Identification of Antiviral Compounds against Monkeypox Virus Profilin-like Protein A42R from Plantago lanceolata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure Collection
2.2. Virtual Screening
2.3. Re-Docking
2.4. Molecular Dynamics (MD) Simulation, PCA Analysis, and ADME
3. Results and Discussion
3.1. Virtual Screening and Redocking Analysis
3.2. Re-Docking Top Hits
3.3. Protein-Ligand Interaction
3.4. Molecular Dynamics Analysis
3.4.1. RMSD Analysis
3.4.2. RMSF Analysis
3.5. MD Simulation Protein-Ligand Interaction
3.6. Principal Component Analysis (PCA) and ADME
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durski, K.N.; McCollum, A.M.; Nakazawa, Y.; Petersen, B.W.; Reynolds, M.G.; Briand, S.; Djingarey, M.H.; Olson, V.; Damon, I.K.; Khalakdina, A. Emergence of Monkeypox—West and Central Africa, 1970–2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The Changing Epidemiology of Human Monkeypox—A Potential Threat? A Systematic Review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.G.; Yorita, K.L.; Kuehnert, M.J.; Davidson, W.B.; Huhn, G.D.; Holman, R.C.; Damon, I.K. Clinical Manifestations of Human Monkeypox Influenced by Route of Infection. J. Infect. Dis. 2006, 194, 773–780. [Google Scholar] [CrossRef]
- Heymann, D.L.; Szczeniowski, M.; Esteves, K. Re-Emergence of Monkeypox in Africa: A Review of the Past Six Years. Br. Med. Bull. 1998, 54, 693–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alakunle, E.; Moens, U.; Nchinda, G.; Okeke, M.I. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses 2020, 12, 1257. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019; ISBN 978-0-323-55027-7. [Google Scholar]
- Petersen, E.; Kantele, A.; Koopmans, M.; Asogun, D.; Yinka-Ogunleye, A.; Ihekweazu, C.; Zumla, A. Human Monkeypox: Epidemiologic and Clinical Characteristics, Diagnosis, and Prevention. Infect. Dis. Clin. 2019, 33, 1027–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, N.; Li, G.; Liszewski, M.K.; Atkinson, J.P.; Jahrling, P.B.; Feng, Z.; Schriewer, J.; Buck, C.; Wang, C.; Lefkowitz, E.J.; et al. Virulence Differences between Monkeypox Virus Isolates from West Africa and the Congo Basin. Virology 2005, 340, 46–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marennikova, S.S.; Seluhina, E.M.; Mal’ceva, N.N.; Cimiskjan, K.L.; Macevic, G.R. Isolation and Properties of the Causal Agent of a New Variola-like Disease (Monkeypox) in Man. Bull. World Health Organ. 1972, 46, 599–611. [Google Scholar]
- Ladnyj, I.D.; Ziegler, P.; Kima, E. A Human Infection Caused by Monkeypox Virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 1972, 46, 593–597. [Google Scholar] [PubMed]
- Human Monkeypox—Kasai Oriental, Zaire, 1996–1997. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/00048673.htm (accessed on 9 September 2022).
