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Abstract: Metastable intermixed composites (MICs) have received increasing attention in the field of
energy materials in recent years due to their high energy and good combustion performance. The
exploration of ways of improving their potential release of heat is still underway. In this study, Al–
CuO/graphene oxide (GO) nanocomposites were prepared using a combination of the self-assembly
and in-suit synthesis methods. The formulation and experimental conditions were also optimized to
maximize the exothermic heat. The DSC analysis shows that the addition of the GO made a significant
contribution to the exothermic effect of the nanothermite. Compared with the Al–CuO nanothermite,
the exothermic heat of the Al–CuO/GO nanocomposites increase by 306.9–1166.3 J/g and the peak
temperatures dropped by 7.9–26.4 ◦C with different GO content. The reaction mechanism of the
nanocomposite was investigated using a DSC and thermal reaction kinetics analysis. It was found
that, compared with typical thermite reactions, the addition of the GO changed the reaction pathway
of the nanothermite. The reaction products included CuAlO2. Moreover, the combustion properties
of nanocomposite were investigated. This work reveals the unique mechanism of GO in thermite
reactions, which may promote the application of carbon materials in nanothermite.

Keywords: graphene oxide; metastable intermixed composites (MICs); nanothermite; thermokinetics;
combustion

1. Introduction

For decades, metastable intermixed composites (MICs) have attracted more and more
interest in the area of energetic materials (EMs) [1–5]. EMs are critical to the advancement
of microscale energy-demanding systems such as propulsion units, actuation parts, power
and igniters [6–9]. MICs are widely used in propellants, the combustion synthesis of so-
phisticated materials, and high explosives due to their extraordinary energy density, great
ignition performance, and high burning rate [10–14]. Generally, MICs consist of a metal fuel
(aluminum (Al), boron, magnesium, etc.) and an oxidizer (copper oxide (CuO), bismuth tri-
oxide, ferric oxide, etc.), and at least one of them is on the nanometer scale [9,15–18]. Among
them, Al/CuO has received much attention due to its high energy release [19]. The proper-
ties of Al/CuO are actually influenced by its particle morphology [20,21]. Chen et al. [22]
prepared three different morphologies of Al/CuO nano particles (NPs). By changing the
nanoparticle morphology, the properties of the Al/CuO nanothermite changed significantly.
Therefore, the performance of nanothermite agents can be improved by controlling the
particle morphology.

Nanoscale particles are highly reactive materials and are desirable for better com-
bustion efficiency. However, their small particle size also poses some challenges, such
as their tendency to agglomerate, which leads to a reduction in specific surface area [23]
and consequently affects the heat release of the nanothermite. In order to solve above
problem, the immobilization of nanoparticles on certain substrates has been widely used to
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avoid agglomeration [24]. Graphene oxide (GO) nanoflakes have a large surface area and
abundant oxygen-containing groups, which are increasingly chosen as suitable substrates
for anchoring NPs to prevent their aggregation [25–28]. GO is usually prepared by chemical
oxidation and the flaking of graphite powders, which has been widely researched in the
area of energetic materials, biology, and chemistry [29,30]. It has surface activity and can
reduce interfacial energy because its basal plane has abundant oxygen-containing groups
(hydroxyl, carboxylic, epoxide, etc.) [31–33]. The existence of these functional groups
makes it possible for GO to be functionalized with other materials [34–36]. In addition,
GO is thermally unstable, which means it can release a significant amount of heat with
only a little heat excitation. When a heavy GO chunk is heated on a heating source, it has
the potential to explode in a matter of seconds [28,37]. Rajagopalan et al. [38] prepared
Al-Bi2O3/graphene sheet composites using a self-assembly method, and the energy release
of the nanothermite was enhanced from 739 to 1421 J/g. However, the large particle size of
the oxide particles and the high loss during the self-assembly process led to the incomplete
release of potential heat from the MICs.

