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Abstract: Transition metal-based compounds with high theoretical capacitance and low cost represent
one class of promising electrode materials for high-performance supercapacitors. However, their low
intrinsic electrical conductivity impedes their capacitive effect and further limits their practical appli-
cation. Rational regulation of their composition and structure is, therefore, necessary to achieve a high
electrode performance. Herein, a well-designed carbon-encased mixed-metal selenide rooted with
carbon nanotubes (Ni-Co-Se@C-CNT) was derived from nickel–cobalt bimetallic organic frameworks.
Due to the unique porous structure, the synergistic effect of bimetal selenides and the in situ growth
of carbon nanotubes, the composite exhibits good electrical conductivity, high structural stability
and abundant redox active sites. Benefitting from these merits, the Ni-Co-Se@C-CNT exhibited a
high specific capacity of 554.1 C g−1 (1108.2 F g−1) at 1 A g−1 and a superior cycling performance,
i.e., 96.4% of the initial capacity was retained after 5000 cycles at 10 A g−1. Furthermore, a hybrid
supercapacitor assembled with Ni-Co-Se@C-CNT cathode and activated carbon (AC) anode shows a
superior energy density of 38.2 Wh kg−1 at 1602.1 W kg−1.

Keywords: carbon nanotubes; supercapacitor; mixed-metal selenides; bimetallic organic framework

1. Introduction

The growing consumption of traditional fossil fuels and the increasing requirement
for the application of electric devices as well as large-scale energy storage stimulate re-
searchers to pursue advanced and safe energy storage devices with both high energy and
power density [1–4]. Among a variety of energy storage systems, supercapacitors (SCs) are
representative due to high power density with the capability of fast charge and discharge
process [5]. Generally, according to the difference in an energy storage mechanism, SCs can
be mainly divided into electrochemical double-layer capacitors (EDLCs) and pseudocapaci-
tors. For the EDLCs, storage of electrical energy is realized via electrostatic interactions at
the electrode/electrolyte interfaces. Additionally, pseudocapacitors originate from faradic
reactions on/near the surfaces of electrode materials. As the critical part of SCs, electrode
materials play a decisive role in the energy storage process and the cyclability of devices [6].

Transition metal selenides (TMS) are widely used in the research of electrode materi-
als for fuel cells, lithium-ion batteries and supercapacitors due to their redox activity [7].
Previous reports suggest that the electrochemical performance of single metallic selenide
is not superior to bimetallic selenides due to the synergistic effects between bimetallic
metal selenides, and the electronic structure and coupling interaction can be more proba-
bly adjusted [8–13]. Moreover, studies have shown that metallic selenides exhibit better
electrochemical properties than their corresponding metallic oxides or sulfides due to their
higher activities [13]. Therefore, bimetallic selenides are promising electrode materials for
supercapacitors. Nevertheless, the low conductivity and limited exposure of active sites
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make their electrochemical activity not efficient to display. The increment of utilization on
the redox sites of two metal selenides through rational design of the structure is therefore
of great significance towards promoted electrochemical performances.

Metal–organic frameworks (MOFs) are porous crystalline materials with periodic net-
work structures formed by metal ions and organic linkers through coordination bonds [13–17].
Various MOF derivatives can be produced by simple heat treatment with their inherent
porous structure well-retained, and the decomposition of organic linkers further generates
more porous structures. Moreover, metal chalcogenides can be easily obtained by the cor-
responding oxidation/vulcanization/selenylation [17–19]. Carbon layers generated from
the pyrolysis of organic linkers can work as structural support and promote electron trans-
portation for the electrode materials [20]. In order to strengthen the electrical conductivity
of the MOF derivatives, the introduction of secondary carbon nanomaterials such as carbon
nanotubes (CNTs) with excellent mechanical and electrical properties can be further sug-
gested [21]. Moreover, originating from the structure of MOFs themselves, the metal centers
such as Ni, Co and Fe are typical catalysts for in situ grow CNTs through chemical vapor
deposition [22]. As compared to the simple compositing method to introduce CNTs, the in
situ generation method can overcome the drawbacks such as uneven distribution and weak
interaction between the active materials and carbon, playing better roles in promoting the
performances of the electrodes.

