of Poly(malic acid) Esters in Vitro and Their Related Cytotoxicities on J774 Macrophages. Biomacromolecules 2004, 5, 137–143. [Google Scholar] [CrossRef]
- Ouchi, T.; Minari, T.; Ohya, Y. Synthesis of poly(L-lactide)-grafted pullulan through coupling reaction between amino group end-capped poly(L-lactide) and carboxymethyl pullulan and its aggregation behavior in water. J. Polym. Sci. Part Polym. Chem. 2004, 42, 5482–5487. [Google Scholar] [CrossRef]
- Vert, M. Chemical routes to poly(β-malic acid) and potential applications of this water-soluble bioresorbable poly(β-hydroxy alkanoate). Polym. Degrad. Stab. 1998, 59, 169–175. [Google Scholar] [CrossRef]
- Marcincinova-Benabdillah, K.; Boustta, M.; Coudane, J.; Vert, M. Novel Degradable Polymers Combining d-Gluconic Acid, a Sugar of Vegetal Origin, with Lactic and Glycolic Acids. Biomacromolecules 2001, 2, 1279–1284. [Google Scholar] [CrossRef]
- Saulnier, B.; Ponsart, S.; Coudane, J.; Garreau, H.; Vert, M. Lactic Acid-Based Functionalized Polymers via Copolymerization and Chemical Modification. Macromol. Biosci. 2004, 4, 232–237. [Google Scholar] [CrossRef]
- Saulnier, B.; Coudane, J.; Garreau, H.; Vert, M. Hydroxyl-bearing poly(α-hydroxy acid)-type aliphatic degradable polyesters prepared by ring opening (co)polymerization of dilactones based on glycolic, gluconic and l-lactic acids. Polymer 2006, 47, 1921–1929. [Google Scholar] [CrossRef]
- Fiétier, I.; le Borgne, A.; Spassky, N. Synthesis of functional polyesters derived from serine. Polym. Bull. 1990, 24, 349–353. [Google Scholar] [CrossRef]
- Tian, H.; Tang, Z.; Zhuang, X.; Chen, X.; Jing, X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 2012, 37, 237–280. [Google Scholar] [CrossRef]
- Delorme, V.; Lichon, L.; Mahindad, H.; Hunger, S.; Laroui, N.; Daurat, M.; Godefroy, A.; Coudane, J.; Gary-Bobo, M.; Van Den Berghe, H. Reverse poly(ε-caprolactone)-g-dextran graft copolymers. Nano-carriers for intracellular uptake of anticancer drugs. Carbohydr. Polym. 2020, 232, 115764. [Google Scholar] [CrossRef]
- Trollsås, M.; Lee, V.Y.; Mecerreyes, D.; Löwenhielm, P.; Möller, M.; Miller, R.D.; Hedrick, J.L. Hydrophilic Aliphatic Polyesters: Design, Synthesis, and Ring-Opening Polymerization of Functional Cyclic Esters. Macromolecules 2000, 33, 4619–4627. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, Y.; Xu, H.; Zhou, C.; Lang, M. Synthesis of well-defined carboxyl poly(ε-caprolactone) by fine-tuning the protection group. Polym. Chem. 2016, 7, 4630–4637. [Google Scholar] [CrossRef]
- Riva, R.; Lenoir, S.; Jérôme, R.; Lecomte, P. Functionalization of poly(ε-caprolactone) by pendant hydroxyl, carboxylic acid and epoxide groups by atom transfer radical addition. Polymer 2005, 46, 8511–8518. [Google Scholar] [CrossRef]
- Cajot, S.; Lecomte, P.; Jérôme, C.; Riva, R. Novel functional degradable block copolymers for the building of reactive micelles. Polym. Chem. 2013, 4, 1025–1037. [Google Scholar] [CrossRef]
- Darcos, V.; Antoniacomi, S.; Paniagua, C.; Coudane, J. Cationic polyesters bearing pendent amino groups prepared by thiol–ene chemistry. Polym. Chem. 2012, 3, 362–368. [Google Scholar] [CrossRef]
