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Abstract: A robust metal- and solvent-free cascade radical-induced C-N cleavage/intramolecular
6-endo-dig annulation/hydrocarbonylation for the synthesis of the valuable 2-aryl-4H-chromen-4-ones
is described. This practical synthesis strategy utilizes propargylamines and air as the oxygen source
and green carbonylation reagent, in which propargylamines are activated by the inexpensive and
available dimethyl 2,2′-azobis(2-methylpropionate) (AIBME) and (PhSe)2 as the radical initiators.
This simple and green protocol features wide substrate adaptability, good functional group tolerance,
and amenability to scaling up and derivatizations.
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1. Introduction

Chromone frameworks are frequently found in bioactive natural products, includ-
ing natural flavone and isoflavone products [1–4]; biologically and therapeutically ac-
tive drugs [5–8], such as anti-inflammatory, antiviral, antimicrobial, antioxidative, and
anticancer agents; and drug candidates for neurodegenerative diseases and adenosine
receptors [9–12]. The importance of their structures greatly promoted the development
of diverse procedures for their formation. Typically, chromones can be prepared by the
classical synthetic routes, including Claisen condensation [13,14], Baker–Venkataraman [15],
Kostanecki–Robinson reaction [16,17], benzopyrylium salts [18–20], and Vilsmeier–Haack
reaction [21,22], utilizing ortho-hydroxyarylalkylketones as starting materials. In addition,
phenols, salicylic acid, and derivatives have also been used to synthesize chromones via
the Simonis [23,24] and Ruhemann [25] reactions and others [26–31].

Given the promising potential of 2-aryl-4H-chromen-4-ones in drug discovery and
pharmaceutical applications, consequently, much effort has been focused on the devel-
opment of new synthetic methods. Several practical and convenient transition-metal-
catalyzed coupling methods have been used for the formation of 2-aryl-4H-chromen-4-ones
due to their importance [32–34]. During the last decades, transition-metal-catalyzed cou-
pling reactions have provided one of the most attractive methodologies for C−C bond
formation. The application of palladium-catalyzed protocols, including oxidative ary-
lation of chromones with phenylboronic acids (Scheme 1a) [35–37], and carbonylative
cyclization using CO gas as a carbonyl source (Scheme 1b) [38–44], for the construction of
chromones has attracted significant attention for a long time. Additionally, the Pd-catalyzed
intramolecular acylation and oxidative cyclization can be used to synthesize 2-aryl-4H-
chromen-4-ones (Scheme 1c) [45,46]. Recently, other methods involving intramolecular
annulation of 2-alkoxyphenylacetophenones (Scheme 1d) [47,48] and 2′-hydroxychalcones
(Scheme 1e) [49–52] via C–O bond formations have also been reported. Moreover, the
synthesis of 2-aryl-4H-chromen-4-ones can be accomplished through the regioselectivite
6-endo-dig cyclization of ortho-hydroxyphenyl propagylic alcohols and ortho-hydroxyphenyl
alkynones (Scheme 1f) [53–57]. Thus, these methods are good supplements to classical

Molecules 2022, 27, 7412. https://doi.org/10.3390/molecules27217412 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27217412
https://doi.org/10.3390/molecules27217412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27217412
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27217412?type=check_update&version=1


Molecules 2022, 27, 7412 2 of 18

methods, but they generally have drawbacks of requiring harsh reaction conditions such
as strong acids or bases, stoichiometric oxidants, and a long reaction time. In addition,
transition-metal-catalyzed annulations often require the use of highly toxic carbon monox-
ide or expensive palladium catalyst and ligand at high temperatures. Inspired by our
pioneering results, in which multireactive propargylamines displayed unique feature of
cyclization, and in continuation of our interest in developing new synthetic protocols to
build valuable heterocyclic frameworks [58–64], we herein disclose a cascade annulation
of propargylamines for the synthesis of 2-aryl-4H-chromen-4-ones under green and oper-
ationally simple metal- and solvent-free conditions, which is unprecedented in previous
works (Scheme 1g). This cascade process presumably involves a sequence of radical-
induced C-N cleavage, followed by C-O coupling, intramolecular 6-endo-dig annulation,
thermal hemolytic cleavage, and oxidative hydrocarbonylation.
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2. Results and Discussion

We commenced with an investigation of propargylamine 1aa as a model substrate
with air as the oxygen and carbonyl source to identify the reaction conditions (Table 1).
The initial test of 1aa in the presence of diphenyl diselenide and dimethyl 2,2′-azobis
(2-methylpropionate) (AIBME) in 1,2-dichloroethane (DCE) under an air atmosphere gave
the desired product 2aa in a 63% isolated yield (entry 1). The influence of the solvents in
this model reaction was then examined, and inferior results were obtained (entries 2–6).
The following screening of the amount of diphenyl diselenide and AIBME (entries 7–12)
showed that the 0.5 equiv. of diphenyl diselenide and 3.0 equiv. of AIBME was the best
choice (entry 8). Changing the radical initiator from AIBME to AIBN (azodiisobutyronitrile)
decreased the yield to 37% (entry 13). Interestingly, the yield of 2aa increased to 85% and
78% when the reaction was performed under solvent-free and blue LED light conditions,
respectively (entries 14, 15). Furthermore, the effect of the reaction temperature and
time was investigated, and the results revealed that these attempts did not show any
improvement in the obtainable yield (entries 16–19). After extensive experimentation, we
selected the conditions used in entry 14 as the optimal ones for the further investigations.

Table 1. Optimization of reaction conditions a.
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1 none 63
2 MeCN instead of DCE 40
3 toluene instead of DCE 45
4 DMSO instead of DCE 42
5 DMF instead of DCE 35
6 acetone instead of DCE 0
7 0.2 equiv. of (PhSe)2 was used 55
8 0.5 equiv. of (PhSe)2 was used 71
9 1.5 equiv. of (PhSe)2 was used 59

10 2.0 equiv. of (PhSe)2 was used 64
11 c 2.0 equiv. of AIBME was used 44
12 c 4.0 equiv. of AIBME was used 52
13 c AIBN instead of AIBME 37
14 c solvent-free 85

15 c,d proceeded under blue LED light 78
16 c,d At 60 ◦C 36
17 c,d At 100 ◦C 54
18 c,d For 8 h 59
19 c,d For 18 h 83

a Reaction conditions: propargylamine 1aa (0.2 mmol), (PhSe)2 (0.2 mmol), and AIBME (0.6 mmol) in DCE (2 mL)
at 80 ◦C for 10 h under air atmosphere. b Isolated yields. c The amount of (PhSe)2 was 0.5 equivalent. d Proceeded
under solvent-free conditions.