Herein, by using a Ni-Co bimetallic organic framework precursor (Ni-Co-BTC,
BTC = 1,3,5-homo-tricarboxylic acid), we synthesized a well-designed carbon-encased
mixed-metal selenide rooted with carbon nanotubes (Ni-Co-Se@C-CNT) via thermal treat-
ment process together with in situ generations of CNTs followed by selenylation. CNTs
are in situ grown on the selenide spheres during carbonization due to the catalytic role of
Ni and Co-based catalysts, which are generated upon the reduction atmosphere at high
temperatures. In addition to the carbon layers arising from the organic linkers in MOFs,
the CNTs rooted in Ni-Co-Se@C-CNT further accelerate the electron/ion transport and
improve the structural stability. The porous structure and mixed metal selenides donate
more exposed active sites and facilitate the interfacial contact between the electrode materi-
als and the electrolytes. Consequently, the as-prepared Ni-Co-Se@C-CNT exhibits a high
specific capacity and superior cyclability. Furthermore, a hybrid supercapacitor device
assembled with Ni-Co-Se@C-CNT and activated carbon (AC) electrode shows high energy
and power density.

2. Results and Discussion

The preparation route of Ni-Co-Se@C-CNT is shown in Figure 1. The Ni-Co-BTC MOFs
were obtained by coordinating nickel and cobalt ions with H3BTC using a hydrothermal
method. Then, microsphere intermediates of carbon-supported Ni3C and Co3C rooted with
carbon nanotubes were produced through an in situ chemical vapor process catalyzed by
Ni and Co-based catalysts. Thereafter, the Ni-Co-Se@C-CNT microspheres were obtained
by a further step of selenylation. Figure S1a–c show the SEM images of the Ni-BTC, Co-
BTC and Ni-Co-BTC MOF precursors, which display uniform spherical morphology with
diameters from submicron to micron. XRD patterns exhibited in Figure S1d indicate that all
three Ni/Co-BTC-based MOFs possess amorphous structures since no obvious diffraction
peaks were observed. The FTIR spectrum of the three MOFs (Figure S2) shows similar
absorption peaks, which are mainly arising from the organic ligand BTC. Specifically,
the absorption peaks around 1560 cm−1, 1437 cm−1 and 1368 cm−1 correspond to the
stretching vibrations of C=C in the benzene rings of BTC. Moreover, the absorption band
around 1619 cm−1 can be assigned to the C=O bonds in Ni-BTC, Co-BTC, or Ni-Co-BTC
MOF. This absorption signal underwent a redshift compared to the initial C=O bonds
in H3BTC, proving the coordination interaction between the Co/Ni metal centers and
BTC in the three as-synthesized MOFs [23,24]. Ni@C-CNT and Co@C-CNT intermediates
were obtained after thermal treatments of Ni-BTC and Co-BTC MOF at 500 ◦C for 30 min.
The morphologies were characterized by SEM (Figure S3a,c), the sample still maintained
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the spherical morphology of the precursor of MOF after carbonization and CNTs were
simultaneously generated during the carbonization due to the catalytic role of Co and Ni-
based catalysts. XRD patterns (Figure S4) confirmed the presence of Ni3C and Co3C species,
which are consistent with the diffraction peaks of Ni3C (PDF 06-0697) and Co3C (PDF
26-0450). In addition, Figure S3b and d indicate that the original microsphere morphology
of the two samples was still maintained after selenylation.
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Figure 1. Schematic illustration of the growth process of Ni-Co-Se@C-CNT.

