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Abstract: Graphene oxide-based nanodrug delivery systems are considered one of the most promis-
ing platforms to deliver therapeutic drugs at the target site. In this study, Ru(II)(η6-p-cymene)
complexes containing the benzothiazole ligand were covalently anchored on graphene oxide using
the ultrasonication method. The nanoconjugates GO-NCD-1 and GO-NCD-2 were characterized
by FT-IR, UV-visible, 1H NMR, TGA, SEM, and TEM techniques, which confirmed the successful
loading of both the complexes (NCD 1 and NCD 2) on the carrier with average particle diameter
sizes of 17 ± 6.9 nm and 25 ± 6.5 nm. In vitro DNA binding studies of the nanoconjugates were
carried out by employing various biophysical methods to investigate the binding interaction with
the therapeutic target biomolecule and to quantify the intrinsic binding constant values useful to
understand their binding affinity. Our results suggest (i) high Kb and Ksv values of the graphene-
loaded conjugates (ii) effective cleavage of plasmid DNA at a lower concentration of 7.5 µM and
10 µM via an oxidative pathway, and (iii) fast release of NCD 2 at an acidic pH that could have a
good impact on the controlled delivery of drug. It was found that 90% of the drug was released in an
acidic pH (5.8 pH) environment in 48 h, therefore suggesting pH-responsive behavior of the drug
delivery system. Molecular docking, DFT studies, and cytotoxicity activity against three cancer cell
lines by SRB assay were also performed.

Keywords: Ru(II)(η6-p-cymene) conjugates; graphene oxide loading; ultrasonication; binding studies
with ct-DNA; cytotoxicity

1. Introduction

Cancer is defined as the uncontrolled growth and replication of cells, which even-
tually develop into lumps or masses known as tumors. These tumor cells could migrate
from the primary site of origin to distant tissues via blood or lymph to cause secondary
cancers, termed ‘metastasis’ [1]. Cancer is the most lethal disease globally, with a death
toll of 10 million in 2020, reported by the WHO, which is expected to rise exponentially to
18 million in 2030 [2]. Chemotherapy is widely used for treating metastatic cancer, either
alone or in combination with surgery or radiotherapy. Since, there are many phenotypes of
cancer arising from multiple genetic or epigenetic alterations of cancer types, most of the
chemotherapeutic drugs do not act broadly across different tumor types [3–5]. Classical
metal-based chemotherapeutic agents manifest adverse effects such as dose-limiting side ef-
fects, reduced bioavailability of the drugs at the target site, and a low therapeutic response,
which could be due to various factors such as lower aqueous solubility, less stability, fast
metabolism, and non-selective drug distribution [6–8]. Innovative strategies have led to
the evolution of drug delivery vehicles, which are smart therapeutic systems that react
‘intelligently’, and can overcome the biological barriers to selectively distinguish healthy
cells from cancerous ones, and can release therapeutic agents on-demand at the optimal
dosage range [9]. Different nanomaterials have been used as nanocarriers in healthcare to
modulate the pharmacokinetic profile of chemotherapeutic agents and to reduce the side
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effects of chemotherapy by selective and targeted delivery of these anti-cancer therapeu-
tics [10,11]. These nanocarriers have been developed from various inorganic and organic
components fabricated in different architectures, viz., polymeric micelles, nanoparticles,
liposomes, and dendrimers, which can carry the active cargo easily to the target [12].