With the optimized conditions in hand, the influence of the substituents at the phe-
nolic or alkynyl arene rings was first evaluated (Scheme 2). Generally, electron-donating
(e.g., –Me, –OMe) and electron-withdrawing R groups (e.g., –F, –Cl, –Br) were well toler-
ated, giving the desired products 2ba–2fa in 63–72% yields. Substrates with multiple halo
substituents and a bulky tert-butyl group at the ortho- and para-phenolic position were
compatible under this reaction system with slightly lower yields (products 2ga, 2ha, and



Molecules 2022, 27, 7412 4 of 18

2ia). Moreover, substituents at the meta-phenolic position were well tolerated, affording the
desired products 2ja and 2ka in 45% and 67% yields, respectively. Subsequently, the scope
and generality of the substituents on the alkynyl arene rings were explored. Substituents
with electron-donating groups (–OMe, –Me) and electron-withdrawing groups (–F, –Cl,
–Br) at the 2-, 3-, and 4-positions of the benzene rings were well tolerated, affording the
corresponding products 2ab–2ai in 60–83% yields. In particular, trifluoromethyl as a strong
electron-withdrawing substituent afforded the desired product 2aj in a 59% yield. Moreover,
reactions with alkenyl-, thienyl-, and pyrenyl-containing substrates proceeded smoothly as
well, giving the products 2ka, 2la, and 2ma in 65%, 69%, and 73% yields, respectively. It is
notable that the halo moiety, e.g., –F, –Cl, and –Br, located at either the phenolic or alkynyl
arene rings, remained intact (products 2da–2ha, 2ja–2ka, 2ad–2ah). These results exhibit
an excellent opportunity for further arene functionalization by transition-metal-catalyzed
cross-couplings.
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Furthermore, we investigated various propargylamines bearing with different sub-
stituents on both the phenolic and alkynyl arene rings to showcase the prospective utility of
this protocol (Scheme 3). Substituents with electron-rich (e.g., –Me, –Et, –OMe) groups and
electron-deficient (e.g., –F, –Cl, –Br) groups at the phenolic and alkynyl arene rings were
well-tolerated. The corresponding products 2bb–2en were obtained in good-to-excellent
yields (62–91%). Moreover, the extended π structure did not show an influence, and the
desired product 2bo was successfully obtained in a 78% yield. In addition, the structure of
compound 2bo was unambiguously characterized via single crystal X-ray crystallographic
analysis (details appear in Supplementary Materials).
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To further prove the robustness and the general utility of this protocol, we carried out
the reaction of propargylamine 1aa on the gram scale under the standard condition. When
the reaction was amplified to a large scale (scaled up to 50 times), the protocol worked
well, and the corresponding product 2aa was isolated in a 75% yield (Scheme 4a), which
showed promise for this synthetic strategy as a useful tool in practical synthetic terms.
Taking advantage of the flavones, we then explored their reactivity in further synthetic
transformations. Rhodium-catalyzed oxidative C-H functionalization at the C-5 position of
chromones successfully realized the formation of alkenyl flavones 4aa, 4ab, and 4af in 80%,
75%, and 71% yields, respectively (Scheme 4b).
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Insights into this cascade reaction were gained by performing control experiments to
clarify the reaction mechanism. To find the source of oxygen, the reaction with propargy-
lamine 1aa was initially carried out in the presence of an oxygen and nitrogen atmosphere.
In both cases, the desired product 2aa was isolated in 85% and 0% yields, respectively,
clearly indicating an oxygen supply from molecular oxygen of air (Scheme 5a). More-
over, the desired product 2aa was not obtained when the reaction was carried out using
ortho-hydroxyphenyl alkynone 5 instead of ortho-hydroxyphenyl propargylamine 1 under
the standard conditions (Scheme 5b). The reaction of 2′-hydroxychalcone 6 was further
examined under the standard conditions, providing the desired product 2aa in an 8% yield
(Scheme 5c). Moreover, the addition of radical scavengers, namely (2,2,6,6-tetramethyl-1-
piperidinyl)oxyl (TEMPO) and 2,6-di-tert-butyl-4-methylphenol (BHT), under the standard
conditions significantly inhibited the reaction. The radical-trapping products 7 and 8
were detected by GC-MS, implying that the reaction proceeds via the radical pathway
(Scheme 5d,e). Furthermore, the control experiments showed that AIBME and (PhSe)2 were
both necessary for this transformation (Scheme 5f).

Based on the literature reports [65–67] and the results of the above control experi-
ments, a plausible mechanism is proposed (Scheme 6). Initially, AIBME releases nitrogen
under thermal conditions to form the free radical A, which attacks (PhSe)2 to generate the
phenylselenyl radical (PhSe·) and compound B (detected by CC-Ms) via radical transfer.
Phenylselenyl radical then reacts with propargylamine 1aa to form the radical intermediate
C and 1-(phenylselanyl)piperidine (detected by GC-MS) through C-N cleavage. The sub-
sequent direct coupling of the intermediate C with molecular O2 (from air) gives rise to
an O-radical D, which undergoes radical substitution with propargylamine 1aa to afford
intermediate E. Then, the intramolecular 6-endo-dig annulation of intermediate E via nucle-
ophilic addition of the OH group to alkynes gives the intermediate F, which undergoes
thermal hemolytic cleavage to generate the radical intermediate G. Finally, the oxidation of
intermediate G results in the desired product 2aa in the presence of air as the sole oxidant,
yielding the hydroxyl radical, which could be quenched by the radical intermediate A to
yield methyl 2-hydroxy-2-methylpropanoate (detected by GC-MS).
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3. Materials and Methods

The detailed procedures for the synthesis and characterization of the products are
given in Appendix A.

4. Conclusions

In summary, we established a novel and straightforward metal- and solvent-free
cascade reaction of propargylamines with air for the construction of 2-aryl-4H-chromen-
4-ones with substantial substitution diversity in generally good yields. This cascade
process presumably involves a sequence of radical-induced C-N cleavage, followed by
C-O coupling, intramolecular 6-endo-dig annulation, thermal hemolytic cleavage, and
oxidative hydrocarbonylation. The preliminary mechanistic studies suggest that this
reaction probably proceeds via a radical pathway. The practical protocol employs air
as an oxygen source and represents a simple, economically acceptable, and eco-friendly
route toward the straightforward construction of a 2-aryl-4H-chromen-4-one skeleton. In
addition, the current strategy can be scaled-up to a gram-scale reaction and the synthetic
utility of this transformation was also accomplished.
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www.mdpi.com/article/10.3390/molecules27217412/s1.
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Appendix A Experimental Section