In this work, Al–CuO/GO nanocomposites were prepared using a combination of
in-suit synthesis and self-assembly routes using Cu(CH3COO)2·H2O as the copper source,
and the experimental conditions and formulations were optimized for investigation. The
nanocomposites and their reaction products were characterized by various means, such as X-
ray diffraction (XRD), energy dispersive spectrum (EDS), transmission electron microscopy
(TEM), etc. Moreover, the thermal behavior of the nanocomposites was studied using
a differential scanning calorimeter (DSC), and their reaction kinetics were investigated.
Finally, the combustion properties of the nanocomposite were studied.

2. Results and Discussion
2.1. Formula Optimization
2.1.1. Effect of Al/CuO Equivalence Ratios

By adjusting the quality of the added raw materials, a series of Al–CuO/GO nanocom-
posites with different Al:CuO equivalent ratios were prepared. The GO content of the
nanocomposites was 5 wt%. The XRD results are shown in Figure 1. In Figure 1a, the
characteristic diffraction peaks of the GO (001) crystal plane appear at about 2θ = 10◦. The
characteristic diffraction peaks of the CuO (−111) and (111) crystal planes corresponding
to the monoclinic system appeared at 35.2◦ and 38.5◦, respectively. In addition, the corre-
sponding characteristic diffraction peaks of the Al (111), (200), (200), and (311) crystal planes
appeared at 38.5◦, 44.7◦, 65.1◦, and 78.2◦, respectively. Nevertheless, the disappearance of
the reflection peak (001) of GO in the composite may demonstrate that the ruled lamellar
pattern of the GO had been disrupted, and that exfoliated GO sheets had formed due to the
loading of Al particles and the growth of CuO nanocrystals. No significant Al peaks were
detected in the nanocomposites due to the small amount of Al in the system, as shown in
Figure 1b. As the Al content grew, the characteristic Al peaks could be identified.