According to previous similar reports relevant to CNT growth catalyzed by Ni or Co-
based catalysts (Ni, Co, their alloys or compounds such as carbides) using C2H2 as carbon
sources, the growth of CNT is assumed to experience three stages: induction (carburization),
nucleation and growth following with the interaction between the Ni or Co-based catalysts
and C2H2 [22,25]. Firstly, as indicated by the XRD patterns shown in Figure S4, metal
carbides Ni3C and Co3C were generated in Ni-Co@C samples after pyrolysis of the Ni-Co
MOF precursor. Nevertheless, Co and Ni nanoparticles may also be produced and then
undergo carburization followed by the decomposition of the carbon source C2H2 gas [22].
After the formation of metal carbides, their surfaces prevent further carbon diffusion and
decompose by segregating part of the carbon dissolved. The segregated carbon atoms form
the first graphene layer, initiating the formation of carbon nanostructure (nucleation). Then,
it creates a concentration gradient of carbon in the catalyst that allows more C2H2 to be
decomposed. Finally, the released carbon atoms assemble into the graphene layers and form
the body of CNT (growth) [22]. The yield of CNT can be controlled by adjusting the reaction
time and flow rate of the carrier gas, i.e., Ar gas, in this work, which helps transport the
carbon source of C2H2 because they affect the diffusion and deposition process of carbon
atoms which are necessary to form CNT [26]. In the present work, a constant reaction time
and flow rate of Ar/C2H2 gas were adopted, and we mainly investigated the performance
difference of electrode materials with or without the generation of CNT and did not further
control the yield of CNT and their influence on the electrode performances. As suggested
by previous reports, an optimal content of CNT may exist since the too-low content of CNT
cannot provide sufficient conductive support to the electrode, while a too-high content of
CNT inevitably reduces the energy storage capacity per weight [27–30].

The morphologies of Ni-Co@C and Ni-Co-Se@C are imaged in Figure S5. SEM
(Figure S5a) and TEM (Figure S5b) images show that the diameter of Ni-Co@C micro-
spheres was reduced to about 500 nm. This is mainly caused by thermal decomposition
at high temperatures [31]. It is worth noting that SEM (Figure S5c) and TEM (Figure S5d)
images of Ni-Co-Se@C show a wrinkled and rough microsphere morphology, which may be
caused by the further step of selenylation. Note that due to the formation of selenides NiSe2
and CoSe2, the integrity of the Ni-Co-Se@C is destroyed to some extent as compared to
Ni-Co@C. This morphology change inevitably affects the electron/ion transportation of the
electrode and, consequently, the electrochemical performance during cycling. Nevertheless,
Ni-Co-Se@C still kept its spherical morphology and did not collapse completely, and the
in situ formed carbon materials arising from the MOF precursors can also work as the
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structural support for the system. The morphologies and nanostructure of the Ni-Co@C-
CNT are shown in Figure 2a. Small nanoparticles and CNTs were grown on the irregular
microspheres, which are due to the decomposition of C2H2 catalyzed by nano-nickel and
nano-cobalt-based catalysts (Figure 2a). TEM image (Figure 2b) shows more clearly that
CNTs were grown on the particles. According to the SEM image (Figure 2c), the structure
of Ni-Co-Se@C-CNT microspheres changed after selenization. It can be observed that the
surfaces roughened and became grainy, indicating a decrease in the microsphere integrity.
Nevertheless, the microspheres still kept their spherical morphology, which can also be
identified by the TEM image shown in Figure 2d. Additionally, according to EDS mapping
data (Figure 2e–i), all the Ni, Co, Se and C elements in the Ni-Co-Se@C-CNT microsphere
were observed to distribute uniformly. Due to the low contrast of CNT as compared to the
metal selenides in SEM images and the small size of CNT (~20 nm), they are not obviously
identified from the SEM images in Figure 2c. However, TEM images clearly show the
presence of tubular CNT, as shown in Figure 2d. In comparison, the Ni-Co-Se@C without
generation of CNT did not show any tubular CNT on the surfaces (Figure S5d).
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Figure 2. (a,b) SEM image and TEM image of Ni-Co@C-CNT; morphology characterization of
Ni-Co-Se@C-CNT: (c) SEM image; (d) HRTEM image; (e–i) elemental mapping images.