Graphene oxide (GO) has been studied intensively for clinical drug delivery practice
due to several advantages, such as relevant specific surface area, exceptional physical and
chemical properties, better biosafety, and ease of modification [13,14]. GO is a sheet of
graphene modified with various functional groups, like carboxyl (−COOH), hydroxyl
(−OH), and epoxy (−O−) which are responsible for its hydrophilicity and therefore could
improve the solubility of some water-insoluble drugs and make it an efficient drug delivery
system [15,16]. Furthermore, GO can be used as a controlled release platform that releases
drugs in a predictable, pre-set persistent manner to maintain a constant drug concentration
for an extended period with a single dosage, which ultimately would result in fewer
adverse effects [17]. Liu et al. reported that the water solubility of an insoluble drug, SN38,
was improved upon its encapsulation in GO functionalized with polyethylene glycol (PEG),
which in turn increased its anticancer response [18]. Similarly, the loading of platinum-
based anticancer drugs such as cisplatin, carboplatin, and oxaliplatin, etc. on polyethylene
glycol, folic acid, chitosan, and high polymer polyethyleneimine grafted onto graphene
oxide were demonstrated to achieve effective delivery of these drugs with lower toxicity.

Literature reports have revealed that ruthenium-based chemotherapeutic drugs exhibit
interesting advantages over cisplatin, including reduced toxicity in cancer cells as demon-
strated by their binding profiles to DNA, enzymes, and protein active sites [19,20]. Never-
theless, the poor aqueous solubility of ruthenium drug candidates such as
fac-[Ru(Cl)3(NH3)3] prevented their clinical use [21]. In the present study, we have loaded
two previously synthesized Ru(II)(η6-p-cymene)-based drug candidates, NCD 1 and NCD
2, onto the nanocarrier graphene oxide by ultrasonication. The nanoconjugate drugs
NCD 1 and NCD 2 contain the ligands 2-amino-4-cholorobenzothiazole and 2-amino-6-
fluorobenzothiazole, which are coordinated to the metal centre in a typical ‘three-legged
piano stool’ geometry. The successful loading and binding of these nanoconjugates were
validated by different spectroscopic techniques. Various biophysical techniques were
employed to investigate the influence of the substituted halogens on the DNA binding
interaction and anticancer activity of these drug conjugates after their successful encapsula-
tion on the nanocarrier [22]. The controlled release behavior of these potential drugs was
studied at different pH levels. Further, the cytotoxicity activity was evaluated against three
cancer cell lines by SRB assay to validate their potency by using an effective drug delivery
system, graphene oxide.

2. Results and Discussion
2.1. Synthesis and Characterization

Two ruthenium-based drug conjugates were synthesized by methods previously
reported by our group [23]. Both of the complexes were encapsulated on graphene oxide
by ultrasonication. A schematic representation of the synthesis of the ruthenium-based
nanoconjugates and graphene oxide loaded ruthenium conjugates GO-NCD-1 and GO-
NCD-2 is shown in Scheme 1a,b, respectively [24].

GO-NCD-1 and GO-NCD-2 were characterized by employing IR spectroscopy, as de-
picted in Figure 1. The infrared spectrum of GO-NCD-1 displayed a band at 3221.00 cm−1

labelled to the υ–(NH) stretching frequency. The infrared spectrum of GO-NCD-2 displayed
a band at 3225.47 cm−1 suggesting the presence of –NH. Υ–(CH2) and υ(–C=N) vibrations
were found at 2966.96 cm−1 and 1610.49 cm−1 in the free complexes and were also observed
in the loaded composites. The IR spectrum of GO exhibited bands at 3439 cm−1, 1720 cm−1,
1568.19 cm−1, and 1199.6 cm−1 corresponding to the –OH stretching vibrations, –C=O
stretching vibrations, C=C stretching vibrations, and C–O stretching vibrations, respec-
tively. Those additional signals in the composites indicate the successful anchoring of both
complexes onto the graphene sheet.
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Figure 1. IR spectra of GO, GO-NCD-1, and GO-NCD-2.