Furthermore, we observed of the morphology and dimensions of the nanostructures in
the composites using SEM. Figure 2 shows the micrographs of the GO, different proportions
of Al to CuO nanocomposites, including a partially enlarged image. As displayed in
Figure 2a, the initial GO sheets were large and smooth with a thickness of about 2.2 nm.
After the reaction, the whole GO was divided into a small piece of GO, and the layer became
rough. As the Al content rose, the agglomeration of Al particles on the GO layer increased.
The dispersion of the loaded particles on the GO was not affected by the change in CuO
and Al equivalence ratios. A large amount of Al can cause particle agglomeration. Figure 2f
is the local enlarged image of the composite of CuO:Al = 1.5:1. Here it can be seen more
clearly that the complete GO layer was divided into small pieces with a thickness of about
0.4 nm. The SEM results show that Al and CuO nanoparticles were successfully loaded
onto the surface of the GO lamellae. Figure 3 shows energy-dispersive X-ray spectroscopy
(EDS) images of the nanocomposite (CuO:Al = 1.5:1). The EDS images indicate that the Al
and CuO were uniformly spread in the composite particles.
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ized by transmission electron microscopy (TEM). The composites without GO were pre-
pared by this method as the control (Figure 4b). The Al particles were observed to be reg-
ular spheres with clear edges and a particle size of about 70–100 nm. The CuO NPs were 
clastic, with a particle size of 5–10 nm, and they were wrapped on the surface of the Al 
particles. Figure 4c is a TEM image of the Al–CuO/GO with a CuO:Al ratio of 1.5:1. The 
result shows that after adding GO to the reaction, compared with the smooth surface of 
the initial GO with a width of about 5 μm in Figure 4a, the GO layer was covered with 
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enlarged image (Figure 4d), it can be seen more clearly that the CuO particles and the Al 
particles were distributed uniformly over the GO sheets, and that the CuO was wrapped 
with Al particles, showing the same shape as the composites without GO (Figure 4b). It is 
notable that, except for the CuO particles on the surface of the GO sheets, some of the CuO 
particles were inserted into the GO sheets. This is because Cu2+ ions are not only adsorbed 
on the surface of GO, but also intercalated GO sheets. The CuO crystals then nucleate and 
grow, which causes the GO lamella to peel off. 
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Figure 1. XRD patterns of Al–CuO/GO nanocomposites: (a) GO, (b) CuO:Al = 2.5:1, (c) CuO:Al =
2:1, (d) CuO:Al = 1.5:1, and (e) CuO:Al = 1:1.
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increased, the heat release first increased and then decreased. When CuO:Al = 1.5:1, the 
maximum heat release was obtained. The reason is that too much Al content causes the par-
ticles to agglomerate, and the reaction does not complete. Too little Al can prevent the CuO 
reaction from completing. This is also consistent with the SEM results (Figure 2) analyzed 
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Figure 2. SEM images of Al–CuO/GO nanocomposites: (a) GO, (b) CuO:Al = 2.5:1, (c) CuO:Al = 2:1,
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In order to further observe the morphology of the composites, they were characterized
by transmission electron microscopy (TEM). The composites without GO were prepared
by this method as the control (Figure 4b). The Al particles were observed to be regular
spheres with clear edges and a particle size of about 70–100 nm. The CuO NPs were clastic,
with a particle size of 5–10 nm, and they were wrapped on the surface of the Al particles.
Figure 4c is a TEM image of the Al–CuO/GO with a CuO:Al ratio of 1.5:1. The result
shows that after adding GO to the reaction, compared with the smooth surface of the initial
GO with a width of about 5 µm in Figure 4a, the GO layer was covered with particles,
and the particles loaded on the GO layer were uniform. The lamellae were destroyed and
divided into smaller lamellae with a width of about 1.5 µm. From the partially enlarged
image (Figure 4d), it can be seen more clearly that the CuO particles and the Al particles
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were distributed uniformly over the GO sheets, and that the CuO was wrapped with Al
particles, showing the same shape as the composites without GO (Figure 4b). It is notable
that, except for the CuO particles on the surface of the GO sheets, some of the CuO particles
were inserted into the GO sheets. This is because Cu2+ ions are not only adsorbed on the
surface of GO, but also intercalated GO sheets. The CuO crystals then nucleate and grow,
which causes the GO lamella to peel off.
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CuO:Al = 1.5 190.8 279.4 554.8 737.8 1045 
CuO:Al = 2 193.7 275.8 555.2 739.8 886 
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Figure 4. TEM images of (a) pure GO, (b) pure Al–CuO, (c) Al–CuO/GO with CuO:Al = 1.5:1, and
(d) a partially enlarged image.

The results of the SEM and TEM show that the Al and CuO particles loaded uniformly
in the composites. This indicates that it is feasible to prepare Al–CuO/GO MICs using this
method in the water–isopropanol system. Changing the equivalence ratio of Al–CuO had
no noticeable effect on the particle loading. As the aluminum particle content increased,
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agglomeration appeared, which indicates that too much Al content is detrimental. However,
too little Al will affect the heat release of the system. Therefore, the optimal ratio needs to
be further analyzed using a DSC.

Figure 5 presents the DSC results of Al–CuO/GO MICs with different equivalence
ratios of Al and CuO, and the parameters are shown in Table 1. The results show that there
was one heat-absorbing peak and three exothermic peaks at 25–1000 ◦C. As the Al content
increased, the heat release first increased and then decreased. When CuO:Al = 1.5:1, the
maximum heat release was obtained. The reason is that too much Al content causes the
particles to agglomerate, and the reaction does not complete. Too little Al can prevent
the CuO reaction from completing. This is also consistent with the SEM results (Figure 2)
analyzed previously.
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Figure 5. DSC results of Al–CuO/GO MICs with different equivalence ratios of Al and CuO.

Table 1. DSC parameters of the Al–CuO/GO MICs at a heating rate of 10 ◦C/min.

