Sonication-Free Dispersion of Single-Walled Carbon Nanotubes for High-Sorption-Capacity Aerogel Fabrication
Abstract
:1. Introduction
2. Results
2.1. Characterizations of SWNT Dispersions
2.2. Preparation and Characterizations of SWNT Aerogels
2.3. Applications of SWNT Aerogels for Organic Solvent and Oil Absorption
3. Materials and Methods
3.1. Preparation of Nanotubides
3.2. Preparation of Aqueous Dispersion of SWNTs
3.3. Preparation of SWNT Hydrogels and Aerogels
3.4. Characterizations of SWNT Dispersions and Aerogels
3.5. Organic Solvent Sorption of SWNT Aerogels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Han, J.; Xu, L.; Zhou, J.; Zhao, C.; Ding, S.; Shi, H.; Xiao, M.; Ding, L.; Ma, Z.; et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhang, S.; Zhang, J. Horizontal single-walled carbon nanotube arrays: Controlled synthesis, characterizations, and applications. Chem. Rev. 2020, 120, 12592–12684. [Google Scholar] [CrossRef] [PubMed]
- Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M.D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Franklin, A.D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750. [Google Scholar] [CrossRef] [PubMed]
- Bati, A.S.R.; Yu, L.; Batmunkh, M.; Shapter, J.G. Recent advances in applications of sorted single-walled carbon nanotubes. Adv. Funct. Mater. 2019, 29, 1902273. [Google Scholar] [CrossRef]
- Yang, F.; Wang, M.; Zhang, D.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758. [Google Scholar] [CrossRef]
- Dolan, M.; Watts, B.P.; Tvrdy, K. Tailored synthesis of hydrogel media for chirality separation of single walled carbon nanotubes. Carbon 2021, 171, 597–609. [Google Scholar] [CrossRef]
- Wu, D.; Yao, Z.; Sun, X.; Liu, X.; Liu, L.; Zhang, R.; Wang, C. Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites. Chem. Eng. J. 2022, 429, 132449. [Google Scholar] [CrossRef]
- Moore, V.C.; Strano, M.S.; Haroz, E.H.; Hauge, R.H.; Smalley, R.E.; Schmidt, J.; Talmon, Y. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 2003, 3, 1379–1382. [Google Scholar] [CrossRef]
- O’Connell, M.J.; Bachilo, S.M.; Huffman, C.B.; Moore, V.C.; Strano, M.S.; Haroz, E.H.; Rialon, K.L.; Boul, P.J.; Noon, W.H.; Kittrell, C.; et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596. [Google Scholar] [CrossRef]
- Clancy, A.J.; Bayazit, M.K.; Hodge, S.A.; Skipper, N.T.; Howard, C.A.; Shaffer, M.S.P. Charged carbon nanomaterials: Redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 2018, 118, 7363–7408. [Google Scholar] [CrossRef] [Green Version]
- Badaire, S.; Poulin, P.; Maugey, M.; Zakri, C. In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. Langmuir 2004, 20, 10367–10370. [Google Scholar] [CrossRef]
- Lucas, A.; Zakri, C.; Maugey, M.; Pasquali, M.; van der Schoot, P.; Poulin, P. Kinetics of nanotube and microfiber scission under sonication. J. Phys. Chem. C 2009, 113, 20599–20605. [Google Scholar] [CrossRef]
- Lee, R.S.; Kim, H.J.; Fischer, J.E.; Thess, A.; Smalley, R.E. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 1997, 388, 255–257. [Google Scholar] [CrossRef]