Unless otherwise noted, all reagents were purchased from commercial suppliers and
used without purification. All cascade reactions were performed in a resealable screw-
capped Schlenk flask (approximately a 15 mL volume) in the presence of a Teflon-coated
magnetic stirrer bar (4 mm× 10 mm). Reactions were monitored using thin-layer chro-
matography (TLC) on commercial silica gel plates (GF 254). Visualization of the developed
plates was performed under UV lights (GF 254 nm). Flash column chromatography was
performed on silica gel (200–300 mesh). 1H NMR spectra were recorded on a 400 MHz
spectrometer and 13C NMR spectra were recorded on a 100 MHz spectrometer. Chemical
shifts were expressed in parts per million (δ) and the signals were reported as s (singlet), d
(doublet), dd (doublet of doublet), t (triplet), q (quartet), and m (multiplet), and coupling
constants (J) were given in Hz. Chemical shifts as internal standard were referenced to
CDCl3 (δ = 7.26 for 1H and δ = 77.16 for 13C NMR) as internal standard. HRMS analysis
with a quadrupole time-of-flight mass spectrometer yielded ion mass/charge (m/z) ratios
in atomic mass units. The melting points were measured using an SGWX-4 melting point
apparatus and were not corrected. The X-ray source used for the single-crystal X-ray
diffraction analysis of compound 3na was Mo Kα (λ = 0.71073 Å), and the thermal ellipsoid
was drawn at the 30% probability level.

General procedure for the synthesis of 2-aryl-4H-chromen-4-ones 2. A mixture of
propargylamines 1 (0.2 mmol), diphenyl diselenide (0.1 mmol), and dimethyl 2,2′-azobis
(2-methylpropionate) (0.6 mmol) were added to a resealable screw-capped Schlenk tube.
The resulting mixture was stirred in an oil bath preheated to 80 ◦C under an open air
atmosphere for 10 h (monitored by TLC). Upon completion of the reaction, the reaction
mixture was cooled to room temperature, extracted with CH2Cl2 (3 × 10 mL), and washed
with brine. The organic layers were combined, dried over Na2SO4, filtered, and then
evaporated under a vacuum. The residue was purified using flash column chromatography
with a silica gel (200–300 mesh), using ethyl acetate and petroleum ether (1:5, v/v) as the
elution solvent to give the desired products 2.

General procedure for the synthesis of compound 4. A mixture of 2-aryl-4H-chromen-
4-ones 2 (0.2 mmol), butyl acrylate 3 (0.6 mmol), [Cp*RhCl2]2 (0.005 mol), AgOTf (0.04 mmol),
and AgOAc (0.4 mmol) were added to a resealable screw-capped Schlenk tube. Then
1,2-dichloroethane (2 mL) was added. The tube sealed with a Teflon-coated cap and the
resulting mixture was stirred in an oil bath preheated to 60 ◦C for 48 h (monitored by TLC).
Upon completion of the reaction, the reaction mixture was cooled to room temperature,
extracted with CH2Cl2 (3 × 10 mL), and washed with brine. The organic layers were com-
bined, dried over Na2SO4, filtered, and then evaporated under a vacuum. The residue was
purified using flash column chromatography with a silica gel (200–300 mesh) using ethyl
acetate and petroleum ether (1:5, v/v) as the elution solvent to give the desired products
4aa, 4ab, and 4af in 80%, 75%, and 71% yields, respectively.

2-Phenyl-4H-chromen-4-one (2aa). This compound was purified by column chromatog-
raphy (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a yellow solid in an 85% yield
(38 mg); mp 122–124 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.24 (dd, J = 7.9 Hz, 1.6 Hz, 1H),
7.55–7.93 (m, 2H), 7.74 (td, J = 7.7 Hz, 1.7 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.58–7.53 (m, 3H),
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7.46 (t, J = 8.0 Hz, 1H), 6.84 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 178.54, 163.45, 156.29,
133.83, 131.80, 131.65, 129.09, 126.33, 125.74, 125.28, 123.98, 118.13, 107.63; HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C15H11 O2 223.0754; Found 223.0752.

6-Methyl-2-phenyl-4H-chromen-4-one (2ba). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.4) to afford a yellow solid in a
72% yield (34mg); mp 100–102 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.02 (s, 1H), 7.94–7.91 (m,
2H), 7.53 (dd, J = 5.3 Hz, 1.8 Hz, 3H), 7.51 (d, J = 2.2 Hz, 1H), 7.47 (d, J = 8.5 Hz, 1H), 6.82 (s,
1H), 2.47 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.60, 163.27, 154.54, 135.20, 134.99, 131.90,
131.49, 129.00, 126.26, 125.04, 123.59, 117.83, 107.44, 20.95; HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C16H13O2 237.0910; Found 237.0900.
6-Methoxy-2-phenyl-4H-chromen-4-one (2ca). This compound was purified by column

chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.3) to afford a yellow solid in a
70% yield (35 mg); mp 152–153 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.93–7.91 (m, 2H), 7.60
(d, J = 3.1 Hz, 1H), 7.53–7.50 (m, 4H), 7.30 (dd, J = 9.1 Hz, 3.1 Hz, 1H), 6.82 (s, 1H), 3.91
(s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.34, 163.20, 157.01, 151.10, 131.88, 131.49, 129.02,
126.24, 124.55, 123.83, 119.51, 106.84, 104.83, 55.94; HRMS (ESI-TOF) m/z: [M + H]+ Calcd
for C16H13O3 253.0859; Found 253.0856.

6-Fluoro-2-phenyl-4H-chromen-4-one (2da). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid
in a 65% yield (31 mg); mp 125–127 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.93–7.91 (m, 2H),
7.87 (dd, J = 8.2 Hz, 3.1 Hz, 1H), 7.60–7.51 (m, 4H), 7.45–7.40 (m, 1H), 6.83 (s, 1H); 13C
NMR (100 MHz, CDCl3) δ 177.63 (d, JC-F = 2.4 Hz), 163.69, 159.59 (d, JC-F = 245.4 Hz),
152.45 (d, JC-F = 1.7 Hz), 131.79, 131.52, 129.09, 126.31, 125.18 (d, JC-F = 7.3 Hz), 122.03
(d, JC-F = 25.3 Hz), 120.19 (d, JC-F = 8.0 Hz), 110.76 (d, JC-F = 23.5 Hz), 106.90; 19F NMR
(376 MHz, CDCl3) δ -115.08; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H10FO2 241.0659;
Found 241.0663.

6-Chloro-2-phenyl-4H-chromen-4-one (2ea). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid
in a 63% yield (32 mg); mp 181–182 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.20 (d, J = 2.6 Hz,
1H), 7.93–7.90 (m, 2H), 7.65 (dd, J = 8.9 Hz, 2.6 Hz, 1H), 7.57–7.52 (m, 4H), 6.84 (s, 1H);
13C NMR (100 MHz, CDCl3) δ 177.22, 163.72, 154.58, 133.97, 131.86, 131.41, 131.21, 129.11,
126.33, 125.19, 124.91, 119.80, 107.48; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H10ClO2
257.0364; Found 257.0355.