Sample Tpk1 (◦C) Tpk2 (◦C) Tpk3 (◦C) Tpk4 (◦C) ∆H (J/g)

CuO:Al = 1 193.1 279.5 568.7 739.5 711.5
CuO:Al = 1.5 190.8 279.4 554.8 737.8 1045
CuO:Al = 2 193.7 275.8 555.2 739.8 886

CuO:Al = 2.5 191.6 278.2 561.5 830.5 811.4

2.1.2. Effect of the GO Content

In this section, all composites have an equivalent ratio of CuO to Al of 1.5:1. The
samples were named “Al–CuO/GO0.5wt%”, “Al–CuO/GO1wt%”, “Al–CuO/GO3wt%”, and
“Al–CuO/GO5wt%”, according to the mass fractions of GO. Figure 6 shows the SEM images
of the nanocomposites with varying GO content. Unlike the equivalence ratio of Al/CuO,
changing the GO content can affect the loading of the particles. The pure Al–CuO (Figure 5a)
are spherical, which is consistent with the TEM images (Figure 4b). It is obvious that with
the increase in GO, the load of the particles on the GO layer decreased. This is because in
the water–isopropanol system, GO is dispersed, the same content of particles are dispersed
on more GO, and the corresponding particles on the GO layer will be reduced. This reduces
the contact area between Al and CuO. The results show that the content of GO had an
important effect on the distribution of Al and CuO particles on the lamella. The effect of
GO content on the heat release of the composites needs to be further analyzed using a DSC.
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Figure 6. SEM images of Al–CuO/GO with (a) 0 wt%, (b) 0.5 wt%, (c) 1.0 wt%, (d) 3.0 wt%, and
(e) 5.0 wt% of GO.

Figure 7 shows the DSC curves of the composites with different GO contents, and the
parameters are shown in Table 2. This can be observed in the range 25–1000 ◦C, with one
heat-absorbing peak and two exothermic peaks. The exothermic peak at around 190 ◦C
disappeared, unlike the peak for GO content of 5% in Figure 5. For thermite (GO: 0wt%),
there were two exothermic peaks at 576.3 ◦C and 727.2 ◦C. Aluminum melts at 660 ◦C.
There was a solid–solid reaction peak between Al NPs and CuO NPs before the melting
point of aluminum. There was a solid–liquid reaction peak after the melting point of
aluminum. Specifically, the solid–solid reaction peak occured between 550~580 ◦C, while
the solid–liquid reaction peak occured between 700~900 ◦C. It can be seen from the Table 2
that the lower the GO content, the greater the heat release of the composite. When the GO
content was 0.5 wt%, the heat release reached 1567 J/g. This was 1166 J/g higher than that
of pure thermite (GO: 0wt%). There was a 128 J/g increase in heat release compared with
the nanocomposites prepared using the single self-assembly method. According to the
SEM analysis results (Figure 5), the lower the GO content, the more particles loaded onto it.
This is why the heat release increased with the decrease in GO content. Moreover, with the
addition of GO, the exothermic peak of thermite reaction was advanced to varying degrees,
and the maximum advance was about 27 ◦C.

The DSC curves indicate that the exothermic and exothermic efficiency of the com-
posite was much higher than that of pure thermite. For the purpose of understanding the
reaction mechanisms of other reactions of Al–CuO/GO MICs, a series of control experi-
ments were carried out.
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Figure 7. DSC results of composites with 0.5 wt%, 1.0 wt%, 3.0 wt%, and 5.0 wt% of GO at a heating
rate of 10 ◦C/min.

Table 2. DSC parameters of Al–CuO/GO with 0 wt%, 0.5 wt%, 1.0 wt%, 3.0 wt%, and 5.0 wt% of GO.