1H NMR spectra of the NCD 1, NCD 2, GO-NCD-1, and GO-NCD-2 were obtained
to get more information about the conjugation of drugs on the carrier and are given in
Figures S10 and S11, Supplementary Materials. The characteristic peaks of NCD 1 and
NCD 2 showed a slight shift after their loading on to the nanocarrier, which suggested
successful encapsulation of these drugs on the nanocarrier. The peak around 10 ppm
corresponding to the carboxyl protons of the carrier, is absent in the loaded composites,
therefore confirming the successful loading of the drug conjugates. Extra peaks in the
region of 2–3 ppm were observed in the loaded composites, which could be assigned to the
protons of the graphene oxide probably shielded by the diamagnetic ring currents [25,26].
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Thermal gravity analysis of the GO, GO-NCD-1, and GO-NCD-2 composites was
carried out to understand their decomposition behavior. The important mass loss events
that occur in TGA are <100 ◦C for the elimination of water, 100–350 ◦C for the loss of
oxygen containing functional groups, and 350–1000 ◦C for the oxidation pyrolysis of carbon
framework [27]. GO-NCD-1 and GO-NCD-2 showed loss of mass at 150, 250, 350, and
500 ◦C therefore confirming the successful loading of both the complexes on graphene
oxide. The plot in Figure 2 shows, in fact, that GO is thermally stable up to 450 ◦C, whereas
both nanocomposites containing the Ru species are found to be thermally less stable, likely
due to the loss of CO2 and N2 (Figure 2, Figures S7 and S8).
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Figure 2. TGA of (a) GO-NCD-1 (b) GO-NCD-2, and (c) GO.

The XRD spectra were measured in the range of 5 to 80◦. In the case of GO, peaks
were observed at 2θ = 11.11◦, 26.59◦, 13.9◦, and 10.54◦, whereas GO-NCD-1 showed peaks
at 13.82◦, 15.46◦, 16.81◦, and 26.4◦. For GO-NCD-2, peaks were observed at 10.84◦, 13.56◦,
15.04◦, 16.04◦, 22.37◦, 26.59◦, and 38.95◦. The peaks at 11.11◦ were assigned to the oxygenic
functional groups and trapped water molecules of the graphene oxide. The broadening of
the peaks of NCD 1 and NCD 2 were observed after their loading on graphene oxide, which
could be due to the decrease in size from bulk to nanoscale dimensions (Figure 3, Figures
S4 and S5). The broadening of the peaks around 26.59◦ suggested the functionalization of
the major oxygen containing groups of the GO, therefore confirming the successful binding
of both drug candidates on the nanodrug carrier [28–30].
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Figure 3. Simulated powder X-ray diffraction patterns of (a) GO-NCD-1 and (b) GO-NCD-2.
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The SEM images of GO displayed the sheet structure and the typical wrinkle structure,
which could be due to the thermal fluctuations and applied stresses. SEM images of the
loaded sheets showed irregular nanoparticle morphology in both the composites, therefore
clearly showing the encapsulation of nanodrug candidates on the graphene oxide sheet.
TEM images provided concrete evidence of the loading of the drug nanoparticles on the
GO surface, with an average particle diameter of 17 ± 6.9 nm and 25 ± 6.5 nm in GO-
NCD-1 and GO-NCD-2, respectively. The diameter size of nanoparticles was calculated by
measuring the diameters of 16 nanoparticles of uniform size and spherical shape chosen
randomly through TEM images for each nanocomposite (Table S1) [31]. Furthermore, EDS
results showed the presence of Ru, N, C, O, and Cl in GO-NCD-1 and Ru, N, C, O, Cl,
and F in GO-NCD-2, therefore providing evidence of the successful anchoring of the drug
nanoparticles onto the carrier surface (Figures 4–6).
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2.2. In Vitro DNA Interaction Studies