6-Bromo-2-phenyl-4H-chromen-4-one (2fa). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.7) to afford a yellow solid in a
70% yield (42 mg); mp 188–190 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 2.5 Hz, 1H),
7.91 (dd, J = 7.6 Hz, 1.6 Hz, 2H), 7.79 (dd, J = 8.9 Hz, 2.5 Hz, 1H), 7.56–7.53 (m, 3H), 7.48 (d,
J = 8.8 Hz, 1H), 6.83 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 177.01, 163.68, 155.00, 136.71,
131.86, 131.39, 129.11, 128.38, 126.32, 125.28, 120.03, 118.67, 107.56; HRMS (ESI-TOF) m/z:
[M + H]+ Calcd for C15H10BrO2 300.9859; Found 300.9853.

6,8-Dichloro-2-phenyl-4H-chromen-4-one (2ga). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid in a
51% yield (29 mg); mp 165–167 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 2.5 Hz, 1H),
7.99 (dd, J = 7.7 Hz, 1.5 Hz, 2H), 7.74 (d, J = 2.5 Hz, 1H), 7.68–7.50 (m, 3H), 6.87 (s, 1H);
13C NMR (100 MHz, CDCl3) δ 176.50, 163.50, 150.49, 133.80, 132.20, 130.89, 130.88, 129.23,
126.43, 125.73, 124.50, 123.90, 107.22; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H9Cl2O2
290.9974; Found 290.9977.

6,8-Dibromo-2-phenyl-4H-chromen-4-one (2ha). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.4) to afford a yellow solid in a
52% yield (39 mg); mp 166–168 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.30 (d, J = 2.4 Hz, 1H),
8.04 (d, J = 2.3 Hz, 1H), 8.01 (dd, J = 7.5 Hz, 1.5 Hz, 2H), 7.61–7.52 (m, 3H), 6.87 (s, 1H);
13C NMR (100 MHz, CDCl3) δ 176.45, 163.67, 151.83, 139.36, 132.24, 130.91, 129.27, 127.83,
126.52, 126.04, 118.55, 113.11, 107.18; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H9Br2O2
378.8964; Found 378.8965.
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6,8-Di-tert-butyl-2-phenyl-4H-chromen-4-one (2ia). This compound was purified by
column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow
solid in a 55% yield (36 mg); mp 105–107 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 2.5 Hz,
1H), 8.06–7.89 (m, 2H), 7.75 (d, J = 2.5 Hz, 1H), 7.55 (t, J = 3.2 Hz, 3H), 6.87 (s, 1H), 1.60
(s, 9H), 1.40 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 179.16, 163.08, 153.32, 147.63, 138.40,
132.35, 131.35, 129.17, 128.97, 126.40, 124.18, 119.77, 107.40, 35.27, 35.01, 31.37, 30.29; HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C23H27O2 335.2006; Found 335.1996.

5-Chloro-2-phenyl-4H-chromen-4-one (2ja). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid
in a 45% yield (23 mg); mp 117–118 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.92–7.89 (m, 2H),
7.56–7.52 (m, 4H), 7.50 (dd, J = 7.6 Hz, 1.4 Hz, 1H), 7.40 (dd, J = 7.6 Hz, 1.4 Hz, 1H), 6.79
(s, 1H); 13C NMR (100 MHz, CDCl3) δ 177.23, 161.72, 157.82, 133.51, 132.80, 131.73, 131.05,
129.06, 128.14, 126.16, 121.02, 117.31, 108.86; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C15H10ClO2 257.0364; Found 257.0358.

7-Chloro-2-phenyl-4H-chromen-4-one (2ka). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid
in a 67% yield (34 mg); mp 154–156 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 8.5 Hz,
1H), 7.91 (dd, J = 7.6 Hz, 1.6 Hz, 2H), 7.61 (d, J = 1.9 Hz, 1H), 7.56–7.51 (m, 3H), 7.39 (dd,
J = 8.4 Hz, 2.0 Hz, 1H), 6.82 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 177.52, 163.56, 156.34,
139.76, 131.82, 131.35, 129.10, 127.08, 126.27, 126.07, 122.49, 118.17, 107.77; HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C15H10ClO2 257.0364; Found 257.0357.

8-(tert-Butyl)-2-phenyl-4H-chromen-4-one (2la). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid in
a 90% yield (50 mg); mp 186–188 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.16 (dd, J = 7.8 Hz,
1.5 Hz, 1H), 8.99–7.96 (m, 2H), 7.69 (dd, J = 7.6 Hz, 1.4 Hz, 1H), 7.56 (t, J = 3.2 Hz, 3H), 7.36
(t, J = 7.7 Hz, 1H), 6.87 (s, 1H), 1.60 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 178.83, 163.36,
155.15, 139.06, 132.23, 131.46, 131.12, 129.19, 126.45, 124.83, 124.80, 124.04, 107.57, 35.11,
30.22; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H19O2 279.1380; Found 279.1375.

2-(p-Tolyl)-4H-chromen-4-one (2ab). This compound was purified by column chromatog-
raphy (ethyl acetate/petroleum ether = 1:5, Rf = 0.4) to afford a yellow solid in an 83% yield
(39 mg); mp 112–113 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 7.9 Hz, 1.8 Hz, 1H),
7.83 (d, J = 8.2 Hz, 2H), 7.71–7.67 (m, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.43–7.39 (m, 1H), 7.33
(d, J = 8.0 Hz, 2H), 6.80 (s, 1H), 2.44 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.16, 163.30,
155.92, 141.92, 133.32, 129.44, 128.64, 125.91, 125.35, 124.80, 123.66, 117.72, 106.66, 21.21;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H13O2 237.0910; Found 237.0920.

2-(4-Methoxyphenyl)-4H-chromen-4-one (2ac). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.3) to afford a yellow solid in
a 65% yield (33 mg); mp 146–147 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.23 (dd, J = 7.9 Hz,
1.7 Hz, 1H), 7.90 (d, J = 8.9 Hz, 2H), 7.70–7.66 (m, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.43–7.38 (m,
1H), 7.04 (d, J = 8.9 Hz, 2H), 6.75 (s, 1H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.42,
163.45, 162.42, 156.21, 133.57, 128.02, 125.69, 125.09, 124.06, 123.95, 117.96, 114.48, 106.21,
55.52; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H13O3 253.0859; Found 253.0869.