- Petit, P.; Mathis, C.; Journet, C.; Bernier, P. Tuning and monitoring the electronic structure of carbon nanotubes. Chem. Phys. Lett. 1999, 305, 370–374. [Google Scholar] [CrossRef]
- Pénicaud, A.; Poulin, P.; Derré, A.; Anglaret, E.; Petit, P. Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 2005, 127, 8–9. [Google Scholar] [CrossRef]
- Jiang, C.; Saha, A.; Xiang, C.; Young, C.C.; Tour, J.M.; Pasquali, M.; Martí, A.A. Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 2013, 7, 4503–4510. [Google Scholar] [CrossRef]
- Jiang, C.; Saha, A.; Young, C.C.; Hashim, D.P.; Ramirez, C.E.; Ajayan, P.M.; Pasquali, M.; Martí, A.A. Macroscopic nanotube fibers spun from single-walled carbon nanotube polyelectrolytes. ACS Nano 2014, 8, 9107–9112. [Google Scholar] [CrossRef]
- Jiang, C.; Saha, A.; Martí, A.A. Carbon nanotubides: An alternative for dispersion, functionalization and composites fabrication. Nanoscale 2015, 7, 15037–15045. [Google Scholar] [CrossRef]
- Gui, X.; Wei, J.; Wang, K.; Cao, A.; Zhu, H.; Jia, Y.; Shu, Q.; Wu, D. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621. [Google Scholar] [CrossRef]
- Gui, X.; Zeng, Z.; Lin, Z.; Gan, Q.; Xiang, R.; Zhu, Y.; Cao, A.; Tang, Z. Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation. ACS Appl. Mater. Interfaces 2013, 5, 5845–5850. [Google Scholar] [CrossRef] [PubMed]
- Bryning, M.B.; Milkie, D.E.; Islam, M.F.; Hough, L.A.; Kikkawa, J.M.; Yodh, A.G. Carbon nanotube aerogels. Adv. Mater. 2007, 19, 661–664. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, L.; Sun, G.; Zhan, Z.; Liao, K. Failure mechanisms of carbon nanotube fibers under different strain rates. Carbon 2012, 50, 2887–2893. [Google Scholar] [CrossRef]
- Kim, K.H.; Vural, M.; Islam, M.F. Single-walled carbon nanotube aerogel-based elastic conductors. Adv. Mater. 2011, 23, 2865–2869. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 2016, 10, 4770–4778. [Google Scholar] [CrossRef]
- Gui, X.; Li, H.; Zhang, L.; Jia, Y.; Liu, L.; Li, Z.; Wei, J.; Wang, K.; Zhu, H.; Tang, Z.; et al. A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nanotube sponges. ACS Nano 2011, 5, 4276–4283. [Google Scholar] [CrossRef]
- Kim, K.H.; Oh, Y.; Islam, M.F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566. [Google Scholar] [CrossRef]
- Worsley, M.A.; Kucheyev, S.O.; Kuntz, J.D.; Olson, T.Y.; Han, T.Y.-J.; Hamza, A.V.; Satcher, J.H.; Baumann, T.F. Carbon scaffolds for stiff and highly conductive monolithic oxide–carbon nanotube composites. Chem. Mater. 2011, 23, 3054–3061. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, H.; Wang, H.; Tong, X.; Chen, M.; Di, J.; Li, Q. Crosslinked carbon nanotube aerogel films decorated with cobalt oxides for flexible rechargeable Zn–Air batteries. Small 2017, 13, 1700518. [Google Scholar] [CrossRef]
- Nikolaev, P. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the HiPco process. J. Nanosci. Nanotechnol. 2004, 4, 307–316. [Google Scholar] [CrossRef]
- Stinchcombe, J.; Penicaud, A.; Bhyrappa, P.; Boyd, P.D.; Reed, C.A. Buckminsterfulleride (1-) salts: Synthesis, EPR, and the Jahn-Teller distortion of C60. J. Am. Chem. Soc. 1993, 115, 5212–5217. [Google Scholar] [CrossRef]