- el Habnouni, S.; Blanquer, S.; Darcos, V.; Coudane, J. Aminated PCL-based copolymers by chemical modification of poly(α-iodo-ε-caprolactone-co-ε-caprolactone). J. Polym. Sci. Part Polym. Chem. 2009, 47, 6104–6115. [Google Scholar] [CrossRef]
- El Habnouni, S.; Nottelet, B.; Darcos, V.; Porsio, B.; Lemaire, L.; Franconi, F.; Garric, X.; Coudane, J. MRI-Visible Poly(ε-caprolactone) with Controlled Contrast Agent Ratios for Enhanced Visualization in Temporary Imaging Applications. Biomacromolecules 2013, 14, 3626–3634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrish, B.; Breitenkamp, R.B.; Emrick, T. PEG- and Peptide-Grafted Aliphatic Polyesters by Click Chemistry. J. Am. Chem. Soc. 2005, 127, 7404–7410. [Google Scholar] [CrossRef] [PubMed]
- Riva, R.; Schmeits, S.; Jérôme, C.; Jérôme, R.; Lecomte, P. Combination of Ring-Opening Polymerization and “Click Chemistry”: Toward Functionalization and Grafting of Poly(ε-caprolactone). Macromolecules 2007, 40, 796–803. [Google Scholar] [CrossRef]
- El Habnouni, S.; Darcos, V.; Coudane, J. Synthesis and Ring Opening Polymerization of a New Functional Lactone, α-Iodo-ε-caprolactone: A Novel Route to Functionalized Aliphatic Polyesters. Macromol. Rapid Commun. 2009, 30, 165–169. [Google Scholar] [CrossRef]
- Detrembleur, C.; Mazza, M.; Halleux, O.; Lecomte, P.; Mecerreyes, D.; Hedrick, J.L.; Jérôme, R. Ring-Opening Polymerization of γ-Bromo-ε-caprolactone: A Novel Route to Functionalized Aliphatic Polyesters. Macromolecules 2000, 33, 14–18. [Google Scholar] [CrossRef]
- Mecerreyes, D.; Atthoff, B.; Boduch, K.A.; Trollsås, M.; Hedrick, J.L. Unimolecular Combination of an Atom Transfer Radical Polymerization Initiator and a Lactone Monomer as a Route to New Graft Copolymers. Macromolecules 1999, 32, 5175–5182. [Google Scholar] [CrossRef]
- Stassin, F.; Halleux, O.; Dubois, P.; Detrembleur, C.; Lecomte, P.; Jérôme, R. Ring opening copolymerization of ε-caprolactone, γ-(triethylsilyloxy)-ε-caprolactone and γ-ethylene ketal-ε-caprolactone: A route to hetero-graft copolyesters. Macromol. Symp. 2000, 153, 27–39. [Google Scholar] [CrossRef]
- Liu, M.; Vladimirov, N.; Fréchet, J.M.J. A New Approach to Hyperbranched Polymers by Ring-Opening Polymerization of an AB Monomer: 4-(2-Hydroxyethyl)-ε-caprolactone. Macromolecules 1999, 32, 6881–6884. [Google Scholar] [CrossRef]
- Blanquer, S.; Guillaume, O.; Letouzey, V.; Lemaire, L.; Franconi, F.; Paniagua, C.; Coudane, J.; Garric, X. New magnetic-resonance-imaging-visible poly(ε-caprolactone)-based polyester for biomedical applications. Acta Biomater. 2012, 8, 1339–1347. [Google Scholar] [CrossRef]
- Khosravi, E.; Yagci, Y.; Savelyev, Y. (Eds.) New Smart Materials via Metal Mediated Macromolecular Engineering; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Lecomte, P.; Riva, R.; Schmeits, S.; Rieger, J.; Van Butsele, K.; Jérôme, C.; Jérôme, R. New Prospects for the Grafting of Functional Groups onto Aliphatic Polyesters. Ring-Opening Polymerization of α- or γ-Substituted ε-Caprolactone Followed by Chemical Derivatization of the Substituents. Macromol. Symp. 2006, 240, 157–165. [Google Scholar] [CrossRef]