The crystallographic characteristics of the as-synthesized single or mixed metal se-
lenides were further investigated by XRD (Figure 3a). The peaks at 30.2, 33.8, 37.2, 51.2, 55.9
and 58.2 correspond to NiSe2 phase (PDF 65-5016), while others diffraction signals at 30.6,
37.7, 51.9, 56.9 and 59.2 are indexed to CoSe2 (PDF 65-3327) [13]. Figure 3b further shows
the Raman spectra of Ni-Se@C-CNT, Co-Se@C-CNT, Ni-Co-Se@C and Ni-Co-Se@C-CNT.
The representative characteristic D and G bands of all the samples were observed at about
1327 cm−1 and 1580 cm−1, respectively [32,33]. Compared with the Ni-Co-Se@C-CNT
(0.96), the ID/IG values of Ni-Se@C-CNT (0.94), Ni-Co-Se@C (0.92) and Co-Se@C-CNT (0.90)
were calculated to be lower, indicating more defects may exist in Ni-Co-Se@C-CNT, which
would provide more active sites for its electrochemical storage. N2 adsorption–desorption
isotherms (ADS) were evaluated to estimate the specific Brunauer–Emmett–Teller surface
area (SBET), pore size and distribution of Ni-Co-Se@C-CNT (Figure 3c). The ADS profiles
show a typical hysteresis loop of type IV in the scope of 0.4–1.0 P/P0 [34]. The SBET of Ni-
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Co-Se@C-CNT was calculated to be about 81.3 m2 g−1. The pore size and distributions of
Ni-Co-Se@C-CNT further confirm the presence of mesopores, and the majority of pore sizes
fall in the range of 2 to 10 nm. The porous structure is beneficial to accelerate electron/ion
diffusion dynamics and help improve its electrochemical energy storage characteristics.
The contents of metal and selenium elements in Ni-Co-Se@C-CNT were tested by ICP-OES.
The weight ratios of Ni, Co and Se in Ni-Co-Se@C-CNT were measured to be 14.98, 7.36 and
54.49 wt%, respectively. Therefore, the weight ratios of NiSe2 and CoSe2 were estimated to
be 55.25 wt% and 27.05 wt%, respectively.
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The chemical states and composition of Ni-Co-Se@C-CNT were investigated by XPS
technology. Figure 4a shows the overall survey scan of the Ni-Co-Se@C-CNT composite,
indicating the presence of elements Co, Ni, Se and C. As for Ni 2p spectrum (Figure 4b),
both Ni 2p1/2 and Ni 2p3/2 can be decomposed into three bands, the peaks at 869.8 (Ni
2p1/2) and 852.8 eV (Ni 2p3/2) can correspond to Ni2+. The peaks at 872.5 (Ni 2p1/2) and
854.4 eV (Ni 2p3/2) are attributed to Ni3+ in the surface oxide [35]. As for Co 2p spectrum
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(Figure 4c), the peaks at 793.1 (Co 2p1/2) and 778.1 eV (Co 2p3/2) can correspond to Co2+.
The peaks at 779.2 eV (Co 2p3/2) and 797.4 eV (Co 2p1/2) are assigned to Co3+ [36]. Figure 4d
further presents the Se 3d spectrum with peaks located at 54.8 eV and 55.5 eV for Se 3d5/2
and Se 3d3/2, respectively, while the main peak at 58.7 eV may be related to SeOx [6]. This
observation was consistent with the metal–selenium bonding in NiSe2 and CoSe2.
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The electrochemical performance of the Ni-Co–Se@C-CNT was then evaluated in
supercapacitors with 6 M KOH as the aqueous electrolyte (Figure 5). The distinct faradic
reactions may correspond to the following Equations (1)–(6) [7,13,25,26]:

NiSe2 + H2O + 1/2O2 → Ni(OH)2 + 2Se (1)

CoSe2 + H2O + 1/2O2 → Co(OH)2 + 2Se (2)

3Se + 6OH−→ 2Se2− + SeO3
2− + 3H2O (3)

Ni(OH)2 + OH− ↔ NiOOH + H2O + e− (4)

Co(OH)2 + OH− ↔ CoOOH + H2O + e− (5)

CoOOH + 2OH− ↔ CoO2 + 2H2O + 2e− (6)

NiSe2 and CoSe2 first convert to their corresponding hydroxides together with the
generation of Se. The Se can react with OH- to form Se2− and SeO3

