Phenolic Profile, EPR Determination, and Antiproliferative Activity against Human Cancer Cell Lines of Anthyllis vulneraria Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Profile of A. vulneraria Extracts
2.2. EPR Scavenging Activity of CH3O– Radicals
2.3. Antiproliferative Activity (Viability-Reducing Activity) of A. vulneraria Extracts
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Plant Samples
3.3. Extract Preparation
3.4. HPLC-MS Instrumentation and Operating Conditions
3.5. Spin Trap and EPR Spectroscopy
3.6. In Vitro Antiproliferative Activity by MTT Assay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kocarnik, J.M.; Compton, K.; Dean, F.E.; Fu, W.; Gaw, B.L.; Harvey, J.D.; Henrikson, H.J.; Lu, D.; Pennini, A.; Xu, R.; et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups from 2010 to 2019 A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022, 8, 420–444. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.M.; Lee, D.; Kong, H.J.; Lee, S.; Won, Y.J.; Jung, K.W.; Cho, H. Causes of Death among Cancer Patients in the Era of Cancer Survivorship in Korea: Attention to the Suicide and Cardiovascular Mortality. Cancer Med. 2020, 9, 1741–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, K.B.; Lang, J.J.; Compton, K.; Xu, R.; Acheson, A.R.; Henrikson, H.J.; Kocarnik, J.M.; Penberthy, L.; Aali, A.; Abbas, Q.; et al. The Global Burden of Cancer Attributable to Risk Factors, 2010–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 563–591. [Google Scholar] [CrossRef]
- Loomans-Kropp, H.A.; Umar, A. Cancer Prevention and Screening: The next Step in the Era of Precision Medicine. npj Precis. Oncol. 2019, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Lopresti, A.L. The Effects of Psychological and Environmental Stress on Micronutrient Concentrations in the Body: A Review of the Evidence. Adv. Nutr. 2020, 11, 103–112. [Google Scholar] [CrossRef]
- Jîtcă, G.; Ősz, B.E.; Tero-Vescan, A.; Miklos, A.P.; Rusz, C.M.; Bătrînu, M.G.; Vari, C.E. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants 2022, 11, 572. [Google Scholar] [CrossRef]
- Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The Role of Cellular Reactive Oxygen Species in Cancer Chemotherapy. J. Exp. Clin. Cancer Res. 2018, 37, 266. [Google Scholar] [CrossRef] [Green Version]
- Dayem, A.A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.M.; Choi, H.Y.; Cho, S.G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA Damage Response in Cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef]
- Ramundo, V.; Giribaldi, G.; Aldieri, E. Transforming Growth Factor-β and Oxidative Stress in Cancer: A Crosstalk in Driving Tumor Transformation. Cancers 2021, 13, 3093. [Google Scholar] [CrossRef]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Generali, I.M.; Skroza, D.; Ljubenkov, I.; Katalini, V.; Vida, Š. Antioxidant and Antimicrobial Potential of Phenolic Metabolites from Traditionally Used Mediterranean. Foods 2019, 8, 579. [Google Scholar]
- Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T.; Schneider, F.; Schweiggert-Weisz, U.; Eisner, P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 2022, 9, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Bhori, M.; Kasu, Y.A.; Bhat, G.; Marar, T. Antioxidants as Precision Weapons in War against Cancer Chemotherapy Induced Toxicity–Exploring the Armoury of Obscurity. Saudi Pharm. J. 2018, 26, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, R.; Temesfői, V.; Das, S.; Alberti, Á.; Tóth, C.A.; Herczeg, R.; Papp, N.; Kőszegi, T. Cytotoxic, Antimicrobial, Antioxidant Properties and Effects on Cell Migration of Phenolic Compounds of Selected Transylvanian Medicinal Plants. Antioxidants 2020, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Ouerfelli, M.; Bettaieb Ben Kâab, L.; Almajano, M.P. Radical Scavenging and Antioxidant Activity of Anthyllis Vulneraria Leaves and Flowers. Molecules 2018, 23, 1657. [Google Scholar] [CrossRef] [Green Version]