Sample Tpk1 (◦C) Tpk2 (◦C) Tpk3 (◦C) ∆H (J/g)

Al–CuO / 576.3 727.2 400.4
Al–CuO/GO0.5wt% 278.3 568.4 756.2 1567
Al–CuO/GO1wt% 282.2 549.9 782.7 1235
Al–CuO/GO3wt% 278.4 567.1 770.9 709.3
Al–CuO/GO5wt% 279.9 570.6 789.1 726.6

CuO–GO composites were prepared using the same method. The raw GO and CuO–
GO composites were tested using a DSC (Figure 8). The results show that the peak tem-
peratures of the exothermic peaks of the GO and CuO–GO were 217.3 ◦C and 270 ◦C,
respectively. This corresponds to peak 1 and peak 2 of Figure 5. It can be observed from
the DSC parameters that the peak temperature of the Al–CuO/GO MICs was advanced
to a certain extent. There is no GO exothermic peak at about 190 ◦C in Figure 7. This may
be due to the fact that not all of the GO participates in the reaction of forming composites
when the GO content is too high. Figure 9 shows the XRD pattern of the CuO–GO reaction
product. The diffraction peaks of the graphite, CuO, Cu2O, and Cu can be observed. It
can be inferred that some of the CuO reacted with the GO, while the other part did not
participate in the reaction.
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According to the previous analysis, we can conclude that the thermal reaction of the
nanocomposites at about 570 ◦C was not a single thermite reaction. Figure 10 shows the
reaction products of the nanocomposites (CuO:Al = 1.5:1, GO: 0.5 wt%) as characterized
by XRD. Figure 10 shows the peaks of the CuAlO2, Cu2O, Cu, α-Al2O3, and γ-Al2O3.
In addition, most alumina is likely to be amorphous, with wide peaks such as the one
displayed in Figure 10. Depending on the products observed, the entire reaction can be
described by Equation (1). In addition, CuAlO2 can be created by the reactions of Cu2O
with Al2O3 (as illustrated in Equation (2)) [39,40].

5Al + 9CuO→ 6Cu + Cu2O + 2Al2O3 + CuAlO2 (1)

Cu2O + Al2O3 → 2CuAlO2 (2)
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2.2. Optimization of Experimental Conditions

There are many factors affecting the crystalline growth of CuO nanoparticles, among
which the amount of added water and the holding time are the most important conditions
affecting the crystal growth. In this experiment, the composites were prepared with differ-
ent holding times (1 h) and deionized water content (10 mL), which were single variables.
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The crystalline growth state and morphology of the nanoparticles were investigated and
compared with the nanocomposites made under the previous conditions.

The XRD patterns of the nanocomposites with a holding time of 1 h and 10 mL of
deionized water are presented separately in Figure 11a,b. In Figure 11a, the XRD patterns
demonstrate intense diffraction peaks at 38.5◦, 44.7◦, 65.1◦, and 78.2◦, indicating Al in the
nanocomposite. In addition, the diffraction peaks at 35.4◦ and 38.5◦ indicate CuO in the
nanocomposite. Compared with Figure 1, for which the holding time was 30 min, there was
no significant difference in the XRD patterns. By contrast, the XRD patterns in Figure 11b
demonstrate intense diffraction peaks at 36.4◦, 42.3◦, 61.3◦, and 73.5◦, indicating Cu2O in
this nanocomposite. This may be due to the chemical reaction between the Al nanoparticles
and the excessive water forming Al(OH)3 and H2, which reduces CuO to Cu2O under
heating conditions. Aluminum hydroxide is unstable under heating conditions and further
decomposes into alumina. This process is represented by Equations (3)–(5). These results
suggest that the amount of water added has a significant influence on the formation of
the composites.

2Al + 6H2O→2Al(OH)3 + 3H2↑ (3)

2CuO + H2→Cu2O + H2O (4)

2Al(OH)3→Al2O3 + H2O (5)
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Figure 11. XRD patterns for (a) a holding time of 1 h and (b) 10 mL of deionized water.

From the SEM analysis (Figure 12a), it can be seen that the CuO particles loaded on the
GO lamella are obviously larger than those in Figure 2f, and that the distribution uniformity
is poor. The reason for this phenomenon may be that CuO particles were loaded onto the
active sites of the GO lamellae, forming nuclei and crystallizing growth in the reaction.
With the increase in holding time, the CuO particles grew up gradually, resulting in an
uneven distribution of CuO particles on the GO surface. In addition, as can be seen in
Figure 12b, the GO lamellae were also thin, but they were loaded with bulk crystals that
agglomerated on the GO lamellae. From the XRD characterization of Figure 11b, it can be
inferred that these bulk crystals may be Cu2O crystals.
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Figure 12. SEM images for (a) a holding time of 1 h and (b) 10 mL of deionized water.