2−. The metal hydrox-
ides then convert to their hydroxide oxide in an alkaline solution with a redox conversion
between Ni2+/Ni3+ and Co2+/Co3+. Then CoOOH can further convert to CoO2. The CV
curves of Ni-Co-Se@C-CNT exhibit prominent redox peaks corresponding to the electro-
chemical transition of Ni2+/Ni3+ and Co2+/Co3+ with the assistance of OH− (Figure 5a,b).
With an increase in the scan rates, the redox peaks shift toward the positive and negative
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voltage, which may be related to the internal resistance of the electrode. Reaction kinetics
and diffusion-controlled contribution of Ni-Co-Se@C-CNT were further evaluated. The
analysis of the voltammetric response of the CV curves at varied scan rates can be described
as follows [13]:

i = avb (7)

i(V) = k1v + k2v1/2 (8)

where i and v, respectively, are the current and scan rate, and a and b are adjustable
parameters. k1 and k2 are constants. When b is close to 1, it indicates that the capacitive-
controlled process mainly takes place at or near the surface of the electrode, while b
approaches 0.5, which corresponds to a diffusion-controlled battery-type behavior. Based
on the calculation, the value of b is 0.7234, implying a dominant diffusion-controlled process
(Figure 5c). Figure 5b shows that the Ni-Co-Se@C-CNT possessed the largest CV integral
area as compared to that of Ni-Se@C-CNT, Co-Se@C-CNT and Ni-Co-Se@C, indicating that
it has a higher specific capacity.
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In addition, the energy storage contributions arising from the capacitive and diffusion-
controlled process can also be quantified using Equation (8). The capacitive contribution
of the Ni-Co-Se@C-CNT electrode is estimated to be 30.73% at 10 mV s−1 (Figure 5d). As
shown in Figure 5d, as the scan rates increase from 10 to 50 mV s−1, the capacitive-controlled
process accounts from 30.73 to 32.71%. This observation reveals that the dominant charge-
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storing mechanism not only originated from the surficial part but also from the bulk
materials, which are diffusion-controlled.

Figure 6a shows the galvanostatic charge–discharge (GCD) curves of Ni-Co-Se@C-
CNT at various currents of 1–10 A g−1. The potential plateaus, which are consistent
with the CV curves shown in Figure 5a, further indicate its battery-type behaviors. The
specific capacities of Ni-Se@C-CNT, Co-Se@C-CNT, Ni-Co-Se@C and Ni-Co-Se@C-CNT
were then calculated from GCD curves (Figure 6b and Figure S6). Ni-Se@C-CNT exhibited
368 C g−1 (736 F g−1) of capacity at 1 A g−1 but dramatically decayed at 10 A g−1, with
48.1% of capacity retention. Co-Se@C-CNT exhibited 190.6 C g−1 (381.2 F g−1) of capacity
at 1 A g−1 but dramatically decayed at 10 A g−1, with 60.9% of capacity retention. Ni-
Co-Se@C possessed 369.6 C g−1 (739.2 F g−1) of capacity at 1 A g−1 but slowly decayed
at 10 A g−1, with only 77.7% of capacity retention. Remarkably, the Ni-Co-Se@C-CNT
electrode exhibited a high specific capacity of 554.1 C g−1 (1108.2 F g−1) at 1 A g−1 with
a superior 89.9% of capacity retention at 10 A g−1. Table S2 presents a comparative
electrochemical performance of the Ni-Co-Se@C-CNT electrode with other previously
reported bimetallic selenides. The superior specific capacity and better rate performance of
the Ni-Co-Se@C-CNT electrode may be related to its small transfer resistance caused by the
in situ growth of CNTs rooted in the system as well as the carbon matrix inherited from the
bimetal–organic frameworks.
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spectra of Ni-Se@C-CNT, Co-Se@C-CNT, Ni-Co-Se@C and Ni-Co-Se@C-CNT electrodes; (d) long-
term cycling performance of Ni-Co-Se@C-CNT at 10 A g−1.
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In order to better explore the reaction between electrode material and electrolyte at
the interface, Electrochemical impedance spectroscopy (EIS) was tested. EIS plots and
equivalent circuit models are shown in Figure 6c. Series resistance (Rs) was obtained from
the intersection of the image and X axis; charge-transfer resistance (Rct) corresponds to the
semicircle diameter in the high-frequency region; Warburg impendence (Zw) results from
ions diffusion, which is related to the slope of the line during the low-frequency region.
During the low-frequency region, the slope of the Ni-Co-Se@C-CNT was significantly
larger than that of Ni-Se@C-CNT, Co-Se@C-CNT and Ni-Co-Se@C, indicating a lower
diffusive resistance. By comparing with their semicircle diameter in the high-frequency
region, the Rs and Rct values of different samples were estimated, i.e., Ni-Co-Se@C-CNT
(0.244 Ω, 0.57 Ω), Ni-Se@C-CNT (0.248 Ω, 6.66 Ω), Co-Se@C-CNT (0.218 Ω, 1.88 Ω) and
Ni-Co-Se@C (0.253 Ω, 2.44 Ω). All samples exhibit similar Rs values, while the Ni-Co-
Se@C-CNT electrode (0.57 Ω) showed the lowest charge transfer resistance, which may
be due to the higher electrical conductivity of the in situ growth of CNTs and the mixed
metal selenide particles. Together with its higher ID/IG value (Raman data), implying
more defects to expose active sites and the mixed metal selenides that are assumed to
provide abundant faradic sties compared to the single metal selenide, the Ni-Co-Se@C-CNT
electrode finally displays the best electrochemical performance. The long-term cyclability
of Ni-Co–Se@C-CNT was also investigated at 10 A g−1. Figure 6d and the inset figure
indicate a capacity retention of about 96.4% after 5000 cycles, implying high structural
stability of the Ni-Co–Se@C-CNT electrode.

