Flavonoids from Sedum japonicum subsp. oryzifolium (Crassulaceae)
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Materials
3.2. General
3.3. Extraction and Isolation
3.4. Identification of Flavonoids
3.4.1. Herbacetin 3-O-glucoside-8-O-arabinoside (1)
3.4.2. Herbacetin 3-O-glucoside-8-O-xyloside (2)
3.4.3. Herbacetin 3-O-xyloside-8-O-glucoside (3)
3.4.4. Herbacetin 3-O-glucoside-8-O-(2‴-acetylxyloside) (4)
3.4.5. Gossypetin 3-O-glucoside-8-O-xyloside (5)
3.4.6. Gossypetin 3-O-glucoside-8-O-arabinoside (6)
3.4.7. Gossypetin 3-O-glucoside-8-O-(2‴-acetylxyloside) (7)
3.4.8. Hibiscetin 3-O-glucoside-8-O-arabinoside (8)
3.4.9. Quercetin (9)
3.4.10. Quercetin 3-O-glucoside (Isoquercitrin, 10)
3.4.11. Quercetin 3-O-xylosyl-(1→2)-rhamnoside-7-O-rhamnoside (11)
3.4.12. Quercetin 3-O-rhamnoside-7-O-glucoside (12)
3.4.13. Kaempferol (13)
3.4.14. Kaempferol 3-O-glucoside (Astragalin, 14)
3.4.15. Kaempferol 7-O-rhamnoside (15)
3.4.16. Kaempferol 3,7-di-O-rhamnoside (16)
3.4.17. Kaempferol 3-O-glucoside-7-O-rhamnoside (17)
3.4.18. Kaempferol 3-O-glucosyl-(1→2)-rhamnoside-7-O-rhamnoside (18)
3.4.19. Kaempferol 3-O-xylosyl-(1→2)-rhamnoside (19)
3.4.20. Kaempferol 3-O-xylosyl-(1→2)-rhamnoside-7-O-rhamnoside (20)
3.4.21. Myricetin 3-O-glucoside (21)
3.4.22. Cyanidin 3-O-glucoside (Chrysanthemin, 22)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ohba, H. Crassulaceae. In Angiospermae, Dicotyledoneae. Archichlamydeae (b); Flora of Japan; Iwatsuki, K., Boufford, D.E., Ohba, H., Eds.; Kodansha: Tokyo, Japan, 2001; Volume IIb, pp. 10–31. ISBN 4-06-154605-8. [Google Scholar]
- Stevens, J.F.; Hart, H.‘t.; Elema, E.; Bolck, A. Flavonoid variation in Eurasian Sedum and Sempervivum. Phytochemistry 1996, 41, 503–512. [Google Scholar] [CrossRef]
- Wolbiś, M.; Królikowska, M. Flavonol glycosides from Sedum acre. Phytochemistry 1988, 27, 3941–3943. [Google Scholar] [CrossRef]
- Wolbiś, M. Flavonol glycosides from Sedum album. Phytochemistry 1989, 28, 2187–2189. [Google Scholar] [CrossRef]
- Warashina, T.; Miyase, T. Flavonoid glycosides from Sedum bulbiferum. Chem. Pharm. Bull. 2017, 65, 1199–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morikawa, T.; Zhang, Y.; Nakamura, S.; Matsuda, H.; Muraoka, O.; Yoshikawa, M. Bioactive constituents from Chinese natural medicines. XXII. Absolute structures of new megastigmane glycosides, sedumosides E1, E2, E3, F1, F2, and G, from Sedum sarmentosum (Crassulaceae). Chem. Pharm. Bull. 2007, 55, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Morikawa, T.; Ninomiya, K.; Zhang, Y.; Yamada, T.; Nakamura, S.; Matsuda, H.; Muraoka, O.; Hayakawa, T.; Yoshikawa, M. Flavonol glycosides with lipid accumulation inhibitory activity