The interaction of metal-based chemotherapeutic drug candidates with rational thera-
peutic target ct-DNA in aqueous solutions at neutral pH has received continued attention in
the recent past, as it provides indirect evidence for their use as potential chemotherapeutic
agents and aids in the development of new innovative anticancer drugs. Spectroscopic
techniques such as UV-visible and fluorescence titration experiments were employed to
probe the interaction between ct-DNA and GO-NCD-1 and GO-NCD-2. Their binding
affinity was determined by intrinsic binding constant Kb and Ksv values. Upon increase
in the ct-DNA concentration, an increase in absorption intensity ‘hyperchromism’ with a
slight red shift (3 and 4 nm) was observed [32]. These results indicated that nanocomposites
interacted with ct-DNA via electrostatic or groove binding modes due to the presence of
two labile chloride and nitrogen atoms in the heterocyclic benzothiazole ring anchored to
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the ruthenium center. The intrinsic binding constants, Kb of GO-NCD-1 and GO-NCD-2
were quantified using the Wolfe–Shimmer Equation (1)

[DNA]/(εa − εf)] = [DNA]/(εb − εf)] + 1/Kb(εb − εf) (1)

where [DNA] is the DNA concentration εa, εf, and εb are the apparent (Aabs/[GO-NCD-1
or GO-NCD-2], free, and bound complex extinction coefficients, respectively.

The Kb given by the ratio of slope to intercept of the straight-line plot of [DNA]/(εa − εf)
vs. [DNA] was obtained by monitoring the changes in the absorbance at the corresponding
λmax of the intraligand band. The Gibbs free energy value of the complex was obtained
from Equation (2).

∆G = −RT ln Kb (2)

where R = 8.314 J K−1 mol−1; T = 298 K.
The results revealed a stronger binding interaction of GO-NCD-2 with the biomolecule,

ct-DNA in comparison to GO-NCD-1. However, these values are higher, therefore impli-
cating a higher and better interaction of the graphene-loaded drug candidates (Table 1,
Figure 7).

Table 1. Calculated Kb and Ksv values of GO-NCD-1 and GO-NCD-2.

Nanocomposite Kb (M−1) ∆G (kJ mol−1) Ksv (M−1)

GO-NCD-1 0.57 × 104 (±0.0416) M−1 −21.40 (±1.782) kJ mol−1 0.168 × 103 (±0.01) M−1

GO-NCD-2 0.32 × 105 (±0.02) M−1 −25.7 (±0.351) kJ mol−1 0.153 × 103 (±0.014) M−1
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Figure 7. UV-visible spectra of (a) GO-NCD-1 and (b) GO-NCD-2.

The DNA bound with ethidium bromide was titrated with increasing concentrations
of GO-NCD-1 and GO-NCD-2 and a decrease in emission intensity was observed (Figure 8).
The binding tendency of the nanocomposites to ethidium bromide-bound DNA was mea-
sured by employing the Stern Volmer Equation (3) and the Ksv values were calculated,
which revealed stronger interaction of GO-NCD-2 with the target molecule [33].

Io/I = 1 + Ksv [Q] (3)

where Io and I represent fluorescence intensities in the absence and presence of a quencher,
respectively, Ksv is the quenching constant and [Q] is the concentration of the quencher.



Molecules 2022, 27, 7592 8 of 18

Molecules 2022, 27, x FOR PEER REVIEW 9 of 19 
 

 

Where Iₒ and I represent fluorescence intensities in the absence and presence of a 

quencher, respectively, Ksv is the quenching constant and [Q] is the concentration of the 

quencher. 

 

Figure 8. Emission spectra of (a) GO-NCD-1 and (b) GO-NCD-2. 

Circular dichroism spectroscopy was employed to diagnose the variation in the 

secondary structure of ct-DNA upon its interaction with nanocomposites. The CD 

spectrum of ct-DNA gives a maximum at 248 nm and a minimum at 275 nm which are 

attributed to the base stacking and right-handed helicity of the biomolecule. The spectra 

of both of the nanoconjugates, GO-NCD-1 and GO-NCD-2, were studied with ct-DNA in 

a 1:1 ratio, and the change in the spectra was observed (Figure 9). The ellipticity values for 

both the bands changed significantly, suggesting that both of the nanoconjugates 

interacted with the biomolecule and modified the DNA secondary structure [34]. 