- Isidro, J.; Borges, V.; Pinto, M.; Sobral, D.; Santos, J.D.; Nunes, A.; Mixão, V.; Ferreira, R.; Santos, D.; Duarte, S.; et al. Phylogenomic Characterization and Signs of Microevolution in the 2022 Multi-Country Outbreak of Monkeypox Virus. Nat. Med. 2022, 28, 1569–1572. [Google Scholar] [CrossRef] [PubMed]
- Kugelman, J.R.; Johnston, S.C.; Mulembakani, P.M.; Kisalu, N.; Lee, M.S.; Koroleva, G.; McCarthy, S.E.; Gestole, M.C.; Wolfe, N.D.; Fair, J.N.; et al. Genomic Variability of Monkeypox Virus among Humans, Democratic Republic of the Congo. Emerg. Infect. Dis. 2014, 20, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Shchelkunov, S.N.; Totmenin, A.V.; Babkin, I.V.; Safronov, P.F.; Ryazankina, O.I.; Petrov, N.A.; Gutorov, V.V.; Uvarova, E.A.; Mikheev, M.V.; Sisler, J.R.; et al. Human Monkeypox and Smallpox Viruses: Genomic Comparison. FEBS Lett. 2001, 509, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Meng, J.; Lin, M.; Lv, R.; Cheng, H.; Zou, L.; Sun, J.; Li, L.; Ren, R.; Wang, S. Structure Prediction of the Entire Proteome of Monkeypox Variants. Acta Mater. Med. 2022, 1, 260–264. [Google Scholar] [CrossRef]
- Giorgi, F.M.; Pozzobon, D.; Di Meglio, A.; Mercatelli, D. Genomic Analysis of the Recent Monkeypox Outbreak; Bioinformatics: Philadelphia, PA, USA, 2022. [Google Scholar]
- Minasov, G.; Inniss, N.L.; Shuvalova, L.; Anderson, W.F.; Satchell, K.J.F. Structure of the Monkeypox Profilin-like Protein A42R Reveals Potential Function Differences from Cellular Profilins. bioRxiv 2022. [Google Scholar] [CrossRef]
- Multi-Country Monkeypox Outbreak: Situation Update. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON390 (accessed on 5 September 2022).
- Monkeypox: Background Information. Available online: https://www.gov.uk/guidance/monkeypox (accessed on 5 September 2022).
- Jezek, Z.; Grab, B.; Szczeniowski, M.V.; Paluku, K.M.; Mutombo, M. Human Monkeypox: Secondary Attack Rates. Bull. World Health Organ. 1988, 66, 465–470. [Google Scholar]
- Hutson, C.L.; Olson, V.A.; Carroll, D.S.; Abel, J.A.; Hughes, C.M.; Braden, Z.H.; Weiss, S.; Self, J.; Osorio, J.E.; Hudson, P.N.; et al. A Prairie Dog Animal Model of Systemic Orthopoxvirus Disease Using West African and Congo Basin Strains of Monkeypox Virus. J. Gen. Virol. 2009, 90, 323–333. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, C.; Chuai, X.; Chiu, S. Monkeypox Virus: A Re-Emergent Threat to Humans. Virol. Sin. 2022, 37, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Olson, V.A.; Laue, T.; Laker, M.T.; Damon, I.K. Detection of Monkeypox Virus with Real-Time PCR Assays. J. Clin. Virol. 2006, 36, 194–203. [Google Scholar] [CrossRef]
- Yinka-Ogunleye, A.; Aruna, O.; Dalhat, M.; Ogoina, D.; McCollum, A.; Disu, Y.; Mamadu, I.; Akinpelu, A.; Ahmad, A.; Burga, J.; et al. Outbreak of Human Monkeypox in Nigeria in 2017–18: A Clinical and Epidemiological Report. Lancet Infect. Dis. 2019, 19, 872–879. [Google Scholar] [CrossRef]