from Sedum sarmentosum. Phytochem. Lett. 2012, 5, 53–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Morikawa, T.; Nakamura, S.; Ninomiya, K.; Matsuda, H.; Muraoka, O.; Yoshikawa, M. Bioactive constituents from Chinese natural medicines. XXV. New flavonol bisdesmosides, sarmentosides I, II, III, and IV, with hepatoprotective activity from Sedum sarmentosum (Crassulaceae). Hetelocycles 2007, 71, 1565–1576. [Google Scholar]
- Oh, H.; Kang, D.-G.; Kwan, J.-W.; Kwan, T.-O.; Lee, S.-Y.; Lee, D.-B.; Lee, H.-S. Isolation of angiotensin converting enzyme (ACE) inhibitory flavonoids from Sedum sarmentosum. Biol. Pharm. Bull. 2004, 27, 2035–2037. [Google Scholar] [CrossRef] [Green Version]
- Zong, T.; Jiang, Z.; Zhou, Y.; Sun, J.; Guo, J.; Jin, M.; Zhou, W.; Li, G. Chemical constituents from the whole plants of Sedum sarmentosum Bunge and their chemotaxonomic significance. Biochem. System. Ecol. 2020, 93, 104180. [Google Scholar] [CrossRef]
- Markham, K.R.; Geiger, H. 1H nuclear magnetic resonance spectroscopy of flavonoids and their glycosides in hexadeuterodimethoxylsulfoxide. In The Flavonoids. Advances in Research Since 1986; Harborne, J.B., Ed.; Chapman & Hall: London, UK, 1994; pp. 441–497. ISBN 0-412-48070-0. [Google Scholar]
- Harborne, J.B.; Baxter, H. The Handbook of Natural Flavonoids; John Wiley & Sons: Chichester, UK, 1999; Volume 1, ISBN 0-471-95893-X. [Google Scholar]
- Buckingham, J.; Ranjit, V.; Munashinghe, N. Dictionary of Flavonoids with CD-ROM; CRC Press: Boca Raton, UK, 2015. [Google Scholar]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer: New York, NY, USA, 1970. [Google Scholar]
- Han, W.; Li, M.; Lyu, C.; Hao, Y.; Lu, J. Study on chemical constituents from stems and leaves of Sedum aizoon L. China Medic. Herald 2017, 15, 33–36. [Google Scholar]
- Olennikov, D.N.; Chirikova, N.K. New flavonol glycosides from Rhodiola quadrifida. Chem. Nat. Compd. 2020, 56, 1048–1054. [Google Scholar] [CrossRef]
- Kurkin, V.A.; Zapesochnaya, G.G.; Shchavlinskii, A.N. Flavonoids of the epigeal part of Rhodiola rosea I. Chem. Nat. Compd. 1984, 20, 623–624. [Google Scholar] [CrossRef]
- Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extracted by supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef]
- Petsalo, A.; Jalonen, J.; Tolonen, A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry. J. Chromatog. A 2006, 1112, 224–231. [Google Scholar] [CrossRef]
- Zapesochnaya, G.G.; Kurkin, V.A.; Shchavlinskii, A.N. Flavonoids of the epigeal part of Rhodiola rosea. II. Structure of new glycosides of herbacetin and of gossypetin. Chem. Nat. Compds. 1985, 21, 464–473. [Google Scholar] [CrossRef]