 
Figure 9. Circular dichroism spectra of (a) GO-NCD-1 and (b) GO-NCD-2 with DNA. 

DNA condensates of both the GO-NCD-1 and GO-NCD-2 were prepared, and the 

changes in the morphology upon interaction with ct-DNA were studied by employing the 

SEM. Since transition metals are charged species, they can induce DNA condensation in 

vitro and change the morphology of DNA into bundles, rodlike shapes, toroids, charged 

200 220 240 260 280 300

-40

-30

-20

-10

0

10

20

30

40

C
D

 [
m

d
eg

]

Wavelength (nm)

DNA

DNA+GO-NCD-1

DNA+GO-NCD-2 

Figure 8. Emission spectra of (a) GO-NCD-1 and (b) GO-NCD-2.

Circular dichroism spectroscopy was employed to diagnose the variation in the sec-
ondary structure of ct-DNA upon its interaction with nanocomposites. The CD spectrum
of ct-DNA gives a maximum at 248 nm and a minimum at 275 nm which are attributed
to the base stacking and right-handed helicity of the biomolecule. The spectra of both of
the nanoconjugates, GO-NCD-1 and GO-NCD-2, were studied with ct-DNA in a 1:1 ratio,
and the change in the spectra was observed (Figure 9). The ellipticity values for both the
bands changed significantly, suggesting that both of the nanoconjugates interacted with
the biomolecule and modified the DNA secondary structure [34].
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Figure 9. Circular dichroism spectra of GO-NCD-1 and GO-NCD-2 with DNA.

DNA condensates of both the GO-NCD-1 and GO-NCD-2 were prepared, and the
changes in the morphology upon interaction with ct-DNA were studied by employing
the SEM. Since transition metals are charged species, they can induce DNA condensation
in vitro and change the morphology of DNA into bundles, rodlike shapes, toroids, charged
globules, and segregated chains, depending upon solution conditions (Figure 10). The
results suggested that interaction of the DNA molecules upon condensation with nanocon-
jugates resulted in the formation of globular structures, which indicated the presence of
charged surfaces [35].
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Figure 10. SEM images of (a) GO-NCD-1 and (b) GO-NCD-2 with DNA.

2.3. DNA Cleavage Studies by Electrophoretic Gel Assay

The change in electrophoretic mobility of pBR322 plasmid DNA on agarose gel pro-
vided further evidence for DNA-drug interactions [36–38]. The migration of pBR322
plasmid DNA from its supercoiled form (Form I) to its nicked (Form II) or linear form
(Form III) after its interaction with drug candidates provides evidence for DNA-drug
interactions [39]. To comprehend the cleaving capacity of GO-NCD-1 and GO-NCD-2, in an
aqueous saline Tris-HCl buffer (7.4 pH) a change in the electrophoretic mobility of pBR322
plasmid DNA was observed. The results showed impressive cleavage at 7.5 and 10 µM
concentrations in GO-NCD-1 and GO-NCD-2 and the appearance of the linearized form
(form III) of DNA in both cases was indicative of more lethal double-stranded cleavage
(Figure 11).
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Figure 11. Plasmid DNA cleavage activity of (a) GO-NCD-1 and (b) GO-NCD-2 at different concen-
trations, 2.5 µM to 20 µM (lane 2 to 9) (Lane 1 = DNA control).

To understand the mechanism of cleavage, the cleaving activity of plasmid DNA
was investigated in the presence of reactive oxygen species (ROS) such as EtOH and
DMSO, singlet oxygen scavengers 1O2 (NaN3 and SOD), and groove binding agents such
as methyl green (Figure 12). From the results, it was concluded that EtOH and DMSO do
not inhibit the cleavage process, suggesting non-involvement of (.OH) radicals, and a slight
enhancement in the SC (form I) was observed in the presence of groove binding agents
methyl green and NaN3, therefore suggesting the involvement of reactive oxygen species
in DNA cleavage, which further supported the observed spectroscopic results [40,41].
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Figure 12. Plasmid DNA cleavage activity of (a) GO-NCD-1 and (b) GO-NCD-2. Lane 1 = DNA
control. Lane 2–8 (EtOH, DMSO, NaN3, SOD, MG, H2O2, and GSH).