The crystallinity, grain size, and pattern of the sample were further inspected using
TEM. The TEM images of the nanocomposite with a holding time of 1 h and 10 mL of
deionized water are displayed in Figure 13. It can be observed clearly that the particles are
no longer regular circles (Figure 13b), which is due to the reaction between part of the Al
and the excessive water. Moreover, the particle size of the nanocomposites in Figure 7a can
be estimated to be on the microscale, with particle sizes of approximately 0.6 µm to 1.5 µm.
This means that an increase in holding time will increase the diameter of the inert particles.
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Figure 13. TEM images for (a) a holding time of 1 h and (b) 10 mL of deionized water.

Figure 14 shows the DSC curves obtained at a heat-up rate of 10 ◦C/min in argon,
and the corresponding parameters are listed in Table 3. Compared with Figure 7, the
composites with a holding time of 1 h (Figure 14a) showed no obvious difference in peak
temperature. However, the heat decreased with the increased holding time. As the holding
time increased from 30 min to 1 h, the heat changed from 1045.03 J/g to 652.34 J/g. This
means that the increase in crystal size was not conducive to the reaction at this stage.
Furthermore, the composites with a dosage of deionized water of 10 mL had no peak 2 and
peak 3, meaning that there was no thermite reaction. This is the same as the findings for
the XRD patterns (Figure 11b).
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Table 3. DSC parameters of the nanocomposite at different conditions in argon.

Sample Tpk1 (◦C) Tpk2 (◦C) Tpk3 (◦C) Tpk4 (◦C) ∆H (J/g)

Holding time is 1 h 191.4 278.1 575.3 898.4 652.3
Water content is 10 mL 181.6 / / 740.5 115.2

2.3. Thermokinetics Study

Compared with other multiple heating rate methods, the American Standard Testing
Society (ASTM) E-689 method [37] is more commonly applied to identify the activation
energy, as in Equaiton (6):

ln
(
β/T2

p

)
= ln(AR/E)−E/RTP (6)

where β is the rate of heating, TP is the peak temperature obtained from the DSC param-
eters, A is the pre-exponential factor, E is the activation energy, and R is the gas constant
(8.314 J/mol. K).

The ASTM E-689 method involves a free kinetics model, where the model necessitates
DSC data for at least three experiments at various heating rates. By constructing and
computing a least square “best fit” line using these points, the plot lgβ against 1/Tp was be
obtained, where Tp was the calibrated peak temperature in K. According to the designation
of E698-11, E and A are accessible from Equations (7) and (8), separately. The slope of the
“best fit” line was taken as the value of dlg(β)/d(1/Tp).

E =− 2.19R

[
dlg(β)

d
(
1/Tp

)] (7)

A =
βE
RT2

p
exp

(
E

RTp

)
(8)

The thermal behavior of the Al–CuO/GO under various heating rates is depicted
in the DSC curves shown in Figure 15. As the heating rate grew, the DSC curves of the
Al–CuO/GO gradually moved towards higher temperatures. As is shown in Table 4, with
increasing heating rates, all characteristic temperatures will be raised, including the start
temperature (Te), the peak temperature (Tp), and the final temperature (Tf).
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Figure 15. DSC results of Al–CuO/GO at various heating rates.

Table 4. The characteristic temperatures and exothermic enthalpy of Al–CuO/GO at various heating rates.