- Jin, S.; Gonsalves, K.E. Synthesis and Characterization of Functionalized Poly(ε-caprolactone) Copolymers by Free-Radical Polymerization. Macromolecules 1998, 31, 1010–1015. [Google Scholar] [CrossRef]
- ATardy, A.; Honoré, J.C.; Tran, J.; Siri, D.; Delplace, V.; Bataille, I.; Letourneur, D.; Perrier, J.; Nicoletti, C.; Maresca, M.; et al. Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angew. Chem. Int. Ed. 2017, 56, 16515–16520. [Google Scholar] [CrossRef]
- ATardy, A.; Gil, N.; Plummer, C.M.; Siri, D.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angew. Chem. Int. Ed. 2020, 59, 14517–14526. [Google Scholar] [CrossRef]
- Ponsart, S.; Coudane, J.; Vert, M. A Novel Route To Poly(ε-caprolactone)-Based Copolymers via Anionic Derivatization. Biomacromolecules 2000, 1, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Samad, A.A.; Bethry, A.; Janouskova, O.; Ciccione, J.; Wenk, C.; Coll, J.L.; Subra, G.; Etrych, T.; Omar, F.E.; Bakkour, Y.; et al. Iterative Photoinduced Chain Functionalization as a Generic Platform for Advanced Polymeric Drug Delivery Systems. Macromol. Rapid Commun. 2018, 39, 1700502. [Google Scholar] [CrossRef]
- Gimenez, S.; Ponsart, S.; Coudane, J.; Vert, M. Synthesis Properties and in vitro Degradation of Carboxyl-Bearing PCL. J. Bioact. Compat. Polym. 2001, 16, 32–46. [Google Scholar] [CrossRef]
- Nottelet, B.; Coudane, J.; Vert, M. Synthesis of an X-ray opaque biodegradable copolyester by chemical modification of poly (ε-caprolactone). Biomaterials 2006, 27, 4948–4954. [Google Scholar] [CrossRef]
- Ponsart, S.; Coudane, J.; Morgat, J.-L.; Vert, M. Synthesis of 3H and fluorescence-labelled poly (DL-Lactic acid). J. Label. Compd. Radiopharm. 2001, 44, 677–687. [Google Scholar] [CrossRef]
- Ponsart, S.; Coudane, J.; Saulnier, B.; Morgat, J.-L.; Vert, M. Biodegradation of [3H]Poly(ε-caprolactone) in the Presence of Active Sludge Extracts. Biomacromolecules 2001, 2, 373–377. [Google Scholar] [CrossRef]
- Ponsart, S.; Coudane, J.; McGrath, J.; Vert, M. Study of the Grafting of Bromoacetylated α-Hydroxy-ω-Methoxypoly(Ethyleneglycol) onto Anionically Activated Poly(∊-Caprolactone). J. Bioact. Compat. Polym. 2002, 17, 417–432. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, J.M.; Lee, S.J.; Lee, S.G.; Jeong, Y.K.; Kim, S.E.; Lee, S.C. Surface hydrolysis of fibrous poly(ε-caprolactone) scaffolds for enhanced osteoblast adhesion and proliferation. Macromol. Res. 2007, 15, 424–429. [Google Scholar] [CrossRef]
- Ortora, L.; Concolato, S.; Urbini, M.; Giannitelli, S.M.; Basoli, F.; Rainer, A.; Trombetta, M.; Orsini, M.; Mozetic, P. Functionalization of poly(ε-caprolactone) surface with lactose-modified chitosan via alkaline hydrolysis: ToF-SIMS characterization. Biointerphases 2016, 11, 02A323. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.J.; Wang, Z.H.; Yang, W.T. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials 2010, 31, 3139–3147. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.M.; Yuan, S.; Tan, C.K.; Wang, J.K.; Liu, Y.; Tan, T.T.Y.; Tan, N.S.; Choong, C. Endothelial cell thrombogenicity is reduced by ATRP-mediated grafting of gelatin onto PCL surfaces. J. Mater. Chem. B 2014, 2, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Pourcelle, V.; Freichels, H.; Stoffelbach, F.; Auzély-Velty, R.; Jérôme, C.; Marchand-Brynaert, J. Light Induced Functionalization of PCL-PEG Block Copolymers for the Covalent Immobilization of Biomolecules. Biomacromolecules 2009, 10, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Edlund, U.; Dånmark, S.; Albertsson, A.-C. A Strategy for the Covalent Functionalization of Resorbable Polymers with Heparin and Osteoinductive Growth Factor. Biomacromolecules 2008, 9, 901–905. [Google Scholar] [CrossRef]
- Källrot, M.; Edlund, U.; Albertsson, A.-C. Surface functionalization of degradable polymers by covalent grafting. Biomaterials 2006, 27, 1788–1796. [Google Scholar] [CrossRef]
- Romero-Montero, A.; del Valle, L.J.; Puiggalí, J.; Montiel, C.; García-Arrazola, R.; Gimeno, M. Poly(gallic acid)-coated polycaprolactone inhibits oxidative stress in epithelial cells. Mater. Sci. Eng. C 2020, 115, 111154. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, C.; Shen, J. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials 2002, 23, 4889–4895. [Google Scholar] [CrossRef]
- Wei, Q.F.; Gao, W.D.; Hou, D.Y.; Wang, X.Q. Surface modification of polymer nanofibres by plasma treatment. Appl. Surf. Sci. 2005, 245, 16–20. [Google Scholar] [CrossRef]
- Gorna, K.; Gogolewski, S. Molecular stability, mechanical properties, surface characteristics and sterility of biodegradable polyurethanes treated with low-temperature plasma. Polym. Degrad. Stab. 2003, 79, 475–485. [Google Scholar] [CrossRef]
- Martins, A.; Pinho, E.D.; Faria, S.; Pashkuleva, I.; Marques, A.P.; Reis, R.L.; Neves, N.M. Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance. Small 2009, 5, 1195–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasmazel, H.T.; Alazzawi, M.; Alsahib, N.K.A. Atmospheric Pressure Plasma Surface Treatment of Polymers and Influence on Cell Cultivation. Molecules 2021, 26, 1665. [Google Scholar] [CrossRef] [PubMed]
- Han, I.; Kwon, B.J.; Vagaska, B.; Kim, B.J.; Kang, J.K.; Lee, M.H.; Kim, H.H.; Park, J.C.; Wang, K.K.; Kim, Y.R.; et al. Nitrogen grafting onto polycarprolactone by a simple surface modification with atmospheric pressure glow discharge (Ar-APGD) and promoted neonatal human fibroblast growth. Macromol. Res. 2011, 19, 1134–1141. [Google Scholar] [CrossRef]
- Razmjooee, K.; Saber-Samandari, S.; Keshvari, H.; Ahmadi, S. Improving anti thrombogenicity of nanofibrous polycaprolactone through surface modification. J. Biomater. Appl. 2019, 34, 408–418. [Google Scholar] [CrossRef]
- Luk, J.Z.; Cork, J.; Cooper-White, J.; Grøndahl, L. Use of Two-Step Grafting to Fabricate Dual-Functional Films and Site-Specific Functionalized Scaffolds. Langmuir 2015, 31, 1746–1754. [Google Scholar] [CrossRef]
- Morais, D.D.S.; Siqueira, D.D.; Luna, C.B.B.; Araújo, E.M.; Bezerra, E.B.; Wellen, R.M.R. Grafting maleic anhydride onto polycaprolactone: Influence of processing. Mater. Res. Express 2019, 6, 055315. [Google Scholar] [CrossRef]