2.4. Computational Studies

DFT calculations were carried out with Orca software, and the calculation of the orbital
energies was done by using the BP basis set as EHOMO and ELUMO energies play key roles
in the prediction of chemical reactivity. The computational investigations revealed that
the HOMO and LUMO energies for GO-NCD-1 and GO-NCD-2 were equal to −7.522 eV,
−4.32 eV and −7.385 eV, −4.15 eV, respectively, and the energy gap was found to be 0.13
and 0.17 eV, respectively, which indicated the stability of the nanoconjugates [42]. The
calculated energy gap was found to be lower than complexes alone, therefore suggesting
greater reactivity of the GO-NCD-1 and GO-NCD-2, which predict the fast release of drug
candidates from GO, thereby increasing their target-specific therapeutic efficacy (Figure 13).
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Docking studies play an important part in understanding the interaction between
drug candidates and the active site of a receptor [43]. Thus, molecular docking analysis
was performed to elucidate the binding of GO-NCD-1 and GO-NCD-2 at the target site
of the DNA duplex in PDB ID 1bna [44]. The binding energy scores for the GO-NCD-1
and GO-NCD-2 were found to be −276.25 kJ mol−1 and −309.88–276.25 kJ mol−1 which
implicated a stronger binding interaction of GO-NCD-2 than GO-NCD-1 with the ct-DNA
which in turn is greater than the complexes alone, suggesting potent binding affinity of the
loaded nano drug conjugates. This indicated that the graphene oxide loading of ruthenium
complexes enhanced the binding affinity of the free complexes toward the examined target,
ct-DNA (Figure 14).
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2.5. Drug Loading and Release Profile

An important parameter to evaluate the performance of a drug carrier is its drug
loading capacity. UV-visible spectroscopy was used to calculate the drug loading capacity
of the GO. Both the complexes NCD 1 and NCD 2 were found to exhibit strong absorbance
in the 250 nm region, and this wavelength was used to calculate the percentage of drug
loaded onto the carrier (Figure S9). In the loading experiment, 100 µL to 1000 µL of
10−3 M NCD 1 and NCD 2 were added continuously to 1 mL of 10−3 M GO followed by
ultrasonication, and a decrease in the absorbance intensity of the complexes was observed
up to 800 µM and 600 µM, respectively, after that, no significant change in intensity was
observed, suggesting a maximum loading of the drug per mL of 1 mM of GO [45]. The
concentration of GO was estimated from the absorbance peak at 250 nm. The 80% and 60%
encapsulation for both the complexes were calculated using the Equation (4):

Encapsulation capacity = (Amount of Drug loaded on GO ÷ Total amount of drug) × 100 (4)
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The release behavior of the drug was studied at pH values of 7.4 (physiological pH),
6.4, and 5.8 (acidic) up to 24 h. Initially, slow release of the drug (GO-NCD-2) was observed,
but with time, the ability to release the drug was higher at an acidic pH when compared to
physiological pH (Figures 15 and 16). The percentage of drug release was calculated using
the Equation (5):

Drug release = (Amount of released drug ÷ Amount of loaded drug)× 100 (5)
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Figure 16. Proposed drug release mechanism.