Due to the superior electrochemical performance of the Ni-Co-Se@C-CNT in the
three-electrode system, an HSC device with Ni-Co-Se@C-CNT and AC, respectively, as
the cathode and anode, was assembled in 6 M KOH. Figure 7a is a schematic diagram of
the assembled hybrid supercapacitor. The electrochemical performance of AC is shown
in Figure S7. The AC electrode exhibited a typical electric double-layer capacitance
(Figure S7a). Meanwhile, the specific capacity of AC was calculated to be 87.7 C g−1

(175.3 F g−1) at 1 A g−1 based on a three-electrode system (Figure S7b). Figure 7b shows
the CV profiles of the HSC device operated with varied potential windows at 20 mV s−1.
An observable oxygen evolution peak appeared when the potential working window was
scaled up to 1.6 V. Therefore, a potential range between 0 and 1.6 V was applied for the
device. Figure 7c shows the CV curve of Ni-Co-Se@C-CNT//AC HSC at 10–50 mV s−1.
The curve shape remains basically unchanged even at different scanning rates. The results
show that the device has good stability in the charging and discharging process. GCD
curves of HSC at 2–10 A g−1 are shown in Figure 7d. Capacities of 53.7, 46.7, 46.2, 44.4,
39.7, 31.2 C g−1 (respectively, corresponding to 107.3, 93.4, 92.3, 88.8, 79.2 and 63.1 F g−1)
were calculated from the GCD curves (Figure 7e) at 2, 3, 4, 5, 7 and 10 A g−1, respectively.
Notably, more than 58.8% of the original capacity was maintained even at a high current
density of 10 A g−1. Figure 7f shows the Ragone plot of the Ni-Co-Se@C-CNT//AC HSC
device. Obviously, the fabricated Ni-Co-Se@C-CNT//AC HSC delivers a high energy den-
sity of 38.2 Wh kg−1 at a power density of 1602.1 W kg−1. The energy density still retains
22.4 W h kg−1 when the power density is up to 7987.3 W kg−1. The performance of our
assembled device is superior to that of many recently reported devices such as C-20@(Ni,
Co)0.85Se//AC [37], Ni0.67Co0.33Se2//AC [38], NiCoSe2//AC [39], Ni-Co-Se-2//AC [40],
CuCo2Se4//AC [41] and NiCo2Se/MXene//AC [42]. These excellent electrochemical
behaviors of the Ni-Co-Se@C-CNT electrode and its application in the HSC device can be
summarized on account of the following factors. Firstly, the Ni-Co mixed-metal selenides
can supply more faradic reactions compared to single-metal selenides. Secondly, the final
three-dimensional structures basically maintain the spherical morphology of the precursors
to prevent their agglomeration during long-term cycling. Lastly, the encased carbon arising
from the organic ligands and in situ growth of CNT further provide a stable platform for
the active sites as well as for the fast charge transfer and electron transport.
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specific capacities of the HSC device; (f) Ragone plot of the as-assembled device and previously
reported HSC.