- Lenoir, S.; Riva, R.; Lou, X.; Detrembleur, C.; Jérôme, R.; Lecomte, P. Ring-Opening Polymerization of α-Chloro-ε-caprolactone and Chemical Modification of Poly(α-chloro-ε-caprolactone) by Atom Transfer Radical Processes. Macromolecules 2004, 37, 4055–4061. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Zhu, W.; Li, X.; Shen, Z. Synthesis, characterization, and micellization of PCL-g-PEG copolymers by combination of ROP and “Click” chemistry via “Graft onto” method. J. Polym. Sci. Part Polym. Chem. 2012, 50, 2045–2052. [Google Scholar] [CrossRef]
- Freichels, H.; Alaimo, D.; Auzély-Velty, R.; Jérôme, C. α-Acetal, ω-Alkyne Poly(ethylene oxide) as a Versatile Building Block for the Synthesis of Glycoconjugated Graft-Copolymers Suited for Targeted Drug Delivery. Bioconjug. Chem. 2012, 23, 1740–1752. [Google Scholar] [CrossRef]
- Leroy, A.; Al Samad, A.; Garric, X.; Hunger, S.; Noël, D.; Coudane, J.; Nottelet, B. Biodegradable networks for soft tissue engineering by thiol–yne photo cross-linking of multifunctional polyesters. RSC Adv. 2014, 4, 32017–32023. [Google Scholar] [CrossRef]
- Al Samad, A.; Bakkour, Y.; Fanny, C.; el Omar, F.; Coudane, J.; Nottelet, B. From nanospheres to micelles: Simple control of PCL-g-PEG copolymers amphiphilicity through thiol–yne photografting. Polym. Chem. 2015, 6, 5093–5102. [Google Scholar] [CrossRef]
- Al Samad, A.; Bethry, A.; Koziolova, E.; Netopilik, M.; Etrych, T.; Bakkour, Y.; Coudane, J.; El Omar, F.; Nottelet, B. PCL-PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems. J. Mater. Chem. B 2016, 4, 6228–6239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coudane, J.; Laurent, E.; Vert, M. Poly(ε-caprolactone)-Based Organogels and Hydrogels with Poly(ethylene glycol) Cross-Linkings. Macromol. Rapid Commun. 2004, 25, 1865–1869. [Google Scholar] [CrossRef]
- Lin, G.; Cosimbescu, L.; Karin, N.J.; Gutowska, A.; Tarasevich, B.J. Injectable and thermogelling hydrogels of PCL-g-PEG: Mechanisms, rheological and enzymatic degradation properties. J. Mater. Chem. B 2013, 1, 1249. [Google Scholar] [CrossRef] [PubMed]
- Rieger, J.; Bernaerts, K.V.; Prez, F.E.D.; Jérôme, R.; Jérôme, C. Lactone End-Capped Poly(ethylene oxide) as a New Building Block for Biomaterials. Macromolecules 2004, 37, 9738–9745. [Google Scholar] [CrossRef]
- Rieger, J.; Dubois, P.; Jérôme, R.; Jérôme, C. Controlled Synthesis and Interface Properties of New Amphiphilic PCL- g -PEO Copolymers. Langmuir 2006, 22, 7471–7479. [Google Scholar] [CrossRef]
- Rieger, J.; Passirani, C.; Benoit, J.-P.; Van Butsele, K.; Jérôme, R.; Jérôme, C. Synthesis of Amphiphilic Copolymers of Poly(ethylene oxide) and Poly(ε-caprolactone) with Different Architectures, and Their Role in the Preparation of Stealthy Nanoparticles. Adv. Funct. Mater. 2006, 16, 1506–1514. [Google Scholar] [CrossRef]
- Latere, J.-P.; Lecomte, P.; Dubois, P.; Jérôme, R. 2-Oxepane-1,5-dione: A Precursor of a Novel Class of Versatile Semicrystalline Biodegradable (Co)polyesters. Macromolecules 2002, 35, 7857–7859. [Google Scholar] [CrossRef]