2-(4-Fluorophenyl)-4H-chromen-4-one (2ad). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid in a
63% yield (30 mg); mp 140–142 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.23 (dd, J = 7.8 Hz, 1.7 Hz,
1H), 7.95–7.90 (m, 2H), 7.72–7.68 (m, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.44–7.40 (m, 1H), 7.23–7.18
(m, 2H), 6.77 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 178.27, 165.99 (d, JC-F = 251.68 Hz),
162.39, 156.16, 133.82, 128.48 (d, JC-F = 8.8 Hz), 127.97 (d, JC-F = 3.3 Hz), 125.73, 125.31,
123.84, 117.99, 116.28 (d, JC-F = 27.31 Hz), 107.37; 19F NMR (376 MHz, CDCl3) δ −107.48;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H10FO2 241.0659; Found 241.0655.

2-(4-Chlorophenyl)-4H-chromen-4-one (2ae). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.7) to afford a yellow solid in a
65% yield (33 mg); mp 179–180 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.23 (d, J = 7.8 Hz, 1H),
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7.86 (d, J = 8.4 Hz, 2H), 7.71 (t, J = 7.6 Hz, 1H), 7.56 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 8.5 Hz,
2H), 7.42 (t, J = 7.6 Hz, 1H), 6.79 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 178.25, 162.21, 156.14,
137.87, 133.90, 130.22, 129.36, 127.52, 125.73, 125.36, 123.88, 118.02, 107.67; HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C15H10ClO2 257.0364; Found 257.0363.

2-(4-Bromophenyl)-4H-chromen-4-one (2af). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.7) to afford a yellow solid in
a 75% yield (45 mg); mp 152–153 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.23 (dd, J = 7.9 Hz,
1.6 Hz, 1H), 7.79 (d, J = 8.6 Hz, 2H), 7.73–7.70 (m, 1H), 7.66 (d, J = 8.6 Hz, 2H), 7.56 (d,
J = 8.4 Hz, 1H), 7.45–7.41 (m, 1H), 6.80 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 178.28, 162.30,
156.15, 133.93, 132.34, 130.68, 127.69, 126.31, 125.73, 125.39, 123.88, 118.03, 107.68; HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C15H10BrO2 300.9859; Found 300.9866.

2-(2-Fluorophenyl)-4H-chromen-4-one (2ag). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.4) to afford a yellow solid in a
70% yield (33 mg); mp 97–98 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.24 (dd, J = 7.9 Hz, 1.7 Hz,
1H), 7.95–7.91 (m, 1H), 7.71–7.68 (m, 1H), 7.55–7.50 (m, 2H), 7.45–7.41 (m, 1H), 7.34–7.30
(m, 1H), 7.23–7.20 (m, 1H), 6.94 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 178.42, 161.82 (d,
JC-F = 354.4 Hz), 158.81 (d, JC-F = 3.8 Hz), 156.37, 133.89, 132.90 (d, JC-F = 9.0 Hz), 129.08,
129.07, 125.76, 125.30, 124.64 (d, JC-F = 3.8 Hz), 123.84, 120.38 (d, JC-F = 10.1 Hz), 118.08,
116.99 (d, JC-F = 22.4 Hz), 112.44 (d, JC-F = 11.2 Hz); 19F NMR (376 MHz, CDCl3) δ-110.82;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H10FO2 241.0659; Found 241.0669.

2-(3-Chlorophenyl)-4H-chromen-4-one (2ah). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a yellow solid in
a 60% yield (30 mg); mp 110–112 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.23 (dd, J = 7.9 Hz,
1.7 Hz, 1H), 7.93 (t, J = 1.9 Hz, 1H), 7.80–7.78 (m, 1H), 7.74–7.70 (m, 1H), 7.59 (d, J = 8.3 Hz,
1H), 7.53–7.50 (m, 1H), 7.48–7.42 (m, 2H), 6.81 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 178.24,
161.79, 156.16, 135.26, 134.00, 133.59, 131.51, 130.32, 126.36, 125.76, 125.44, 124.38, 123.92,
118.09, 108.17; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H10ClO2 257.0364; Found
257.0366.

2-(m-Tolyl)-4H-chromen-4-one (2ai). This compound was purified by column chro-
matography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid in a
72% yield (34 mg); mp 108–109 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.24 (dd, J = 8.0 Hz,
1.7 Hz, 1H), 7.74–7.72 (m, 2H), 7.70–7.68 (m, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.44–7.39 (m,
2H), 7.36 (d, J = 7.6 Hz, 1H), 6.82 (s, 1H), 2.47 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.47,
163.64, 156.29, 138.84, 133.70, 132.40, 131.76, 128.93, 126.86, 125.70, 125.17, 123.99, 123.51,
118.08, 107.57, 21.51; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H13O2 237.0910; Found
237.0909.

2-(3,5-Bis(trifluoromethyl)phenyl)-4H-chromen-4-one (2aj). This compound was purified
by column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow
solid in a 59% yield (42 mg); mp 154–155 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.36 (s, 2H), 8.25
(dd, J = 8.0 Hz, 1.6 Hz, 1H), 8.05 (s, 1H), 7.79–7.75 (m, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.50–7.46
(m, 1H), 6.92 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 177.80, 159.81, 156.09, 134.41, 134.14,
133.32 (q, JC-F = 33.7 Hz), 126.91, 126.26, 126.22, 125.90, 125.88, 124.89 (q, JC-F = 3.6 Hz),
124.75, 124.20, 123.89, 121.49, 118.77, 118.18, 109.21; 19F NMR (376 MHz, CDCl3) δ-62.96;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H9F6O2 359.0501; Found 359.0499.

2-(Thiophen-3-yl)-4H-chromen-4-one (2ak). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a yellow solid in
a 65% yield (29 mg); mp 107–108 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 7.9 Hz,
1.8 Hz, 1H), 8.03 (dd, J = 3.0 Hz, 1.3 Hz, 1H), 7.70–7.66 (m, 1H), 7.53 (d, J = 8.3 Hz, 1H),
7.50 (dd, J = 5.2, 1.4 Hz, 1H), 7.46 (dd, J = 5.1, 3.0 Hz, 1H), 7.43–7.38 (m, 1H), 6.68 (s, 1H);
13C NMR (100 MHz, CDCl3) δ 178.44, 159.53, 156.04, 134.20, 133.70, 127.36, 126.82, 125.67,
125.14, 125.04, 123.97, 117.94, 107.16; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C13H9O2S
229.0318; Found 229.0319.

2-(Naphthalen-2-yl)-4H-chromen-4-one (2al). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a yellow solid in
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a 69% yield (37 mg); mp 100–102 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.32 (dd, J = 8.0 Hz,
1.7 Hz, 1H), 8.15–8.13 (m, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.97–7.94 (m, 1H), 7.78 (dd, J = 7.2 Hz,
1.2 Hz, 1H), 7.73–7.70 (m, 1H), 7.61–7.56 (m, 3H), 7.54 (d, J = 8.1 Hz, 1H), 7.50–7.46 (m, 1H),
6.70 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 178.28, 165.43, 156.72, 133.87, 133.72, 131.50,
130.65, 130.38, 128.72, 127.95, 127.43, 126.58, 125.86, 125.37, 125.06, 124.87, 124.02, 118.24,
113.07; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H13O2 273.0910; Found 273.0900.