3. Experimental
3.1. Materials

Nickel nitrate hexahydrate (Ni(NO3)2 6H2O, ≥98.0%, Sinopharm Chemical Reagent,
Shanghai, China), Cobalt nitrate hexahydrate (Co(NO3)2 6H2O, ≥98.5%, Sinopharm Chem-
ical Reagent, Shanghai, China), N, N-dimethylformamide (DMF, 98%, Sinopharm Chemical
Reagent, Shanghai, China), selenium (Se) powder (≥99.9%, Sinopharm Chemical Reagent,
Shanghai, China) and 1,3,5-homotricarboxylic acid (H3BTC, 98%, Aladdin, Shanghai, China)
were used as received without further purification.

3.2. Preparation of Ni-Co-BTC MOFs

A total amount of 1.75 mmol (0.5085 g) of Ni(NO3)2 6H2O and 0.85 mmol (0.247 g) of
Co(NO3)2 6H2O were first dissolved in 30 mL of DMF. Then 1.4 mmol (0.294 g) of H3BTC
and 1 g of polyvinylpyrrolidone (PVP) were added to the above mixture and stirred at room
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temperature for 1 h. The mixed solution was then transferred into a 50 mL Teflon-lined
stainless autoclave maintained at 150 ◦C for 6 h. After natural cooling to room temperature,
the obtained solids were washed with ethanol three times and dried overnight in an oven
at 60 ◦C to obtain the final product Ni-Co-BTC MOFs. For comparison, Ni-BTC MOFs and
Co-BTC MOFs were synthesized using 2.6 mmol (0.756 g) of Ni(NO3)2 6H2O or Co(NO3)2
6H2O and following the same synthesis procedure.

3.3. Preparation of Ni-Co@C-CNT Structures by Chemical Vapor Deposition

The as-synthesized Ni-Co-BTC MOFs were transferred to a tube furnace and annealed
for 30 min at 500 ◦C with a heating rate of 3 ◦C min−1 in a mixed atmosphere of 5% C2H2
and 95% Ar. After natural cooling to room temperature, the intermediates of Ni-Co@C-CNT
were collected. Ni@C-CNT and Co@C-CNT were obtained following the same method
as control samples. Additionally, Ni-Co-BTC MOFs were calcined in Ar gas instead of
C2H2/Ar to obtain the Ni-Co@C intermediate without the generation of CNTs.

3.4. Preparation of Ni-Co-Se@C-CNT

The Ni-Co@C-CNT and Se powder (1:3, w/w) were loaded into a combustion vessel
separately, with the Se powder placed at the flow upstream within a tube furnace for 2 h
under N2 gas flow at 500 ◦C (heating rate: 3 ◦C min−1). After natural cooling, the black
product was collected and donated as Ni-Co-Se@C-CNT. Ni-Co-Se@C, Ni-Se@C-CNT, and
Co-Se@C-CNT were also prepared in the same way.

3.5. Materials Characterization

The phase, composition and morphology information of the synthesized products
were characterized with X-ray diffraction (XRD, Rigaku, D/MAX-2550V, Cu Kα rays,
Japan, Tokyo). scanning/transmission electron microscopy (SEM: JEOL, JSM-6700F, Japan,
Tokyo; TEM: JEOL, JEM-200CX, Japan, Tokyo). Raman spectroscopy (Renishaw, inVia pius,
London, UK) and X-ray photoelectron spectroscopy (XPS, PerkinElmer, PHI ESCA-5000C,
Waltham, MA, USA). The specific surface area and pore structure were evaluated on a
surface area and porosimetry analyzer (Micromeritics Instrument Corp, ASAP 2020 M+C,
Norcross, GA, USA). The contents of Ni, Co and Se elements were estimated using an
inductively coupled plasma-optical emission spectrometer (PerkinElmer, Optima 2100DV,
Waltham, MA, USA).