- Godevac, D.; Zdunić, G.; Šavikin, K.; Vajs, V.; Menković, N. Antioxidant Activity of Nine Fabaceae Species Growing in Serbia and Montenegro. Fitoterapia 2008, 79, 185–187. [Google Scholar] [CrossRef]
- Tusevski, O.; Kostovska, A.; Iloska, A.; Trajkovska, L.; Simic, S.G. Phenolic Production and Antioxidant Properties of Some Macedonian Medicinal Plants. Cent. Eur. J. Biol. 2014, 9, 888–900. [Google Scholar] [CrossRef]
- Tang, J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds from Medicinal Plants (Hops and Juniper Berries) and Their Antioxidant Activity. Foods 2020, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Qun-Qun, Z.; Xin, D.; Xin-Guang, L.; Wen, G.; Ping, L.; Hua, Y. Rapid Separation and Identification of Multiple Constituents in Danhong Injection by Ultra-High Performance Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Tandem Mass Spectrometry. Chin. J. Nat. Med. 2016, 147, 147–160. [Google Scholar] [CrossRef]
- Li, H.; Subbiah, V.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Profiling of Five Different Australian Grown Apples. Appl. Sci. 2021, 11, 2421. [Google Scholar] [CrossRef]
- Ben Salah, H.; Smaoui, S.; Abdennabi, R.; Allouche, N. LC-ESI-MS/MS Phenolic Profile of Volutaria lippii (L.) Cass. Extracts and Evaluation of Their in Vitro Antioxidant, Antiacetylcholinesterase, Antidiabetic, and Antibacterial Activities. Evid.-Based Complement. Altern. Med. 2019, 2019, 9814537. [Google Scholar] [CrossRef] [Green Version]
- Mekky, R.H.; Abdel-sattar, E.; Segura-carretero, A.; del Mar Contreras, M. Metabolic Profiling of the Oil of Sesame of the Egyptian Cultivar ‘Giza 32′ Employing LC-MS and Tandem MS-Based Untargeted Method. Foods 2021, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Buiarelli, F.; Coccioli, F.; Merolle, M.; Jasionowska, R.; Terracciano, A. Identification of Hydroxycinnamic Acid-Tartaric Acid Esters in Wine by HPLC-Tandem Mass Spectrometry. Food Chem. 2010, 123, 827–833. [Google Scholar] [CrossRef]
- da Silva Mathias, M.; Rodrigues de Oliveira, R. Differentiation of the Phenolic Chemical Profiles of Cecropia Pachystachya and Cecropia Hololeuca. Phytochem. Anal. 2019, 30, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.J.; Gescher, A. Characterization of Potentially Chemopreventive Phenols in Extracts of Brown Rice That Inhibit the Growth of Human Breast and Colon Cancer Cells. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1163–1170. [Google Scholar]
- Monteiro Espíndola, K.M.; Ferreira, R.G.; Mosquera Narvaez, L.E.; Rocha Silva Rosario, A.C.; Machado Da Silva, A.H.; Bispo Silva, A.G.; Oliveira Vieira, A.P.; Chagas Monteiro, M. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 2019, 9, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Boo, Y.C. P-Coumaric Acid as an Active Ingredient in Cosmetics: A Review Focusing on Its Antimelanogenic Effects. Antioxidants 2019, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Godlewska-żyłkiewicz, B.; Świsłocka, R.; Kalinowska, M.; Golonko, A.; Świderski, G.; Arciszewska, Ż.; Nalewajko-Sieliwoniuk, E.; Naumowicz, M.; Lewandowski, W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. Materials 2020, 13, 4544. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic Acid Exerts Antitumor Activity and Inhibits Metastasis in Breast Cancer Cells by Regulating Epithelial to Mesenchymal Transition. Oncol. Rep. 2016, 36, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Yu, H.; Guo, W.; Kong, Y.; Gu, l.; Li, Q.; Yang, S.; Zhang, Y.; Wang, Y. The Anticancer Effects of Ferulic Acid Is Associated with Induction of Cell Cycle Arrest and Autophagy in Cervical Cancer Cells. Cancer Cell Int. 2018, 18, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, W.; Song, G. Inhibitory Effects of Delphinidin on the Proliferation of Ovarian Cancer Cells via PI3K/AKT and ERK 1/2 MAPK Signal Transduction. Oncol. Lett. 2017, 14, 810–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Zhu, M.; Wang, L.; Yu, S. Anti-Tumor Effects and Associated Molecular Mechanisms of Myricetin. Biomed. Pharmacother. 2019, 120, 109506. [Google Scholar] [CrossRef]
- Azman, N.A.M.; Peiró, S.; Fajarí, L.; Julià, L.; Almajano, M.P. Radical Scavenging of White Tea and Its Flavonoid Constituents by Electron Paramagnetic Resonance (EPR) Spectroscopy. J. Agric. Food Chem. 2014, 62, 5743–5748. [Google Scholar] [CrossRef] [Green Version]
- Kchaou, W.; Abbès, F.; Mansour, R.B.; Blecker, C.; Attia, H.; Besbes, S. Phenolic Profile, Antibacterial and Cytotoxic Properties of Second Grade Date Extract from Tunisian Cultivars (Phoenix dactylifera L.). Food Chem. 2016, 194, 1048–1055. [Google Scholar] [CrossRef]
- Gallego, A.; Metón, I.; Baanante, I.V.; Ouazzani, J.; Adelin, E.; Palazon, J.; Bonfill, M.; Moyano, E. Viability-Reducing Activity of Coryllus avellana L. Extracts against Human Cancer Cell Lines. Biomed. Pharmacother. 2017, 89, 565–572. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Tentative Identification | Chemical Formula | RT (min) | Molecular Weight | Ionization Mode | Fragment Ions (m/z) | Polyphenol Class | Content * | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|
Theoretical (m/z) | Observed (m/z) | |||||||||
L1 | Pyrogallol | C6H6O3 | 6.96 | 126.1100 | [M + H]+ | 127.0390 | 127.0391 | Other polyphenols | 136.94 | [20] |
L2 | Chlorogenic acid | C16H18O9 | 7.29 | 354.3087 | [M − H]− | 353.0878 | 353.0880 | Phenolic acids | 1504.62 | Std/[21] |
L3 | 4-Hydroxybenzaldehyde | C7H6O2 | 7.43 | 122.1213 | [M − H]− | 121.0295 | 121.0306 | Other polyphenols | 1265.74 | [20] |
L4 | Caffeic acid | C9H8O4 | 8.34 | 180.1574 | [M − H]− | 179.0345 | 179.0350 | Phenolic acids | 5868.65 | Std/[21] |
L5 | 3,4-Dihydroxyphenylglycol | C8H10O4 | 11.05 | 170.1626 | [M − H]− | 169.0506 | 169.0503 | Other polyphenols | 57.96 | [20] |
L6 | 2,3-Dihydroxybenzoic acid | C7H6O4 | 11.22 | 154.1201 | [M − H]− | 153.0193 | 153.0203 | Phenolic acids | 89.73 | [20] |
L7 | p-Coumaric acid | C9H8O3 | 11.46 | 164.1580 | [M − H]− | 163.0401 | 163.0393 | Phenolic acids | 106.52 | Std/[21] |
L8 | p-Anisaldehyde | C8H8O2 | 11.74 | 136.1479 | [M − H]− | 135.0451 | 135.0456 | Other polyphenols | 2547.22 | [20] |
L9 | Ferulic acid | C10H10O4 | 13.09 | 194.1840 | [M − H]− | 193.0506 | 193.0502 | Phenolic acids | 7985.14 | Std/[21] |
L10 | Sinapinic acid | C11H12O5 | 13.38 | 224.2100 | [M − H]− | 223.0612 | 223.0603 | Phenolic acids | 3477.81 | Std/[22] |
L11 | 4-Hydroxy-2-phenylacetic acid | C8H8O3 | 14.72 | 152.1473 | [M − H]− | 151.0400 | 151.0408 | Phenolic acids | 1069.51 | [20] |
L12 | Cinnamic acid | C9H8O2 | 17.34 | 148.1586 | [M + H]+ | 149.0597 | 149.0587 | Phenolic acids | 7842.12 | [20] |
L13 | 2-Hydroxybenzoic acid | C7H6O3 | 19.02 | 138.1207 | [M − H]− | 137.0244 | 137.0249 | Phenolic acids | 142.44 | [20] |
L14 | Coumarin | C9H6O2 | 20.44 | 146.1427 | [M + H]+ | 147.0441 | 147.0429 | Other polyphenols | 651.23 | [23] |