2-(Pyren-2-yl)-4H-chromen-4-one (2am). This compound was purified by column chro-
matography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid in a 73%
yield (50 mg); mp 216–219 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.43 (d, J = 9.3 Hz, 1H), 8.35 (d,
J = 7.9 Hz, 1H), 8.27–8.24 (m, 4H), 8.18–8.15 (m, 2H), 8.11–8.05 (m, 2H), 7.75 (t, J = 7.8 Hz,
1H), 7.60 (d, J = 8.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 6.85 (s, 1H); 13C NMR (100 MHz, CDCl3)
δ 178.17, 165.54, 156.84, 133.86, 133.05, 131.12, 130.49, 129.21, 129.13, 128.93, 127.11, 127.05,
126.70, 126.49, 126.25, 126.00, 125.85, 125.37, 124.77, 124.61, 124.33, 123.96, 123.80, 118.24,
113.69; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C25H15O2 347.1067; Found 347.1070.

6-Methyl-2-(p-tolyl)-4H-chromen-4-one (2bb). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid in
a 91% yield (45 mg); mp 136–137 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.04 (s, 1H), 7.84 (d,
J = 8.3 Hz, 2H), 7.53 (dd, J = 8.6 Hz, 1.9 Hz, 1H), 7.49 (d, J = 8.5 Hz, 1H), 7.35 (d, J = 8.1 Hz,
2H), 6.81 (s, 1H), 2.49 (s, 3H), 2.46 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.60, 163.46,
154.50, 142.11, 135.07, 134.86, 129.72, 129.05, 126.18, 125.01, 123.60, 117.79, 106.81, 21.52,
20.94; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H15O2 251.1067; Found 251.1072.

2-(4-Methoxyphenyl)-6-methyl-4H-chromen-4-one (2bc). This compound was purified by
column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.8) to afford a yellow
solid in a 76% yield (40 mg); mp 162–163 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.01 (s, 1H),
7.88 (d, J = 8.9 Hz, 2H), 7.49 (dd, J = 8.6 Hz, 1.8 Hz, 1H), 7.45 (d, J = 8.5 Hz, 1H), 7.02 (d,
J = 8.9 Hz, 2H), 6.73 (s, 1H), 3.89 (s, 3H), 2.47 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.54,
163.31, 162.32, 154.47, 135.03, 134.76, 127.97, 125.03, 124.18, 123.57, 117.70, 114.43, 106.06,
55.50, 20.93; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H15O3 267.1016; Found 267.1020.

2-(4-Fluorophenyl)-6-methyl-4H-chromen-4-one (2bd). This compound was purified by
column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.4) to afford a yellow
solid in a 75% yield (38 mg); mp 124–126 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.01 (s, 1H),
7.95–7.89 (m, 2H), 7.51 (dd, J = 8.6 Hz, 2.2 Hz, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.25–7.16 (m, 2H),
6.75 (s, 1H), 2.47 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.44, 164.69 (d, JC-F = 251.9 Hz),
162.28, 154.45, 135.33, 135.06, 128.45 (d, JC-F = 8.8 Hz), 128.09 (d, JC-F = 3.3 Hz), 125.07,
123.48, 117.75, 116.25 (d, JC-F = 22.1 Hz), 107.21, 20.94; 19F NMR (376 MHz, CDCl3) δ -107.67;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H12FO2 255.0816; Found 255.0811.

2-(4-Chlorophenyl)-6-methyl-4H-chromen-4-one (2be). This compound was purified by
column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.7) to afford a yellow
solid in a 72% yield (38 mg); mp 165–167 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.02 (s, 1H),
7.87 (d, J = 8.6 Hz, 2H), 7.52 (t, J = 8.6 Hz, 2H), 7.49 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 6.78 (s,
1H), 2.48 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.42, 162.12, 154.47, 137.78, 135.41, 135.14,
130.39, 129.35, 127.53, 125.10, 123.56, 117.79, 107.55, 20.95; HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C16H12ClO2 271.0520; Found 271.0512.
2-(4-Bromophenyl)-6-methyl-4H-chromen-4-one (2bf). This compound was purified by

column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.4) to afford a yellow
solid in a 69% yield (43 mg); mp 196–198 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H),
7.78 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 8.7 Hz, 2H), 7.51 (dd, J = 8.6 Hz, 2.2 Hz, 1H), 7.45
(d, J = 8.6 Hz, 1H), 6.77 (s, 1H), 2.46 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 178.34, 162.10,
154.41, 135.38, 135.11, 132.28, 130.79, 127.64, 126.16, 125.06, 123.53, 117.77, 107.51, 20.93;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H12BrO2 315.0015; Found 315.0017.

6-Methyl-2-(4′-propyl-[1,1′-biphenyl]-4-yl)-4H-chromen-4-one (2bo). This compound was
purified by column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.4) to
afford a yellow solid in a 78% yield (55 mg); mp 152–153 ◦C; 1H NMR (400 MHz, CDCl3)
δ 8.02 (s, 1H), 7.98 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H),



Molecules 2022, 27, 7412 14 of 18

7.54–7.42 (m, 2H), 7.29 (d, J = 8.2 Hz, 2H), 6.85 (s, 1H), 2.78–2.55 (m, 2H), 2.47 (s, 3H), 1.70
(d, J = 7.5 Hz, 2H), 0.99 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 178.52, 163.07,
154.52, 144.23, 142.95, 137.04, 135.16, 134.93, 130.25, 129.10, 127.35, 126.92, 126.66, 125.04,
123.63, 117.80, 107.14, 37.70, 24.49, 20.93, 13.84; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C25H23O2 355.1693; Found 355.1691.

6-Methoxy-2-(p-tolyl)-4H-chromen-4-one (2cb). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.3) to afford a yellow solid in
an 80% yield (42 mg); mp 147–148 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 8.3 Hz, 2H),
7.60 (d, J = 3.1 Hz, 1H), 7.50 (d, J = 9.1 Hz, 1H), 7.32 (d, J = 8.1 Hz, 2H), 7.29 (dd, J = 9.1 Hz,
3.1 Hz, 1H), 6.79 (s, 1H), 3.91 (s, 3H), 2.44 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.34,
163.38, 156.92, 151.05, 142.11, 129.74, 129.04, 126.16, 124.56, 123.69, 119.47, 106.25, 104.80,
55.94, 21.53; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H15O3 267.1016; Found 267.1026.

