Authenticity Assessment from Sesame Seeds to Oil and Sesame Products of Various Origin by Differential Scanning Calorimetry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Moisture Content of Seeds and Yield
2.2. Fatty Acid Composition
2.3. Thermodynamic Properties
2.3.1. Effect of Different Methods of Extraction and Geographical Origins on Thermal Properties of Sesame Oil
2.3.2. Effect of Adulteration of Sesame Oil with Palm Olein on Thermal Properties
2.3.3. Thermal Properties of Sesame Oils Extracted from Different Types of Sesame Products
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Oil Extraction from Sesame Seeds
3.2.2. Cold-Pressing
3.2.3. Moisture Analysis
3.2.4. Differential Scanning Calorimetry (DSC)
3.2.5. Determination of Fatty Acid Composition Using GC
3.2.6. Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, J.; Liu, Y.; Shi, L.; Wang, N.; Wang, X. Effect of Roasting Treatment on the Chemical Composition of Sesame Oil. LWT Food Sci. Technol. 2019, 101, 191–200. [Google Scholar] [CrossRef]
- Ribeiro, S.A.O.; Nicacio, A.E.; Zanqui, A.B.; Biondo, P.B.F.; de Abreu-Filho, B.A.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Improvements in the Quality of Sesame Oil Obtained by a Green Extraction Method Using Enzymes. LWT 2016, 65, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Heshmati, A.; Khorshidi, M.; Khaneghah, A.M. The Prevalence and Risk Assessment of Aflatoxin in Sesame-Based Products. Ital. J. Food Sci. 2021, 33, 92–102. [Google Scholar] [CrossRef]
- Khanin, P.; Wasifur, R.; Sudhansu, B.; Bhabesh, G. Sesame (Sesamum Indicum L.), an Underexploited Oil Seed Crop: Current Status, Features and Importance—A Review. Agric. Rev. 2017, 38, 223–227. [Google Scholar]
- Kurt, C. Variation in Oil Content and Fatty Acid Composition of Sesame Accessions from Different Origins. Grasas y Aceites 2018, 69, e241. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Li, H.; Fu, G.; Chen, X.; Chen, F.; Xie, M. The Relationship of Antioxidant Components and Antioxidant Activity of Sesame Seed Oil. J. Sci. Food Agric. 2015, 95, 2571–2578. [Google Scholar] [CrossRef]
- Martínez, M.L.; Bordón, M.G.; Lallana, R.L.; Ribotta, P.D.; Maestri, D.M. Optimization of Sesame Oil Extraction by Screw-Pressing at Low Temperature. Food Bioprocess Technol. 2017, 10, 1113–1121. [Google Scholar] [CrossRef]
- Xu, T.; Yang, R.; Hua, X.; Zhao, W.; Tong, Y.; Zhang, W. Improvement of the Yield and Flavour Quality of Sesame Oil from Aqueous Extraction Process by Moisture Conditioning before Roasting. Int. J. Food Sci. Technol. 2019, 54, 471–479. [Google Scholar] [CrossRef]
- Tirgarian, B.; Farmani, J.; Milani, J.M. Enzyme-Assisted Aqueous Extraction of Oil and Protein Hydrolysate from Sesame Seed. J. Food Meas. Charact. 2019, 13, 2118–2129. [Google Scholar] [CrossRef]
- Yilmaz, E.; Güneşer, B.A. Cold Pressed versus Solvent Extracted Lemon (Citrus Limon L.) Seed Oils: Yield and Properties. J. Food Sci. Technol. 2017, 54, 1891–1900. [Google Scholar] [CrossRef]
- Casadei, E.; Valli, E.; Panni, F.; Donarski, J.; Farrús Gubern, J.; Lucci, P.; Conte, L.; Lacoste, F.; Maquet, A.; Brereton, P.; et al. Emerging Trends in Olive Oil Fraud and Possible Countermeasures. Riv. Ital. Delle Sostanze Grasse 2021, 98, 252–254. [Google Scholar] [CrossRef]
- EFSA. The Rapid Alert System for Food and Feed Annual Report 2019; European Food Safety Authority: Parma, Italy, 2020.