β (K·min−1) Te (◦C) Tp (◦C) Tf (◦C) ∆H (J/g)

5 534.3 550.2 575.1 427.8
10 545.2 569.3 602.1 415.3
15 557.1 592.5 618.4 480.7
20 569.0 598.3 624.1 598.5

The process of applying the ASTM E-689 method to the DSC data by the use of software
is depicted in Figure 16. The activation energy of the Al–CuO/GO obtained from the slope of
the plot was 150 ± 17 KJ/mol and the value of ln(A) was also calculated as 6.85 min−1.
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Figure 16. ASTM−698 thermal decomposition fit diagram of Al–CuO/GO at four heating rates.

The thermal reactions of energetic materials are interactions that occur in solid hetero-
geneous systems. The reaction progress for energy-containing composites is not normally
obtained in one step, but in multiple steps. There is a complex relationship between each
step. Each step may have a distinct dynamic model function. Hence, the conventional
methods are unable to accurately characterize the kinetics of this complicated system.
Non-linear multiple regression is an important method for deriving kinetic models. It is a
unique way to determine between various reaction models and to obtain a global model
that provides credible results over the entire range of parameters.
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As indicated in Figure 17, the simulation of the kinetic model using NETZSCH
Thermokinetics was well suited to the experimental data. The optimized values of the
kinetic parameters are presented in Table 5. The value of the correlation coefficient
was 0.974. Based on the calculated outcomes, the kinetic model for Al–CuO/GO was
f(α) = (1 − α) n(1 + kcat·α), where kcat is the autocatalytic kinetic rate constant. The reaction
order (n) of Al–CuO/GO was 1.20, and lgkcat was 1.67.
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Figure 17. DSC curves of Al–CuO/GO at four heating rates compared between experiments
and simulations.

Table 5. The optimal values of the kinetic factors of Al–CuO/GO obtained using the nonlinear
multivariate regression approach.

Kinetic Parameters Al–CuO/GO

lg A (s−1) 4.97
Eα (kJ·mol−1) 134.92

lgkca 1.67
Reaction order (n) 1.20

Correlation coefficient 0.974

2.4. Combustion Performance

Figure 18 shows the photographs of the combustion process of the Al–CuO/GO
with different GO contents. All samples were successfully ignited, and self-sustained
combustion occurred after laser irradiation. The burning rate of the samples was defined as
the average combustion rate from the beginning to the end of combustion (r = ∆x/∆t). Each
sample was measured at least three times, and the average value was taken as the burning
rate of the sample to ensure the reliability of the data. The results are shown in Figure 19. It
can be seen that the Al/CuO sample burned most vigorously and had the highest burning
rate. With increasing GO content, the burning rate of the nanocomposite tended to decrease.
The burning rate of the composite at 5wt% GO content was 80.6 m/s, which was 35.5%
lower than that of pure Al–CuO. This indicates that GO has a negative effect on the burning
rate of thermite. This result is very interesting. Because the high thermal conductivity
of carbon materials can improve the thermal conductivity of composites, this may be
an important factor affecting the combustion properties of the material. However, the
obtained experimental results showed the opposite. This may be due to the poor thermal
conductivity of rGO, a combustion product of GO. During the combustion process, rGO
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is deposited on the combustion end face, which hinders the subsequent convective heat
transfer process.
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3. Experimental
3.1. Materials and Reagents

Nano aluminum (nano-Al, 50 nm, 99.9%, Aladdin, Shanghai, China) and GO (Aladdin,
Shanghai, China) were purchased for this research. The active aluminum content was
65.7%. The Isopropanol (C3H8O), ethanol (C2H6O), and Cupric Acetate Monohydrate
(Cu(CH3COO)2·H2O) were of analytical purity, so there was no need to reprocess them, and
they were bought from Sinopharm Chemical Reagent (Shanghai, China). Sodium dodecyl
sulfate (SDS, Ling Feng Chemical Reagent, Shanghai, China) served as the dispersant.
Distilled water was utilized during the entire working process.