- Iha, R.K.; van Horn, B.A.; Wooley, K.L. Complex, degradable polyester materials via ketoxime ether-based functionalization: Amphiphilic, multifunctional graft copolymers and their resulting solution-state aggregates: Complex, Degradable Polyester Materials. J. Polym. Sci. Part Polym. Chem. 2010, 48, 3553–3563. [Google Scholar] [CrossRef]
- Chang, L.; Liu, J.; Zhang, J.; Deng, L.; Dong, A. pH-sensitive nanoparticles prepared from amphiphilic and biodegradable methoxy poly(ethylene glycol)-block-(polycaprolactone-graft-poly(methacrylic acid)) for oral drug delivery. Polym. Chem. 2013, 4, 1430–1438. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, Y.; Wang, X.; Cao, Y.; Liu, J.; Liu, J.; Deng, L.; Dong, A. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core. Acta Biomater. 2015, 11, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Song, K.; Zhang, J.; Deng, L.; Dong, A.; Qin, Z. Modulating the rigidity of nanoparticles for tumor penetration. Chem. Commun. 2018, 54, 3014–3017. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Qiao, Y.; Wang, W.; He, H.; Deng, L.; Xing, J.; Xu, J.; Liang, X.J.; Dong, A. Poly(ε-caprolactone)-graft-poly(2-(N, N-dimethylamino) ethyl methacrylate) nanoparticles: pH dependent thermo-sensitive multifunctional carriers for gene and drug delivery. J. Mater. Chem. 2010, 20, 6935. [Google Scholar] [CrossRef]
- Deng, H.; Zhao, X.; Liu, J.; Zhang, J.; Deng, L.; Liu, J.; Dong, A. Synergistic dual-pH responsive copolymer micelles for pH-dependent drug release. Nanoscale 2016, 8, 1437–1450. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Huang, Y.; Wei, T.; Zhang, W.; Wang, W.; Lin, D.; Zhang, X.; Kumar, A.; Du, Q.; Xing, J.; et al. Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier. Biomaterials 2011, 32, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Qiao, Y.; Wang, W.; Xing, J.; Deng, L.; Dong, A.; Xu, J. Synthesis and properties of Polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate-co-methoxy polyethylene glycol monomethacrylate) as non-viral gene vector. Polym. Adv. Technol. 2011, 22, 1925–1930. [Google Scholar] [CrossRef]
- Lin, D.; Huang, Y.; Jiang, Q.; Zhang, W.; Yue, X.; Guo, S.; Xiao, P.; Du, Q.; Xing, J.; Deng, L.; et al. Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery. Biomaterials 2011, 32, 8730–8742. [Google Scholar] [CrossRef]
- Li, M.; Shan, G.; Bao, Y.; Pan, P. Poly(ε-caprolactone)-graft-poly(N-isopropylacrylamide) amphiphilic copolymers prepared by a combination of ring-opening polymerization and atom transfer radical polymerization: Synthesis, self-assembly, and thermoresponsive property. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Massoumi, B.; Abdollahi, M.; Fathi, M.; Entezami, A.A.; Hamidi, S. Synthesis of novel thermoresponsive micelles by graft copolymerization of N-isopropylacrylamide on poly(ε-caprolactone-co-α-bromo-ε-caprolactone) as macroinitiator via ATRP. J. Polym. Res. 2013, 20, 47. [Google Scholar] [CrossRef]
- Li, M.; Pan, P.; Shan, G.; Bao, Y. Thermoresponsive poly(ϵ-caprolactone)-graft-poly(N-isopropylacrylamide) graft copolymers prepared by a combination of ring-opening polymerization and sequential azide–alkyne click chemistry. Polym. Int. 2015, 64, 389–396. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Sheng, W.; Guang, N.; Li, X. Synthesis and sol-gel transition of novel temperature responsive aba triblock-graft copolymers based on PCL and PEG analogues. Macromol. Res. 2015, 23, 607–617. [Google Scholar] [CrossRef]