- Orba, Y.; Sasaki, M.; Yamaguchi, H.; Ishii, A.; Thomas, Y.; Ogawa, H.; Hang’ombe, B.M.; Mweene, A.S.; Morikawa, S.; Saijo, M.; et al. Orthopoxvirus Infection among Wildlife in Zambia. J. Gen. Virol. 2015, 96, 390–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulesh, D.A.; Loveless, B.M.; Norwood, D.; Garrison, J.; Whitehouse, C.A.; Hartmann, C.; Mucker, E.; Miller, D.; Wasieloski, L.P.; Huggins, J.; et al. Monkeypox Virus Detection in Rodents Using Real-Time 3′-Minor Groove Binder TaqMan® Assays on the Roche LightCycler. Lab. Investig. 2004, 84, 1200–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhao, H.; Wilkins, K.; Hughes, C.; Damon, I.K. Real-Time PCR Assays for the Specific Detection of Monkeypox Virus West African and Congo Basin Strain DNA. J. Virol. Methods 2010, 169, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful New Tools for Exploring 3D Structures of Biological Macromolecules for Basic and Applied Research and Education in Fundamental Biology, Biomedicine, Biotechnology, Bioengineering and Energy Sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef]
- Van Vliet, K.; Mohamed, M.R.; Zhang, L.; Villa, N.Y.; Werden, S.J.; Liu, J.; McFadden, G. Poxvirus Proteomics and Virus-Host Protein Interactions. Microbiol. Mol. Biol. Rev. 2009, 73, 730–749. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Sabarinathan, R.; Bala, P.; Donipadi, V.; Vashisht, D.; Katika, M.R.; Kandakatla, M.; Mitra, D.; Dalal, A.; Bashyam, M.D. A Comprehensive Profile of Genomic Variations in the SARS-CoV-2 Isolates from the State of Telangana, India. J. Gen. Virol. 2021, 102. [Google Scholar] [CrossRef]
- Fenner, F. (Ed.) Smallpox and Its Eradication; History of international public health; World Health Organization: Geneva, Switzerland, 1988; ISBN 978-92-4-156110-5.
- Fine, P.E.M.; Jezek, Z.; Grab, B.; Dixon, H. The Transmission Potential of Monkeypox Virus in Human Populations. Int. J. Epidemiol. 1988, 17, 643–650. [Google Scholar] [CrossRef]
- FDA. Key Facts about Vaccines to Prevent Monkeypox Disease. 2022. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/key-facts-about-vaccines-prevent-monkeypox-disease (accessed on 2 September 2022).
- Baker, R.O.; Bray, M.; Huggins, J.W. Potential Antiviral Therapeutics for Smallpox, Monkeypox and Other Orthopoxvirus Infections. Antivir. Res. 2003, 57, 13–23. [Google Scholar] [CrossRef]
- FDA Commissioner. FDA Provides Update on Agency Response to Monkeypox Outbreak. Available online: https://www.fda.gov/news-events/press-announcements/fda-provides-update-agency-response-monkeypox-outbreak (accessed on 5 September 2022).
- Siegrist, E.A.; Sassine, J. Antivirals with Activity Against Monkeypox: A Clinically Oriented Review. Clin. Infect. Dis. 2022, ciac622. [Google Scholar] [CrossRef]
- Drugs with Antiviral Activity against Monkeypox Virus—MedMDS. Available online: https://www.medmds.com/2022/08/02/drugs-with-antiviral-activity-against-monkeypox-virus/ (accessed on 6 September 2022).