6-Methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one (2cc). This compound was purified
by column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.3) to afford a
yellow solid in an 84% yield (48 mg); mp 187–188 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.87 (d,
J = 8.9 Hz, 2H), 7.59 (d, J = 3.1 Hz, 1H), 7.48 (d, J = 9.1 Hz, 1H), 7.33–7.22 (m, 1H), 7.02 (d,
J = 8.9 Hz, 2H), 6.74 (s, 1H), 3.91 (s, 3H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.23,
163.19, 162.30, 156.88, 150.98, 127.91, 124.49, 124.12, 123.53, 119.35, 114.42, 105.47, 104.86,
55.92, 55.48; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H15O4 283.0965; Found 283.0971.

2-(4-Fluorophenyl)-6-methoxy-4H-chromen-4-one (2cd). This compound was purified by
column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a yellow
solid in a 78% yield (42 mg); mp 144–146 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.94–7.89 (m,
2H), 7.59 (d, J = 3.1 Hz, 1H), 7.50 (d, J = 9.2 Hz, 1H), 7.29 (dd, J = 9.2 Hz, 3.2 Hz, 1H),
7.24–7.17 (m, 2H), 6.76 (s, 1H), 3.91 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.17, 165.94
(d, J = 251.5 Hz), 162.19, 157.06, 150.99, 128.42 (d, J = 8.8 Hz), 128.07 (d, J = 3.3 Hz), 124.45,
123.87, 119.42, 116.26 (d, J = 22.0 Hz), 106.63, 104.87, 55.95; 19F NMR (376 MHz, CDCl3)
δ-107.68; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H12FO3 271.0765; Found 271.0759.

2-(4-Chlorophenyl)-6-methoxy-4H-chromen-4-one (2ce). This compound was purified
by column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a
yellow solid in a 72% yield (41 mg); mp 167–168 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.85 (d,
J = 8.6 Hz, 2H), 7.58 (d, J = 3.1 Hz, 1H), 7.49 (d, J = 8.8 Hz, 3H), 7.29 (dd, J = 9.2 Hz, 3.2 Hz,
1H), 6.78 (s, 1H), 3.91 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.14, 161.98, 157.09, 150.96,
137.75, 130.30, 129.33, 127.46, 124.49, 123.94, 119.45, 106.89, 104.84, 55.94; HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C16H12ClO3 287.0469; Found 287.0475.

2-(4-Bromophenyl)-6-methoxy-4H-chromen-4-one (2cf). This compound was purified
by column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a
yellow solid in a 75% yield (49 mg); mp 189–190 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.78 (d,
J = 8.7 Hz, 2H), 7.65 (d, J = 8.7 Hz, 2H), 7.58 (d, J = 3.1 Hz, 1H), 7.49 (d, J = 9.1 Hz, 1H), 7.29
(dd, J = 9.2 Hz, 3.2 Hz, 1H), 6.78 (s, 1H), 3.91 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 178.12,
162.04, 157.09, 150.95, 132.30, 130.77, 127.62, 126.16, 124.50, 123.95, 119.46,106.90, 104.84,
55.94; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H12BrO3 330.9964; Found 330.9960.

6-Chloro-2-(p-tolyl)-4H-chromen-4-one (2db). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a yellow solid
in a 72% yield (38 mg); mp 177–178 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.19 (d, J = 2.6 Hz,
1H), 7.81 (d, J = 8.3 Hz, 2H), 7.63 (dd, J = 8.9 Hz, 2.6 Hz, 1H), 7.52 (d, J = 8.9 Hz, 1H), 7.33
(d, J = 8.0 Hz, 2H), 6.79 (s, 1H), 2.44 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 177.20, 163.89,
154.53, 142.58, 133.82, 131.08, 129.83, 128.55, 126.25, 125.14, 124.92, 119.75, 106.83, 21.55;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H12ClO2 271.0520; Found 271.0527.

6-Chloro-2-(4-methoxyphenyl)-4H-chromen-4-one (2dc). This compound was purified
by column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a
yellow solid in a 62% yield (35 mg); mp 173–174 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.18 (d,
J = 2.6 Hz, 1H), 7.87 (d, J = 9.0 Hz, 2H), 7.62 (dd, J = 8.9, 2.6 Hz, 1H), 7.51 (d, J = 8.9 Hz,
1H), 7.03 (d, J = 9.0 Hz, 2H), 6.74 (s, 1H), 3.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 177.10,
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163.70, 162.61, 154.49, 133.71, 131.02, 128.06, 125.15, 124.91, 123.62, 119.66, 114.54, 106.05,
55.52; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H12ClO3 287.0469; Found 287.0474.

6-Chloro-2-(4-chlorophenyl)-4H-chromen-4-one (2de). This compound was purified by
column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.3) to afford a yellow
solid in a 68% yield (39 mg); mp 202–203 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.19 (d, J = 2.5 Hz,
1H), 7.85 (d, J = 8.7 Hz, 2H), 7.65 (dd, J = 8.9 Hz, 2.6 Hz, 1H), 7.52 (dd, J = 8.9 Hz, 5.8 Hz,
3H), 6.79 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 176.98, 162.50, 154.46, 138.19, 134.10, 131.38,
129.86, 129.46, 127.56, 125.22, 124.85, 119.75, 107.57; HRMS (ESI-TOF) m/z: [M + H]+ Calcd
for C15H9Cl2O2 290.9974; Found 290.9977.

2-(4-Bromophenyl)-6-chloro-4H-chromen-4-one (2df). This compound was purified by
column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.4) to afford a yellow
solid in a 75% yield (50 mg); mp 200–202 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.19 (d, J = 2.4 Hz,
1H), 7.78 (d, J = 8.8 Hz, 2H), 7.72–7.60 (m, 3H), 7.53 (d, J = 8.9 Hz, 1H), 6.80 (s, 1H); 13C NMR
(100 MHz, CDCl3) δ 176.98, 162.58, 154.46, 134.11, 132.43, 131.39, 130.32, 127.71, 126.62,
125.23, 124.86, 119.76, 107.59; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H9BrClO2
334.9469; Found 334.9462.

6-Bromo-2-(p-tolyl)-4H-chromen-4-one (2eb). This compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a yellow solid
in a 75% yield (47 mg); mp 185–186 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.35 (d, J = 2.5 Hz,
1H), 7.81 (d, J = 8.2 Hz, 2H), 7.77 (dd, J = 8.8 Hz, 2.5 Hz, 1H), 7.46 (d, J = 8.8 Hz, 1H), 7.33
(d, J = 8.0 Hz, 2H), 6.80 (s, 1H), 2.44 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 177.05, 163.90,
155.00, 142.61, 136.60, 129.85, 128.57, 128.37, 126.27, 125.33, 120.01, 118.57, 106.95, 21.58;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H12BrO2 315.0015; Found 315.0024.