- Ozulku, G.; Yildirim, R.; Toker, O.; Karasu, S.; Durak, M. Rapid Detection of Adulteration of Cold Pressed Sesame Oil Adultered with Hazelnut, Canola, and Sunflower Oils Using ATR-FTIR Spectroscopy Combined with Chemometric. Food Control 2017, 82, 212–216. [Google Scholar] [CrossRef]
- Xing, C.; Yuan, X.; Wu, X.; Shao, X.; Yuan, J.; Yan, W. Chemometric Classification and Quantification of Sesame Oil Adulterated with Other Vegetable Oils Based on Fatty Acids Composition by Gas Chromatography. LWT Food Sci. Technol. 2019, 108, 437–445. [Google Scholar] [CrossRef]
- Zhang, L.; Shuai, Q.; Li, P.; Zhang, Q.; Ma, F.; Zhang, W.; Ding, X. Ion Mobility Spectrometry Fingerprints: A Rapid Detection Technology for Adulteration of Sesame Oil. Food Chem. 2016, 192, 60–66. [Google Scholar] [CrossRef]
- Tomaszewska-Gras, J. Rapid Quantitative Determination of Butter Adulteration with Palm Oil Using the DSC Technique. Food Control 2016, 60, 629–635. [Google Scholar] [CrossRef]
- Meenu, M.; Cai, Q.; Xu, B. A Critical Review on Analytical Techniques to Detect Adulteration of Extra Virgin Olive Oil. Trends Food Sci. Technol. 2019, 91, 391–408. [Google Scholar] [CrossRef]
- Sano, N.; Rajjou, L.; North, H.M.; Debeaujon, I.; Marion-Poll, A.; Seo, M. Staying Alive: Molecular Aspects of Seed Longevity. Plant Cell Physiol. 2016, 57, 660–674. [Google Scholar] [CrossRef] [Green Version]
- Nyhan, L.; Begley, M.; Mutel, A.; Qu, Y.; Johnson, N.; Callanan, M. Predicting the Combinatorial Effects of Water Activity, PH and Organic Acids on Listeria Growth in Media and Complex Food Matrices. Food Microbiol. 2018, 74, 75–85. [Google Scholar] [CrossRef]
- Bhuiya, M.M.K.; Rasul, M.; Khan, M.; Ashwath, N.; Rahman, M. Comparison of Oil Extraction between Screw Press and Solvent (n-Hexane) Extraction Technique from Beauty Leaf (Calophyllum Inophyllum L.) Feedstock. Ind. Crops Prod. 2020, 144, 112024. [Google Scholar] [CrossRef]
- Codex-Stan 201-1999; Codex Standards for Fats and Oils from Vegetable Sources. FAO: Québec City, QC, Canada, 1999.