- Paolucci, D.; Franco, M.M.; Iurlo, M.; Marcaccio, M.; Prato, M.; Zerbetto, F.; Pénicaud, A.; Paolucci, F. Singling out the electrochemistry of individual single-walled carbon nanotubes in solution. J. Am. Chem. Soc. 2008, 130, 7393–7399. [Google Scholar] [CrossRef]
- Giordani, S.; Bergin, S.D.; Nicolosi, V.; Lebedkin, S.; Kappes, M.M.; Blau, W.J.; Coleman, J.N. Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J. Phys. Chem. B 2006, 110, 15708–15718. [Google Scholar] [CrossRef]
- O’Connell, M.J.; Boul, P.; Ericson, L.M.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K.D.; Smalley, R.E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 2001, 342, 265–271. [Google Scholar] [CrossRef]
- Jiao, S.; Deng, L.; Zhang, X.; Zhang, Y.; Liu, K.; Li, S.; Wang, L.; Ma, D. Evaluation of an ionic porous organic polymer for water remediation. ACS Appl. Mater. Interfaces 2021, 13, 39404–39413. [Google Scholar] [CrossRef]
- Liang, H.-W.; Guan, Q.-F.; Chen, L.-F.; Zhu, Z.; Zhang, W.-J.; Yu, S.-H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 2012, 51, 5101–5105. [Google Scholar] [CrossRef]
- Ozden, S.; Narayanan, T.N.; Tiwary, C.S.; Dong, P.; Hart, A.H.; Vajtai, R.; Ajayan, P.M. 3D macroporous solids from chemically cross-linked carbon nanotubes. Small 2015, 11, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Xie, X.; Yin, K.; Zhou, Y.; Wan, S.; He, L.; Xu, F.; Banhart, F.; Sun, L.; Ruoff, R.S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 2012, 22, 4421–4425. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Z.; Fan, J.; Ge, Y.; Yin, J.; Hu, G. Self-assembly of graphene into three-dimensional structures promoted by natural phenolic acids. J. Mater. Chem. 2012, 22, 22459–22466. [Google Scholar] [CrossRef]
- Hashim, D.P.; Narayanan, N.T.; Romo-Herrera, J.M.; Cullen, D.A.; Hahm, M.G.; Lezzi, P.; Suttle, J.R.; Kelkhoff, D.; Muñoz-Sandoval, E.; Ganguli, S.; et al. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci. Rep. 2012, 2, 363. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Xin, L.; Yang, B.; Chen, Z.; Wu, Q.; Han, F.; Hao, S.; Feng, L.; Wang, X.; Wang, S.; et al. Sonication-Free Dispersion of Single-Walled Carbon Nanotubes for High-Sorption-Capacity Aerogel Fabrication. Molecules 2022, 27, 7657. https://doi.org/10.3390/molecules27217657
Li D, Xin L, Yang B, Chen Z, Wu Q, Han F, Hao S, Feng L, Wang X, Wang S, et al. Sonication-Free Dispersion of Single-Walled Carbon Nanotubes for High-Sorption-Capacity Aerogel Fabrication. Molecules. 2022; 27(21):7657. https://doi.org/10.3390/molecules27217657
Chicago/Turabian StyleLi, Dong, Liantao Xin, Bocheng Yang, Zizheng Chen, Qianru Wu, Fangqian Han, Shulan Hao, Lihu Feng, Xiaoyu Wang, Shiying Wang, and et al. 2022. "Sonication-Free Dispersion of Single-Walled Carbon Nanotubes for High-Sorption-Capacity Aerogel Fabrication" Molecules 27, no. 21: 7657. https://doi.org/10.3390/molecules27217657
APA StyleLi, D., Xin, L., Yang, B., Chen, Z., Wu, Q., Han, F., Hao, S., Feng, L., Wang, X., Wang, S., Wang, L., & He, M. (2022). Sonication-Free Dispersion of Single-Walled Carbon Nanotubes for High-Sorption-Capacity Aerogel Fabrication. Molecules, 27(21), 7657. https://doi.org/10.3390/molecules27217657