Initially, fast release of the drug was observed at pH 5.8 for GO-NCD-1 up to 55 min;
however, after 1 h drug was released fast at physiological pH. In the case of GO-NCD-2,
percent drug release was almost equal at pH 7.4 and 5.8 for up to 12 h. After 12 h percent
drug release was fast at an acidic pH 5.8 which could be caused by the hydrolysis under
acidic conditions. This better release of drug from the nanocarrier in a slightly acidic
environment is favored since cancer cells are found to have a slightly lower pH than normal
cells [46,47]. It is important to note that the pH responsive behavior of the nanocarrier
could have a positive impact on the controlled delivery of the drug [48].
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2.6. Cytotoxicity

Ru(II) complexes are well known for their low toxicity, diverse mechanisms of action,
and non-cross resistance. The cytotoxic activity of GO-NCD-1 and GO-NCD-2 was assessed
against human breast and cervical cancer cell lines, Viz. MCF7, MDA-MB-231, and HeLa, in
terms of the GI50 by SRB assay (Figure 17, Tables S2 and S3). Earlier, the cytotoxic activity
of NCD 1 and NCD 2 was carried out against the same cancer cell lines, and both the
complexes showed moderate cytotoxicity, which could be due to the better hydrophobic
interaction of the p-cymene moiety of the metal complexes with the cell membrane [23].
Moderate cytotoxicity of ruthenium complexes has been previously reported in the lit-
erature by Ivanović et al. for the [(η6-p-cymene)RuCl(picolinic acid)]H2O complex with
an IC50 equal to 81.97 µM. The nanocomposites showed differences in cytotoxic profiles
against the MCF-7 cell line, with better activity of GO-NCD-2 at the 80 µg/mL concentra-
tion. In the case of the MDA-MB-231 cell line nearly identical behavior was observed at
all concentrations. Nanocomposite GO-NCD-2 was found to show good activity against
the HeLa cell line at a concentration of 80 µg/mL and a more pronounced difference in
the activities of GO-NCD-1 and GO-NCD-2 was observed against this cancer cell line.
However, we conclude that the cytotoxic data suggested better and more selective activity
of GO-NCD-2 against the MCF-7 cancer cell line than GO-NCD-1 as 60% of this drug was
found loaded onto graphene oxide whereas for GO-NCD-1, 80% was the recorded encapsu-
lation [49–52]. It has been reported in the literature that ruthenium arene complexes exhibit
good cytotoxicity against cancerous cell lines such as MCF-7 and HeLa and low toxicity
towards normal cell lines at very high doses up to 250 µM [53–56].
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Figure 17. In vitro antitumor activity of GO-NCD-1 and GO-NCD-2 against (a) Human breast cancer
cell line, MCF-7 (b) Human breast cancer cell line, MDA-MB-231 (c) Human cervical cancer cell
line, HeLa.

3. Materials and Method
3.1. Materials

All chemical reagents such as 2-amino-4-cholorobenzothiazole, 2-amino-6-fluoroben-
zothiazole, [Ru(η6-p-cymene)Cl2]2, Ethidium bromide(EB), Tris-(hydroxymethyl)aminome-
thane(Tris-buffer), and Graphene oxide were purchased from Sigma Chemicals Co. All
solvents were purchased from Merck and were used as such, without further purification.

3.2. Instrumentation

FT-IR spectra were recorded on a Perkin Elmer FT-IR spectrometer (PerkinElmer,
Inc., Waltham, MA, USA) in the 4000–400 cm−1 range with KBr. PerkinElmer Lambda
25 (PerkinElmer, Inc.) was used to record electronic spectra using cuvettes of 1 cm path
length. Emission spectra were obtained on a Shimadzu RF-5301 PC spectrofluorometer
(Shimadzu, 1, Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto, Japan). Circular dichro-
ism (CD) measurements were carried out on a Jasco J-815-CD spectropolarimeter (JASCO
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Corporation. 2967-5 Ishikawamachi Hachioji-shi Tokyo, Japan) using a 1 cm quartz cu-
vette. SEM micrographs were recorded with a JEOL JSM-6510LV scanning electron micro-
scope (Akishima, Tokyo, Japan). Electrophoretic assays were carried out in Tris-borate-
ethylenediaminetetraacetic acid buffer at 50 V cm−1 and visualized after incubation using
a UV Transilluminator (Eppendorf, Germany). Molecular docking studies were performed
using the HEX 8.0 software (Marseille, France) and visualized using the Discovery Studio
molecular graphics program (Biovia Discovery Studio 2020, Dessault Systemes, Berkeley,
CA, USA). The DFT studies were performed using orca. X-ray diffractograms (XRD) were
obtained in the 2θ range of 5–80◦ with a scan rate of 8◦/min on a Rigaku Minifax X-ray
diffractometer (Rigaku Tokyo, Japan) with Ni-filtered Cu Ka radiation at a wavelength
of 1.54060 Å.