- Hama, J.R. Comparison of Fatty Acid Profile Changes between Unroasted and Roasted Brown Sesame (Sesamum Indicum L.) Seeds Oil. Int. J. Food Prop. 2017, 20, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Tenyang, N.; Ponka, R.; Tiencheu, B.; Djikeng, F.; Azmeera, T.; Karuna, M.; Prasad, R.; Womeni, H. Effects of Boiling and Roasting on Proximate Composition, Lipid Oxidation, Fatty Acid Profile, and Mineral Content of Two Sesame Varieties Commercialized and Consumed in Far-North Region of Cameroon. Food Chem. 2017, 221, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Stamenković, O.S.; Djalović, I.G.; Kostić, M.D.; Mitrović, P.M.; Veljković, V.B. Optimization and Kinetic Modeling of Oil Extraction from White Mustard (Sinapis Alba L.) Seeds. Ind. Crops Prod. 2018, 121, 132–141. [Google Scholar] [CrossRef]
- Tan, C.P.; Che Man, Y.B. Differential Scanning Calorimetric Analysis of Edible Oils: Comparison of Thermal Properties and Chemical Composition. JAOCS, J. Am. Oil Chem. Soc. 2000, 77, 143–155. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.; Briceno-Montelongo, M.; Dibildox-Alvarado, E.; Charo-Alonso, M.; Reyes-Hernandez, J. Crystallization Kinetics of Palm Stearin in Blends with Sesame Seeds Oil. J. Am. Oil Chem. Soc. 2000, 77, 297–310. [Google Scholar] [CrossRef]
- Lim, S.Y.; Mutalib, M.S.A.; Khaza’ai, H.; Chang, S.K. Detection of Fresh Palm Oil Adulteration with Recycled Cooking Oil Using Fatty Acid Composition and Ftir Spectral Analysis. Int. J. Food Prop. 2018, 21, 2428–2451. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska-Gras, J. DSC Coupled with PCA as a Tool for Butter Authenticity Assessment. J. Therm. Anal. Calorim. 2016, 126, 61–68. [Google Scholar] [CrossRef]
- ISO 11357-1; Standard of Thermal Analysis—Differential Scanning Calorimetry (DSC). International Organization for Standardization: Geneva, Switzerland, 2009.
- AOCS. Official Methods Preparations of Methyl Esters of Fatty Acids; AOCS Press: Urbana, IL, USA, 1997. [Google Scholar]
Seeds Origin | Moisture (%) |
---|---|
Ethiopia | 6.11 ± 0.98 a |
India | 5.83 ± 0.45 a |
Nigeria | 5.18 ± 0.04 a |
Sudan | 5.25 ± 0.50 a |
Turkey | 4.90 ± 0.45 a |
Fatty Acid | Sesame Oils (%) | Sesame Products (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
SO Ethiopia | SO India | SO Nigeria | SO Sudan | SO Turkey | H | HC | HP | T | |
C16:0 | 9.61 | 9.33 | 8.98 | 9.38 | 8.62 | 12.53 | 15.57 | 13.91 | 9.25 |
C16:1 | 0.08 | 0.09 | 0.09 | 0.08 | 0.06 | 0.05 | 0.07 | 0.09 | 0.06 |
C18:0 | 6.09 | 4.95 | 4.91 | 5.52 | 5.23 | 7.16 | 8.87 | 7.64 | 5.64 |
C18:1 | 42.70 | 39.88 | 40.58 | 42.79 | 43.31 | 37.59 | 38.63 | 38.79 | 42.05 |