L15 | p-Coumaroyl tartaric acid | C13H12O8 | 21.88 | 296.2296 | [M − H]− | 295.0459 | 295.0468 | Phenolic acids | 49.58 | [22] |
L16 | 4-Hydroxyphenylpropionic acid | C9H10O3 | 35.16 | 166.1739 | [M + H]+ | 165.0557 | 165.0569 | Phenolic acids | 133.42 | [20] |
L17 | Kaempferol-3-O-rutinoside | C15H10O6 | 37.52 | 286.2363 | [M − H]− | 285.0404 | 285.0404 | Flavonoids | 6314.85 | [23] |
Peak No. | Tentative Identification | Chemical Formula | RT (min) | Molecular Weight | Ionization Mode | Fragment Ions (m/z) | Polyphenols Class | Content * | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|
Theoretical (m/z) | Observed (m/z) | |||||||||
F1 | Chlorogenic acid | C16H18O9 | 7.29 | 354.3087 | [M − H]− | 353.0878 | 353.0880 | Phenolic acids | 318.55 | Std/[21] |
F2 | Caffeic acid | C9H8O4 | 8.34 | 180.1574 | [M − H]− | 179.0345 | 179.0350 | Phenolic acids | 5568.44 | Std/[21] |
F3 | Syringic acid | C9H10O5 | 8.68 | 198.1727 | [M − H]− | 198.05282 | 197.0453 | Phenolic acids | 102.209 | Std/[24] |
F4 | (-)-Epicatechin | C15H14O6 | 10.15 | 290.2681 | [M − H]− | 289.0717 | 289.0717 | Flavonoids | 1178.12 | Std/[22] |
F5 | p-Coumaric acid | C9H8O3 | 11.46 | 164.1580 | [M − H]− | 163.0401 | 163.0393 | Phenolic acids | 5326.11 | Std/[21] |
F6 | Ferulic acid | C10H10O4 | 13.09 | 194.1840 | [M − H]− | 193.0506 | 193.0502 | Phenolic acids | 418.63 | Std/[21] |
F7 | Sinapinic acid | C11H12O5 | 13.38 | 224.2100 | [M − H]− | 223.0612 | 223.0603 | Phenolic acids | 7699.18 | Std/[22] |
F8 | 2,3-Dihydroxybenzoic acid | C7H6O4 | 13.45 | 154.1201 | [M − H]− | 153.0193 | 153.0203 | Phenolic acids | 533.36 | [22] |
F9 | Quercetin | C15H10O7 | 14.50 | 302.2357 | [M + H]+ | 303.0500 | 303.0487 | Flavonoids | 101.41 | [22] |
F10 | Myricetin | C15H10O8 | 18.27 | 318.2351 | [M + H]+ | 319.0449 | 319.0427 | Flavonoids | 4382.05 | Std/[20] |
F11 | Quercetin | C15H10O7 | 21.32 | 302.2357 | [M − H]− | 301.0354 | 301.0375 | Flavonoids | 1154.11 | Std/[20] |
F12 | p-Coumaroyl tartaric acid | C13H12O8 | 22.17 | 296.2296 | [M − H]− | 295.0459 | 295.0468 | Phenolic acids | 41.77 | [25] |
F13 | Delphinidin 3-O sambubioside | C26H29O16 | 25.71 | 597.4989 | [M − H]− | 596.1383 | 596.1363 | Flavonoids | 64.24 | [20] |
F14 | Rutin | C27H30O16 | 27.14 | 610.5175 | [M − H]− | 609.1525 | 609.1509 | Flavonoids | 4982.14 | Std/[26] |
F15 | Kaempferol-3-O-rutinoside | C15H10O6 | 37.52 | 286.2363 | [M − H]− | 285.0404 | 285.0404 | Flavonoids | 6314.85 | [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouerfelli, M.; Metón, I.; Codina-Torrella, I.; Almajano, M.P. Phenolic Profile, EPR Determination, and Antiproliferative Activity against Human Cancer Cell Lines of Anthyllis vulneraria Extracts. Molecules 2022, 27, 7495. https://doi.org/10.3390/molecules27217495
Ouerfelli M, Metón I, Codina-Torrella I, Almajano MP. Phenolic Profile, EPR Determination, and Antiproliferative Activity against Human Cancer Cell Lines of Anthyllis vulneraria Extracts. Molecules. 2022; 27(21):7495. https://doi.org/10.3390/molecules27217495
Chicago/Turabian StyleOuerfelli, Manel, Isidoro Metón, Idoia Codina-Torrella, and María Pilar Almajano. 2022. "Phenolic Profile, EPR Determination, and Antiproliferative Activity against Human Cancer Cell Lines of Anthyllis vulneraria Extracts" Molecules 27, no. 21: 7495. https://doi.org/10.3390/molecules27217495
APA StyleOuerfelli, M., Metón, I., Codina-Torrella, I., & Almajano, M. P. (2022). Phenolic Profile, EPR Determination, and Antiproliferative Activity against Human Cancer Cell Lines of Anthyllis vulneraria Extracts. Molecules, 27(21), 7495. https://doi.org/10.3390/molecules27217495