3.6. Electrochemical Measurements

The electrochemical performances of the as-synthesized samples were tested in a
conventional three-electrode system (counter electrode: Pt; reference electrode: Hg/HgO;
electrolyte: 6 M KOH) on a CHI760E electrochemical workstation. The voltage window for
the CV and GCD test were set between 0~0.6 V and 0~0.5 V, respectively. Electrochemical
impedance spectroscopy (EIS) was conducted from 0.01 Hz to 1000 kHz. A hybrid super-
capacitor (HSC) device was fabricated using Ni-Co-Se@C-CNT as the cathode, activated
carbon (AC) as anode and NKK TF40 (Nippon Kodoshi Corporation) as the separator. The
charge balance was calculated based on the following equation [13]:

m+/m− = C− × ∆V−/(C+ × ∆V+) (9)

where m, C and ∆V, respectively, represents the mass, specific capacitance and the potential
window of the cathode (+) or anode (−).

The specific capacitance of the electrode (C g−1 or F g−1) was calculated according to
the equation shown as follows:

CQ = I × ∆t/m or CF = I × ∆t/(m × ∆V) (10)
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where I, ∆t, m and ∆V refer to the discharge current, time, weight of active materials and
the potential window, respectively. The corresponding energy density (W h kg−1) and
power density (W kg−1) of the device can be estimated from the following equations:

E = 0.5CF × ∆V2 (11)

P = 3600 × E/∆t (12)

4. Conclusions

In summary, a bi-MOF-derived Ni-Co-Se@C-CNT electrode was constructed by a
facile method. The mixed metal selenides supply more active sites for faradic reactions
compared to single-metal selenides. The in situ growth of CNTs further increases the
electrical conductivity, accelerates electron and ion transport and further improves the
structural stability of the electrode material. The Ni-Co-Se@C-CNT shows a superior cycling
performance, retaining 96.4% of initial capacity after 5000 cycles at 10 A g−1. When applied
as a cathode in supercapacitors, the assembled Ni-Co-Se@C-CNT//AC HSC delivers a
superior energy and power density of 38.2 Wh kg−1 and 1602.1 W kg−1, respectively. The
superior electrode performance of Ni-Co-Se@C-CNT can be attributed to the synergic effect
of the mixed metal selenides that provide abundant faradic reactions and the 3D carbon
support that arises from the organic ligands of the bimetallic organic framework to offer
a conductive matrix towards fast electron/ion transportation. Additionally, the in situ
generations of the CNTs rooted in the Ni-Co-Se@C spheres further provide a stable and
conductive platform for the active sites toward the high-energy storage process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217507/s1. Figure S1: SEM images of (a) Ni-BTC
MOF, (b) Co-BTC MOF, and (c) Ni-Co-BTC MOF; (d) XRD patterns of Ni-BTC MOF, Co-BTC MOF,
and Ni-Co-BTC MOF; Figure S2: FTIR spectra of Ni-BTC MOF, Co-BTC MOF, and Ni-Co-BTC
MOF; Figure S3: SEM images of (a) Ni@C-CNT, (b) Ni-Se@C-CNT, (c) Co@C-CNT, and (d)Co-
Se@C-CNT; Figure S4: XRD patterns of Ni@C-CNT, Co@C-CNT, Ni-Co@C, and Ni-Co@C-CNT;
Figure S5: SEM images of (a) Ni-Co@C, (c) Ni-Co-Se@C; TEM images of (b) Ni-Co@C, (d)Ni-Co-
Se@C; Figure S6: CV curves of (a) Ni-Se@C-CNT, (c) Co-Se@C-CNT, (e) Ni-Co-Se@C electrodes at
various scan rates; GCD curves of (b) Ni-Se@C-CNT, (d) Co-Se@C-CNT, (f) Ni-Co-Se@C electrodes;
Figure S7: Electrochemical properties of AC: CV curves; (b) GCD curves; Table S1: Results of the
elemental content measurements of Ni-Co-Se@C-CNT; Table S2 [43–51]: Electrochemical performance
comparison of bimetallic metal-selenide based supercapacitor electrodes. (SC: specific capacitance;
RP: rate performance; CP: cycling performance.).
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