C18:2 | 40.56 | 44.62 | 44.16 | 41.00 | 41.54 | 41.43 | 35.81 | 38.31 | 41.96 |
C18:3(n-3) | 0.18 | 0.20 | 0.32 | 0.21 | 0.33 | 0.24 | 0.19 | 0.22 | 0.25 |
C20:0 | 0.72 | 0.85 | 0.86 | 0.91 | 0.83 | 0.81 | 0.62 | 0.80 | 0.69 |
C20:1 | 0.06 | 0.08 | 0.10 | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.10 |
ƩSFA | 16.42 | 15.13 | 14.75 | 15.82 | 14.68 | 20.58 | 25.20 | 22.50 | 15.58 |
ƩMUFA | 42.84 | 40.05 | 40.77 | 42.97 | 43.47 | 37.73 | 38.79 | 38.97 | 42.21 |
ƩPUFA | 40.74 | 44.82 | 44.48 | 41.21 | 41.87 | 41.67 | 36.00 | 38.53 | 42.21 |
UFA/SFA | 5.1 | 5.6 | 5.8 | 5.3 | 5.8 | 3.9 | 3.0 | 3.4 | 5.4 |
Seeds Origin | Sesame Seed | Sesame Oil (HE) | Sesame Oil (CP) | ||
---|---|---|---|---|---|
Peak Temperature | Enthalpy | Peak Temperature | Enthalpy | Peak Temperature | |
Tm1 (°C) | ∆Hm (J/g) | Tm1 (°C) | ∆Hm (J/g) | Tm1 (°C) | |
Ethiopia | −18.40 ± 0.64 aA | 42.36 ± 3.45 aA | −20.25 ± 1.16 aA | 39.48 ± 0.50 aBC | −19.20 ± 0.81 aA |
India | −19.12 ± 0.79 aA | 41.14 ± 3.77 aA | −20.07 ± 0.02 aA | 33.94 ± 0.23 aA | −19.30 ± 0.38 aA |
Nigeria | −19.63 ± 0.39 aA | 40.75 ± 0.46 aA | −19.25 ± 0.32 aA | 39.61 ± 0.60 aBC | −19.24 ± 0.62 aA |
Sudan | −19.10 ± 0.88 bA | 42.64 ± 1.10 bA | −21.00 ± 0.35 aA | 35.69 ± 2.26 aAB | −18.64 ± 0.14 bA |
Turkey | −19.68 ± 0.93 aA | 43.80 ± 0.46 aA | −19.41 ± 0.20 aA | 41.88 ± 1.30 aC | −18.89 ± 0.34 aA |
Mean | −19.18 ± 0.75 ab | 42.01 ± 2.04 a | −19.93 ± 0.78 a | 37.90 ± 3.18 a | −19.02 ± 0.46 b |
Seeds Origin | Sesame Oils | Sesame Oils + 20% Palm Olein | ||||
---|---|---|---|---|---|---|
Tm1 (°C) | Tm2 (°C) | T1/2 (°C) | Tm1 (°C) | Tm2 (°C) | T1/2 (°C) | |
Ethiopia | −20.25 ± 1.16 a | −6.35 ± 1.02 a | 3.75 ± 0.62 a | −19.14 ± 0.02 a | −5.1 ± 1.01 a | 4.72 ± 0.27 a |
India | −20.07 ± 0.02 a | −5.11 ± 0.51 a | 2.75 ± 0.15 a | −20.69 ± 0.37 a | −5.51 ± 0.53 a | 4.36 ± 0.27 b |
Nigeria | −19.25 ± 0.32 a | −5.37 ± 0.09 a | 2.71 ± 0.14 a | −18.29 ± 0.33 b | −3.92 ± 0.21 b | 4.17 ± 0.04 b |
Sudan | −21.00 ± 0.35 a | −7.13 ± 0.39 a | 2.91 ± 1.46 a | −18.88 ± 0.98 a | −4.87 ± 0.57 b | 4.96 ± 0.46 a |
Turkey | −19.41 ± 0.20 a | −5.49 ± 0.01 a | 2.95 ± 0.29 a | −19.33 ± 0.00 a | −5.58 ± 0.49 a | 4.40 ± 0.05 b |
Mean | −19.93 ± 0.78 a | −5.89 ± 0.88 a | 3.01 ± 0.68 a | −19.26 ± 0.92 a | −4.99 ± 0.78 b | 4.52 ± 0.36 b |
Seeds Origin | Sesame Oils | Sesame Oils + 20% Palm Olein | ||||||
---|---|---|---|---|---|---|---|---|
∆Hm Total (J/g) | ∆Hm Peak1 (J/g) | ∆Hm Peak2 (J/g) | % Peak1 | ∆Hm Total (J/g) | ∆Hm Peak1 (J/g) | ∆Hm Peak2 (J/g) | % Peak1 | |
Ethiopia | 42.36 ± 3.45 a | 37.07 ± 4.08 a | 5.29 ± 0.63 a | 87.41 ± 2.50 b | 36.35 ± 0.90 a | 27.20 ± 1.43 a | 9.15 ± 0.53 b | 74.80 ± 2.09 a |