3.2. Preparation of the Al–CuO/GO

In order to obtain the GO-modified Al–CuO with the best performance, we investi-
gated a series of conditions and their effects on the Al–CuO/GO nanocomposites. These
included the equivalent ratio of CuO:Al (2.5:1, 2:1, 1.5:1, and 1:1) and the content of GO
(0 wt%, 0.5 wt%, 1 wt%, 3 wt%, and 5 wt%), in which the ratio of CuO and Al refers to
the molar ratio. At the same time, since the morphology of the CuO particles was closely
related to the experimental conditions, the effects of the holding time and the amount
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of added deionized water were studied. These were single variables during the exper-
iment. Typically, the copper acetate monohydrate (Cu(OAc)2•H2O), Al, and GO were
dissolved in 10 mL of isopropanol by sonicating for 30 min. Then, the Cu(OAc)2•H2O and
Al dispersions were dispersed ultrasonically for 20 min. After this, the GO dispersion was
placed in a round-bottom flask (part of the reflux equipment) and the mixed dispersion of
Cu(OAc)2•H2O and Al was dropped into the GO dispersion under stirring. The mixture
was heated to about 80◦C under vigorous stirring and held at that temperature for 40 min.
Then, 5 mL of deionized water was quickly poured into the above boiling solvent and
heated at 80 ◦C for another 30 min. The solution was cooled to room temperature and
scoured with ethanol. After this, it was dried overnight under vacuum at 55 ◦C.

3.3. Characterization of the Al–CuO/GO

The crystal structure was ascertained by X-ray diffraction (XRD) employing a Bruker
D8 Advance X-ray diffractometer with Cu-Kα radiation. The grazing angle was kept at 1◦

and the 2θ collection angle ranged between 5◦ and 85◦ in 0.02◦ steps with length of stay of
1 s per point. The samples were measured by transmission electron microscopy (TEM) with
a JEOL JEM-2100 microscope at 200 kV. One drop of the sample dispersion was deposited
onto a 300 mesh copper grid coated with a carbon layer. The SEM images were acquired
using a Quanta 250 field emission scanning electron microscope (FEI, America) outfitted
with an energy-dispersive X-ray spectroscopy (EDX) detector.

Differential scanning calorimetry (DSC) analyses were performed on a TA-DSC-Q20
in the range 25–1000 ◦C at a heating rate of 10 ◦C/min under a flow of argon. Based on
the DSC date, the thermokinetic properties of material were studied using NETZSCH
Thermokinetics 3. The kinetic parameters were calculated using the Kissinger Method. It
was feasible to determine the kinetic parameters, such as the pre-exponential factor (A),
activation energy (Ea), and kinetic model (f(α)), to completely describe the entire reaction.

3.4. Burning Rate Measurements

In order to study the effect of GO on the combustion performance of Al–CuO, the
sample was pressed into a 2 mm diameter quartz glass tube and ignited with a pulsed
laser (Nd: YAG, 60 mJ, 6.5 ns). The combustion process was recorded by high-speed
photography at 500,000 frames per second (fps). To ensure the reliability of the data, each
sample underwent the experimental process three times.

4. Conclusions

In summary, Al–CuO/GO nanocomposites were prepared successfully using a combina-
tion of the self-assembly and in-suit synthesis methods. When the equivalence ratio of CuO to
Al was 1.5:1 and the mass fraction of GO was 0.5%, the Al and CuO nanoparticles loaded uni-
formly on the GO sheets. The DSC results confirm that the heat release of the nanocomposite
with this formulation was 1566.7 J/g, which is approximately four times the heat released
by the pure Al–CuO, and the peak temperature dropped by 7.9–26.4 ◦C. As the GO content
increased, the exothermic heat of the composites decreased, indicating that the excess GO
played a negative role in the exothermic reaction of the composites. The introduction of GO
changed the conventional Al–CuO reaction mechanism, and the reaction produced CuAlO2.
The burning rate measurement results show that GO inhibits the combustion of Al–CuO. The
nanocomposite with 5wt% GO content had a 35.5% lower burning rate than pure Al–CuO.
The results show that the self-assembly structure of Al/CuO nanocomposites with GO sheets
has the advantages that its exothermic and combustion performances can be modified, which
may facilitate the practical application of nanothermites.
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