- An, Y.M.; Liu, T.; Tian, R.; Liu, S.X.; Han, Y.N.; Wang, Q.Q.; Sheng, W.J. Synthesis of novel temperature responsive PEG-b-[PCL-g-P(MEO2MA-co-OEGMA)]-b-PEG (tBG) triblock-graft copolymers and preparation of tBG/graphene oxide composite hydrogels via click chemistry. React. Funct. Polym. 2015, 94, 1–8. [Google Scholar] [CrossRef]
- Li, P.; Song, H.; Zhang, H.; Yang, P.; Zhang, C.; Huang, P.; Kong, D.; Wang, W. Engineering biodegradable guanidyl-decorated PEG-PCL nanoparticles as robust exogenous activators of DCs and antigen cross-presentation. Nanoscale 2017, 9, 13413–13418. [Google Scholar] [CrossRef]
- Darcos, V.; Tabchi, H.A.; Coudane, J. Synthesis of PCL–graft–PS by combination of ROP, ATRP, and click chemistry. Eur. Polym. J. 2011, 47, 187–195. [Google Scholar] [CrossRef]
- Nottelet, B.; Darcos, V.; Coudane, J. Polyiodized-PCL as multisite transfer agent: Towards an enlarged library of degradable graft copolymers. J. Polym. Sci. Part Polym. Chem. 2009, 47, 5006–5016. [Google Scholar] [CrossRef]
- Przybysz-Romatowska, M.; Haponiuk, J.; Formela, K. Poly(epsilon-Caprolactone)/Poly(Lactic Acid) Blends Compatibilized by Peroxide Initiators: Comparison of Two Strategies. Polymers 2020, 12, 228. [Google Scholar] [CrossRef] [Green Version]
- Tian, D.; Dubois, P.; Jérǒme, R. Ring-opening polymerization of 1,4,8-trioxaspiro-[4.6]-9-undecanone: A route to novel molecular architectures for biodegradable aliphatic polyesters. Macromol. Symp. 1998, 130, 217–227. [Google Scholar] [CrossRef]
- Tian, D.; Dubois, P.; Jérôme, R. Macromolecular Engineering of Polylactones and Polylactides. 23. Synthesis and Characterization of Biodegradable and Biocompatible Homopolymers and Block Copolymers Based on 1,4,8-Trioxa[4.6]spiro-9-undecanone. Macromolecules 1997, 30, 1947–1954. [Google Scholar] [CrossRef]
- Dai, Y.; Hu, Z.; Wang, X.; Liu, X.; Li, Y.; Shi, Y.; Chen, Y. Synthesis of fully degradable cationic polymers with various topological structures via postpolymerization modification by using thio-bromo “click” reaction. Polym. Chem. 2021, 12, 2592–2597. [Google Scholar] [CrossRef]
- Fournier, L.; Mirabal, D.M.R.; Hillmyer, M.A. Toward Sustainable Elastomers from the Grafting-Through Polymerization of Lactone-Containing Polyester Macromonomers. Macromolecules 2022, 55, 1003–1014. [Google Scholar] [CrossRef]
- Nottelet, B.; el Ghzaoui, A.; Coudane, J.; Vert, M. Novel Amphiphilic Poly(ε-caprolactone)-g-poly(l-lysine) Degradable Copolymers. Biomacromolecules 2007, 8, 2594–2601. [Google Scholar] [CrossRef] [PubMed]
- Nottelet, B.; Vendrell, J.; Coudane, J.; Vert, M. First approach on transfection ability of novel amphiphilic water soluble degradable poly(ε-caprolactone)-g-poly(Llysine) copolymers. e-Polymers 2008, 8, 2594–2601. [Google Scholar] [CrossRef] [Green Version]