- Thuong, P.T.; Kang, H.J.; Na, M.K.; Jin, W.Y.; Youn, U.J.; Seong, Y.H.; Song, K.-S.; Min, B.-S.; Bae, K.W. Anti-oxidant constituents from Sedum takesimense. Phytochemistry 2007, 68, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
- Iwashina, T.; Yamaguchi, M.; Nakayama, M.; Onozaki, T.; Yoshida, H.; Kawanobu, S.; Okamura, M. Kaempferol glycosides in the flowers of carnation and their contribution to the creamy white flower color. Nat. Prod. Commun. 2010, 5, 1903–1906. [Google Scholar] [CrossRef]
- Iwashina, T.; Kitajima, J.; Matsumoto, S. Flavonoids in the species of Cyrtomium (Dryopteridaceae) and related genera. Biochem. Syst. Ecol. 2006, 34, 14–24. [Google Scholar] [CrossRef]
- Iwashina, T.; Nakata, M.; Nakane, T.; Mizuno, T. Flavonoid glycosides from Hylotelephium sieboldii var. sieboldii and var. ettyuense endemic to Japan. Biochem. Syst. Ecol. 2022, 105, 104505. [Google Scholar] [CrossRef]
- Ohtsuski, T.; Murai, Y.; Iwashina, T.; Setoguchi, H. Geographical differentiation inferred from flavonoid content between coastal and freshwater populations of the coastal plant Lathyrus japonicus (Fabaceae). Biochem. Syst. Ecol. 2013, 51, 243–250. [Google Scholar] [CrossRef]
- Iwashina, T.; Kitajima, J.; Takemura, T. Flavonoids from the leaves of six Corylopsis species (Hamamelidaceae). Biochem. Syst. Ecol. 2012, 44, 361–363. [Google Scholar] [CrossRef]
- Hattori, S.; Hayashi, K. Studien über Anthocyane, II. Über die Farbstoffe aus den roten Herbstblättern von einigen Acer-Arten. Acta Phytochim. 1937, 10, 129–138. [Google Scholar]
Positions | 3 | 4 | 6 | 7 | 8 | |||||
---|---|---|---|---|---|---|---|---|---|---|
δH | δC | δH | δC | δH | δC | δH | δC | δH | δC | |
Herbacetin | Herbacetin | Gossypetin | Gossypetin | Hibiscetin | ||||||
2 | 154.8 | 153.2 | 155.7 | 156.6 | 148.4 | |||||
3 | 133.0 | 132.5 | 133.5 | 133.0 | 133.5 | |||||
4 | 177.0 | 175.2 | 177.2 | 171.4 | 177.4 | |||||
5 | 163.5 | 164.5 | 157.3 | 156.7 | 156.5 | |||||
6 | 6.13 s | 99.7 | 5.66 s | 98.0 | 6.05 s | 100.7 | 6.67 s | 99.7 | 6.27 s | 123.3 |
7 | 156.8 | 157.1 | 157.3 | 156.7 | 156.5 | |||||
8 | 125.2 | 128.0 | 125.7 | 123.0 | 101.0 | |||||
9 | 148.4 | 148.3 | 149.0 | 148.3 | 156.5 | |||||
10 | 102.2 | 102.4 | 101.0 | 101.4 | 103.7 | |||||
1′ | 121.1 | 121.6 | 122.0 | 121.5 | 120.1 | |||||
2′ | 8.25 d (8.8) | 131.1 | 8.21 d (8.8) | 130.8 | 7.83 d (2.4) | 117.6 | 7.79 d (1.6) | 116.9 | 7.35 s | 109.2 |
3′ | 6.85 d (8.8) | 115.0 | 6.80 d (8.8) | 114.7 | 145.2 | 144.5 | 145.3 | |||
4′ | 159.9 | 159.3 | 148.9 | 148.7 | 136.8 | |||||
5′ | 6.85 d (8.8) | 115.0 | 6.80 d (8.8) | 114.7 | 6.81 d (8.8) | 115.6 | 6.83 d (8.0) | 115.2 | 145.3 | |
6′ | 8.25 d (8.8) | 131.1 | 8.21 d (8.8) | 130.8 | 7.70 dd (2.4, 8.4) | 122.1 | 7.59 brd (8.0) | 121.3 | 7.35 s | 109.2 |