6-Bromo-2-(4-methoxyphenyl)-4H-chromen-4-one (2ec). This compound was purified
by column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a
yellow solid in a 69% yield (45 mg); mp 187–188 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.34 (d,
J = 2.5 Hz, 1H), 7.88–7.84 (m, 2H), 7.76 (dd, J = 8.8 Hz, 2.5 Hz, 1H), 7.44 (d, J = 8.8 Hz, 1H),
7.04–7.00 (m, 2H), 6.74 (s, 1H), 3.89 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 176.94, 163.70,
162.62, 154.92, 136.48, 128.34, 128.06, 125.27, 123.59, 119.89, 118.49, 114.54, 106.11, 55.52;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H12BrO3 330.9964; Found 330.9970.

6-Bromo-2-(4-chlorophenyl)-4H-chromen-4-one (2ee). This, 136.87, 129.85, 129.47, 128.43,
127.57, 125.22, 119.99, 118.84, 107.67. HRMS (ESI-TO compound was purified by column
chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow solid in a
72% yield (48 mg); mp 214–215 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.35 (d, J = 2.5 Hz, 1H),
7.85 (d, J = 8.5 Hz, 2H), 7.79 (dd, J = 8.8 Hz, 2.5 Hz, 1H), 7.51 (d, J = 8.6 Hz, 2H), 7.47 (d,
J = 8.9 Hz, 1H), 6.80 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 176.84, 162.51, 154.91, 138.20,
136.87, 129.85, 129.47, 128.43, 127.57, 125.22, 119.99, 118.84, 107.67. HRMS (ESI-TOF) m/z:
[M + H]+ Calcd for C15H9ClBrO2 334.9469; Found 334.9474.

6-Bromo-2-(4-bromophenyl)-4H-chromen-4-one (2ef). This compound was purified by
column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a yellow
solid in a 66% yield (49 mg); mp 219–220 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.35 (d, J = 2.5 Hz,
1H), 7.80–7.77 (m, 2H), 7.76 (s, 1H), 7.67 (d, J = 8.7 Hz, 2H), 7.46 (d, J = 8.9 Hz, 1H), 6.80
(s, 1H); 13C NMR (100 MHz, CDCl3) δ 176.83, 162.57, 154.89, 136.87, 132.43, 130.30, 128.42,
127.70, 126.64, 125.22, 119.99, 118.85, 107.67; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C15H9Br2O2 378.8964; Found 378.8970.

6-Bromo-2-(4-ethylphenyl)-4H-chromen-4-one (2en). This compound was purified by
column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.5) to afford a yellow
solid in an 85% yield (55 mg); mp 129–130 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.36 (d,
J = 2.4 Hz, 1H), 7.84 (d, J = 8.4 Hz, 2H), 7.78 (dd, J = 8.8 Hz, 2.5 Hz, 1H), 7.47 (d, J = 8.8 Hz,
1H), 7.36 (d, J = 8.4 Hz, 2H), 6.81 (s, 1H), 2.74 (d, J = 7.6 Hz, 2H), 1.29 (d, J = 7.6 Hz, 3H);
13C NMR (100 MHz, CDCl3) δ 177.08, 163.95, 155.01, 148.84, 136.60, 128.78, 128.67, 128.36,
126.40, 125.32, 120.01, 118.57, 106.98, 28.85, 15.23; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C17H14BrO2 329.0172; Found 329.0169.
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Butyl (E)-3-(4-oxo-2-phenyl-4H-chromen-5-yl)acrylate (4aa). This compound was purified
by column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a
yellow solid in an 80% yield (55 mg); mp 93–94 ◦C; 1H NMR (400 MHz, CDCl3) δ 9.03
(d, J = 15.9 Hz, 1H), 7.92 (d, J = 8.0 Hz, 2H), 7.66 (t, J = 7.9 Hz, 1H), 7.60 (d, J = 8.3 Hz,
1H), 7.54 (d, J = 6.3 Hz, 3H), 7.47 (d, J = 7.2 Hz, 1H), 6.81 (s, 1H), 6.27 (d, J = 15.9 Hz,
1H), 4.24 (t, J = 6.6 Hz, 2H), 1.91–1.67 (m, 2H), 1.55–1.38 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H);
13C NMR (100 MHz, CDCl3) δ 179.58, 166.61, 162.21, 157.21, 144.58, 137.06, 133.03, 131.70,
131.23, 129.06, 126.22, 124.74, 121.67, 121.43, 119.54, 108.72, 64.52, 30.74, 19.21, 13.80; HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C22H21O4 349.1434; Found 349.1435.

Butyl €-3-(4-oxo-2-(p-tolyl)-4H-chromen-5-yl)acrylate (4ab). This compound was purified
by column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford a
yellow solid in a 75% yield (54 mg); mp 128–129 ◦C; 1H NMR (400 MHz, CDCl3) δ 9.04 (d,
J = 15.9 Hz, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.69–7.62 (m, 1H), 7.59 (dd, J = 8.3 Hz, 1.0 Hz, 1H),
7.46 (d, J = 7.3 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 6.76 (s, 1H), 6.26 (d, J = 15.9 Hz, 1H), 4.24 (t,
J = 6.7 Hz, 2H), 2.44 (s, 3H), 1.80–1.70 (m, 2H), 1.55–1.36 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H);
13C NMR (100 MHz, CDCl3) δ 179.58, 166.63, 162.39, 157.16, 144.66, 142.36, 136.99, 132.89,
129.76, 128.35, 126.13, 124.63, 121.55, 121.43, 119.52, 108.07, 64.50, 30.73, 21.55, 19.20, 13.79;
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C23H23O4 363.1591; Found 363.1593.

Butyl (E)-3-(2-(4-bromophenyl)-4-oxo-4H-chromen-5-yl)acrylate (4af). This compound was
purified by column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.6) to afford
a yellow solid in a 71% yield (60 mg); mp 156–157 ◦C; 1H NMR (400 MHz, CDCl3) δ 9.01
(d, J = 15.9 Hz, 1H), 7.78 (d, J = 8.6 Hz, 2H), 7.72–7.64 (m, 3H), 7.59 (d, J = 7.6 Hz, 1H), 7.48
(d, J = 7.4 Hz, 1H), 6.77 (s, 1H), 6.27 (d, J = 15.9 Hz, 1H), 4.24 (t, J = 6.7 Hz, 2H), 1.84–1.67
(m, 2H), 1.54–1.40 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 179.37,
166.57, 161.13, 157.10, 144.41, 137.11, 133.18, 132.36, 130.15, 127.62, 126.41, 124.88, 121.80,
121.37, 119.48, 108.81, 64.55, 30.73, 19.21, 13.79; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C22H22BrO4 427.0539; Found 427.0547.
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