- Winninger, J.; Iurea, D.M.; Atanase, L.I.; Salhi, S.; Delaite, C.; Riess, G. Micellization of novel biocompatible thermo-sensitive graft copolymers based on poly(ε-caprolactone), poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone). Eur. Polym. J. 2019, 119, 74–82. [Google Scholar] [CrossRef]
Substitution Ratio of PEG (%) | CMC (mg/L) | Hydrodynamic Diameter (nm) |
---|---|---|
5 | 1.82 | 41.5 |
10 | 3.09 | 18.8 |
30 | 30.2 | 15.6 |
50 | 83.2 | 10.8 |
Type of Graft Copolymer | Starting Compound | Grafting of Polymeric Segments | Ref. |
---|---|---|---|
PCL-g-PEG | |||
P(α-ClCL) | -NaN3 -CuAAC of Alkyne-PEG | [79,80,81] | |
PCL-yne | CuAAC of MeOPEG-N3 | [42] | |
PCL-yne | Anionic modification | [60,84,85] | |
P(MeOPEG-γCL) | [88,90] | ||
P(2-oxepane-1,5-dione) | Reaction of ω-amino MeOPEG | [91] | |
PCL-g-poly (meth)acrylate derivatives | |||
P(α-ClCL) | ATRP of MMA | [79] | |
ATRP of N-isopropylacrylamide | [101,102] | ||
BMPCL | ATRP of MMA | [46] | |
ATRP of tBuMA | [92] | ||
ATRP of MMA | [92,93] | ||
ATRP of n-BuA | [92,93] | ||
ATRP of DMAEMA | [95] | ||
ATRP of DMAEMA and MeOPEGMMA | [95,96,97] | ||
Azide substitution of MeOP(αCl-CL-co-CL) | [102] | ||
ATRP of MEO2MA and OEGMA | [103,104,105] | ||
-ATRP of (t-butoxycarbonyl) amino ethyl methacrylate -Guanidilation | [105] | ||
PCL-I | ITP of n-butyl acrylate | [107] | |
ITP of N,N-dimethyl acrylamide | [107] | ||
PCl-g-PS | |||
P(α-ClCL) | -Azide substitution of MeOP(αCl-CL-co-CL) -reaction of propargyl bromoisobutyrate -ATRP of styrene | [43] | |
PCL-yne | Azido-PS | [106] | |
PCL-I | ITP of Styrene | [107] | |
PCL-g-PCL PCL-g-PLA | Poly TOSUO | -P(γ-hydroxy CL-co-CL) -ROP polymerization of CL or lactide | [110] [47] |
BMPCL | -CuAAC of P(CL-co-CL-N3) and alkyne-PCL-b-P(CL-Br) -ATRP of styrene | [111] | |
PCL-g-Poly lysine | PCL− | Polymerization of Z-lysine | [113] |
Reaction of activated poly lysine | [113] | ||
PCL-g-PNVCLac | P(α-ClCL) | -Substitution by xanthate -RAFT polymerization of NVCLac | [114] |
PCL-g-PNVP | P(α-ClCL) | -Substitution by xanthate -RAFT polymerization of NVP | [115] |
PCL-g-dextran | PCL-yne | CuAAC of Dextran-N3 | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coudane, J.; Nottelet, B.; Mouton, J.; Garric, X.; Van Den Berghe, H. Poly(ε-caprolactone)-Based Graft Copolymers: Synthesis Methods and Applications in the Biomedical Field: A Review. Molecules 2022, 27, 7339. https://doi.org/10.3390/molecules27217339
Coudane J, Nottelet B, Mouton J, Garric X, Van Den Berghe H. Poly(ε-caprolactone)-Based Graft Copolymers: Synthesis Methods and Applications in the Biomedical Field: A Review. Molecules. 2022; 27(21):7339. https://doi.org/10.3390/molecules27217339
Chicago/Turabian StyleCoudane, Jean, Benjamin Nottelet, Julia Mouton, Xavier Garric, and Hélène Van Den Berghe. 2022. "Poly(ε-caprolactone)-Based Graft Copolymers: Synthesis Methods and Applications in the Biomedical Field: A Review" Molecules 27, no. 21: 7339. https://doi.org/10.3390/molecules27217339
APA StyleCoudane, J., Nottelet, B., Mouton, J., Garric, X., & Van Den Berghe, H. (2022). Poly(ε-caprolactone)-Based Graft Copolymers: Synthesis Methods and Applications in the Biomedical Field: A Review. Molecules, 27(21), 7339. https://doi.org/10.3390/molecules27217339