3-O-xylose | 3-O-glucose | 3-O-glucose | 3-O-glucose | 3-O-glucose | ||||||
1 | 5.43 d (7.2) | 101.3 | 5.33 d (8.0) | 102.3 | 5.42 d (8.0) | 102.0 | 5.41 d (8.0) | 100.0 | 5.47 d (7.2) | 106.2 |
2 | 3.34 t (8.8) | 73.7 | 3.20 m | 74.3 | 3.29 t (8.8) | 74.6 | 3.22 t (8.4) | 74.0 | 3.36 m | 73.8 |
3 | 3.21 m | 76.0 | 3.21 m | 76.6 | 3.23 t (8.8) | 77.1 | 3.18 m | 76.6 | 3.23 m | 76.6 |
4 | 3.41 m | 69.3 | 3.12 m | 69.8 | 3.14 t (5.6) | 70.4 | 3.12 m | 69.9 | 3.11 m | 69.9 |
5a | 3.14 t (5.6) | 66.1 | 3.11 m | 77.3 | 3.12 m | 78.0 | 3.06 m | 77.5 | 3.15 m | 77.7 |
5b | 3.79 dd (5.6, 11.6) | |||||||||
6a | 3.38 m | 60.9 | 3.36 dd (5.6, 12.0) | 61.6 | 3.31 m | 61.0 | 3.37 m | 61.1 | ||
6b | 3.59 m | 3.60 brd (10.4) | 3.59 brd (10.4) | 3.62 m | ||||||
8-O-glucose | 8-O-xylose | 8-O-arabinose | 8-O-xylose | 8-O-arabinose | ||||||
1 | 4.60 d (8.0) | 106.6 | 5.56 brs | 102.3 | 4.64 d (5.6) | 106.3 | 5.00 d (4.0) | 100.0 | 4.89 d (4.8) | 103.8 |
2 | 3.23 m | 74.2 | 4.89 m | 76.8 | 3.70 m | 71.1 | 5.12 t (4.8) | 77.7 | 3.80 t (5.6) | 70.4 |
3 | 3.21 m | 76.5 | 3.20 m | 76.5 | 3.50 m | 72.6 | 3.21 m | 76.6 | 3.61 m | 71.4 |
4 | 3.11 m | 69.9 | 3.55 m | 71.4 | 3.69 m | 67.2 | 3.44 m | 70.1 | 3.45 dd (2.4, 11.2) | 69.2 |
5a | 3.11 m | 77.5 | 3.64 m | 68.3 | 3.46 brd (10.4) | 65.7 | 3.70 m | 66.1 | 3.44 m | 64.0 |
5b | 3.78 m | 3.84 dd (4.0, 12.0) | 3.85 m | 3.85 dd (4.8, 11.6) | ||||||
6a | 3.36 m | 60.9 | ||||||||
6b | 3.58 brd (11.2) | |||||||||
2‴-acetic acid | 2‴-acetic acid | |||||||||
COOH | 170.2 | 169.5 | ||||||||
CH3 | 2.06 s | 21.1 | 2.02 s | 20.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizuno, T.; Uchiyama, N.; Tanaka, S.; Nakane, T.; Devkota, H.P.; Fujikawa, K.; Kawahara, N.; Iwashina, T. Flavonoids from Sedum japonicum subsp. oryzifolium (Crassulaceae). Molecules 2022, 27, 7632. https://doi.org/10.3390/molecules27217632
Mizuno T, Uchiyama N, Tanaka S, Nakane T, Devkota HP, Fujikawa K, Kawahara N, Iwashina T. Flavonoids from Sedum japonicum subsp. oryzifolium (Crassulaceae). Molecules. 2022; 27(21):7632. https://doi.org/10.3390/molecules27217632
Chicago/Turabian StyleMizuno, Takayuki, Nahoko Uchiyama, Seiji Tanaka, Takahisa Nakane, Hari Prasad Devkota, Kazumi Fujikawa, Nobuo Kawahara, and Tsukasa Iwashina. 2022. "Flavonoids from Sedum japonicum subsp. oryzifolium (Crassulaceae)" Molecules 27, no. 21: 7632. https://doi.org/10.3390/molecules27217632
APA StyleMizuno, T., Uchiyama, N., Tanaka, S., Nakane, T., Devkota, H. P., Fujikawa, K., Kawahara, N., & Iwashina, T. (2022). Flavonoids from Sedum japonicum subsp. oryzifolium (Crassulaceae). Molecules, 27(21), 7632. https://doi.org/10.3390/molecules27217632