3.3. Synthesis

The synthesized nanoconjugates were loaded on the graphene oxide by mixing 0.05 g
of GO and 0.05 g of drug nanoconjugate (NCD 1 and NCD 2) in an aqueous dispersion
(100 mL) and stirred for 12 h. The reaction mixture was sonicated for 10 min at intervals,
and subsequently, centrifugation was performed [57].

3.4. Cytotoxicity

The cell lines MCF-7 (obtained from NCI, USA; NCCS, Pune, India), MDA-MB-231
(obtained from NCI, USA; NCCS, Pune, India) and HeLa (obtained from NCI, USA; NCCS,
Pune, India) were grown in RPMI 1640 medium containing 10% fetal bovine serum and
2 mM L-glutamine. Experimental drugs were solubilized in an appropriate solvent at
100 mg/mL, diluted to 1 mg/mL using water, and stored frozen prior to use. At the time
of drug addition, an aliquot of frozen concentrate (1 mg/mL) was thawed and diluted to
100 µg/mL, 200 µg/mL, 400 µg/mL, and 800 µg/mL with complete medium containing
the test article. Percent Growth was expressed as the ratio of the average absorbance of the
test well to the average absorbance of the control wells × 100.

4. Conclusions

In summary, two ruthenium-based metal complexes were loaded onto graphene oxide
by ultrasonication, and the encapsulation was confirmed by employing FT-IR, UV-visible,
1H NMR, TGA, SEM, and TEM, which firmly established the successful loading of the
drug candidates on the nano carrier with a particle diameter size of 17 ± 6.9 nm and
25 ± 6.5 nm. In vitro ct-DNA binding investigation of the nanocomposites GO-NCD-1 and
GO-NCD-2 was carried out by employing UV-visible, fluorescence, and CD with results
showing stronger binding interactions of the nanocomposites with the target biomolecule
with high Kb and Ksv values. Both of the nanocomposites GO-NCD-1 and GO-NCD-2
showed effective cleavage of the pBR322 plasmid DNA at a lower concentration of 7.5
and 10 µM mediated via an oxidative pathway. DFT was employed to get an insight into
the electronic structure of GO-NCD-1 and GO-NCD-2 and the results displayed better
reactivity of the nanocomposites that suggested an enhancement in the binding affinity
of the nanocomposites with the target biomolecule. Molecular docking was performed to
explore the binding of the nanocomposites with the DNA, which showed stronger binding
affinity of the loaded drug candidates than the free complexes, therefore complementing
the spectroscopic results. Cytotoxicity studies were also performed against human breast
and cervical cancer cell lines by the SRB assay, which showed moderate activity of both
the nanocomposites. The drug loading capacities of GO-NCD-1 and GO-NCD-2 were
determined and found to be 80% and 60% respectively. Fast release of drug at acidic pH can
have a good impact on the controlled delivery of drug therefore, the drug release behavior of
the nanocomposites was investigated at pH 7.4, 6.4, and 5.8 and better release of GO-NCD-2
was observed at acidic pH in 48 h which showed that the release of the drug candidates from
the nanocarrier is pH responsive. Therefore, this promising and conveniently prepared
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graphene oxide loaded nanocomposite with good pH sensitivity and better in vitro DNA
interaction may find potential applications in pH-controlled drug delivery.
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Table S3: in vitro antitumor activity data.
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