India | 41.14 ± 3.77 a | 37.57 ± 3.97 a | 3.57 ± 0.20 a | 91.26 ± 1.29 b | 39.79 ± 1.12 a | 30.05 ± 0.94 a | 9.74 ± 0.17 b | 75.53 ± 0.25 a |
Nigeria | 40.75 ± 0.46 b | 35.66 ± 1.43 b | 4.96 ± 0.86 a | 87.83 ± 4.74 b | 34.13 ± 0.45 a | 23.86 ± 1.02 a | 10.27 ± 0.57 b | 69.89 ± 2.08 a |
Sudan | 42.64 ± 1.10 a | 37.35 ± 1.99 b | 5.29 ± 0.89 a | 87.57 ± 2.40 b | 34.43 ± 2.86 a | 24.92 ± 2.81 a | 9.50 ± 0.05 b | 72.31 ± 2.15 a |
Turkey | 43.80 ± 0.46 b | 37.42 ± 0.33 b | 6.39 ± 0.78 a | 85.42 ± 0.14 b | 38.33 ± 1.12 a | 28.16 ± 0.22 a | 10.17 ± 0.90 b | 73.49 ± 1.57 a |
Mean | 42.01 ± 2.04 a | 37.02 ± 2.19 b | 5.10 ± 1.09 a | 87.90 ± 2.82 b | 36.60 ± 2.58 a | 26.84 ± 2.61 a | 9.77 ± 0.59 b | 73.20 ± 2.48 a |
Sesame Products | ∆Hm Total (J/g) | ∆Hm Peak1 (J/g) | ∆Hm Peak2 (J/g) | % Peak1 | Tm1 (°C) | T1/2 (°C) |
---|---|---|---|---|---|---|
SO-HE | 42.11 ± 2.13 a | 37.02 ± 4.08 a | 5.10 ± 1.09 a | 87.90 ± 2.82 a | −20.25 ± 1.16 a | 3.01 ± 0.68 a |
H | 42.40 ± 1.11 a | 38.88 ± 1.29 a | 3.52 ± 0.18 a | 91.69 ± 0.64 a | −20.52 ± 0.35 a | 3.64 ± 0.19 a |
HC | 39.49 ± 2.46 a | 36.73 ± 2.61 a | 5.17 ± 1.37 a | 87.63 ± 3.18 a | −19.84 ± 0.57 a | 3.59 ± 0.58 a |
HP | 39.57 ± 1.17 a | 33.81 ± 1.12 a | 5.75 ± 0.05 a | 85.45 ± 0.30 a | −18.90 ± 0.07 a | 3.63 ± 0.06 a |
TH | 42.86 ± 0.51 a | 37.08 ± 1.58 a | 5.78 ± 1.07 a | 86.50 ± 2.66 a | −19.72 ± 0.21 a | 2.80 ± 0.09 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajagukguk, Y.V.; Utcu, M.A.; Islam, M.; Muzolf-Panek, M.; Tomaszewska-Gras, J. Authenticity Assessment from Sesame Seeds to Oil and Sesame Products of Various Origin by Differential Scanning Calorimetry. Molecules 2022, 27, 7496. https://doi.org/10.3390/molecules27217496
Rajagukguk YV, Utcu MA, Islam M, Muzolf-Panek M, Tomaszewska-Gras J. Authenticity Assessment from Sesame Seeds to Oil and Sesame Products of Various Origin by Differential Scanning Calorimetry. Molecules. 2022; 27(21):7496. https://doi.org/10.3390/molecules27217496
Chicago/Turabian StyleRajagukguk, Yolanda Victoria, Mert Atakan Utcu, Mahbuba Islam, Małgorzata Muzolf-Panek, and Jolanta Tomaszewska-Gras. 2022. "Authenticity Assessment from Sesame Seeds to Oil and Sesame Products of Various Origin by Differential Scanning Calorimetry" Molecules 27, no. 21: 7496. https://doi.org/10.3390/molecules27217496
APA StyleRajagukguk, Y. V., Utcu, M. A., Islam, M., Muzolf-Panek, M., & Tomaszewska-Gras, J. (2022). Authenticity Assessment from Sesame Seeds to Oil and Sesame Products of Various Origin by Differential Scanning Calorimetry. Molecules, 27(21), 7496. https://doi.org/10.3390/molecules27217496