- Huang, D.-F.; Xie, M.-Y.; Yin, J.-Y.; Nie, S.-P.; Tang, Y.-F.; Xie, X.-M.; Zhou, C. Immunomodulatory Activity of the Seeds of Plantago asiatica L. J. Ethnopharmacol. 2009, 124, 493–498. [Google Scholar] [CrossRef]
- Jančić, R. Botanika Farmaceutika [Botany Pharmaceuticals]; Službeni Glasnik: Beograd, Serbia, 2013. [Google Scholar]
- Samuelsen, A.B. The Traditional Uses, Chemical Constituents and Biological Activities of Plantago Major L. A Review. J. Ethnopharmacol. 2000, 71, 1–21. [Google Scholar] [CrossRef]
- Wichtl, M. Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis. In Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis; Medpharm GmbH Scientific Publishers: Stuttgart, Germany, 2004. [Google Scholar]
- Pol, M.; Schmidtke, K.; Lewandowska, S. Plantago lanceolata—An Overview of Its Agronomically and Healing Valuable Features. Open Agric. 2021, 6, 479–488. [Google Scholar] [CrossRef]
- Sasaki, H.; Nishimura, H.; Morota, T.; Chin, M.; Mitsuhashi, H.; Komatsu, Y.; Maruyama, H.; Guo-Rui, T.; Wei, H.; Yu-Lang, X. Immunosuppressive Principles of Rehmannia Glutinosa Var. Hueichingensis. Planta Med. 1989, 55, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Murai, M.; Tamayama, Y.; Nishibe, S. Phenylethanoids in the Herb of Plantago Lanceolata and Inhibitory Effect on Arachidonic Acid-Induced Mouse Ear Edema. Planta Med. 1995, 61, 479–480. [Google Scholar] [CrossRef]
- Beara, I.N.; Lesjak, M.M.; Orčić, D.Z.; Simin, N.Đ.; Četojević-Simin, D.D.; Božin, B.N.; Mimica-Dukić, N.M. Comparative Analysis of Phenolic Profile, Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Two Closely-Related Plantain Species: Plantago altissima L. and Plantago lanceolata L. LWT-Food Sci. Technol. 2012, 47, 64–70. [Google Scholar] [CrossRef]
- Fleer, H.; Verspohl, E.J. Antispasmodic Activity of an Extract from Plantago lanceolata L. and Some Isolated Compounds. Phytomedicine 2007, 14, 409–415. [Google Scholar] [CrossRef]
- Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: In Silico Methods for Drug Design and Discovery. Front. Chem. 2020, 8, 612. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, G.S.; Maitra, S.S.; Malý, P.; Bharadwaj, S.; Sharma, P.; Dwivedi, V.D. Viral Informatics: Bioinformatics-Based Solution for Managing Viral Infections. Brief. Bioinform. 2022, 23, bbac326. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Pereira, J.; Pereira, J.; Câmara, J.S. Effectiveness of Different Solid-Phase Microextraction Fibres for Differentiation of Selected Madeira Island Fruits Based on Their Volatile Metabolite Profile—Identification of Novel Compounds. Talanta 2011, 83, 899–906. [Google Scholar] [CrossRef]
- Nonaka, K.; Kazama, S.; Goto, A.; Fukuda, H.; Yoshioka, H.; Yoshioka, H. Spin Probe Study on the Interaction of Chitosan-Derived Polymer Surfactants with Lipid Membrane. J. Colloid Interface Sci. 2002, 246, 288–295. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol. Clifton N. J. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappe, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed Atlas of Surface Topography of Proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, K.J.; Sacerdoti, F.D.; Salmon, J.K.; Shan, Y.; Shaw, D.E.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; et al. Molecular Dynamics—Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing—SC ’06, Tampa, FL, USA, 11–17 November 2006; ACM Press: Tampa, FL, USA, 2006; p. 84. [Google Scholar]
- Grant, B.J.; Rodrigues, A.P.C.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S.D. Bio3d: An R Package for the Comparative Analysis of Protein Structures. Bioinformatics 2006, 22, 2695–2696. [Google Scholar] [CrossRef] [Green Version]
- Skjærven, L.; Yao, X.-Q.; Scarabelli, G.; Grant, B.J. Integrating Protein Structural Dynamics and Evolutionary Analysis with Bio3D. BMC Bioinform. 2014, 15, 399. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I. Principal Component Analysis. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1094–1096. ISBN 978-3-642-04898-2. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gökce, H.; Şen, F.; Sert, Y.; Abdel-Wahab, B.F.; Kariuki, B.M.; El-Hiti, G.A. Quantum Computational Investigation of (E)-1-(4-Methoxyphenyl)-5-Methyl-N′-(3-Phenoxybenzylidene)-1 H-1, 2, 3-Triazole-4-Carbohydrazide. Molecules 2022, 27, 2193. [Google Scholar] [CrossRef] [PubMed]
- Dege, N.; Gökce, H.; Doğan, O.E.; Alpaslan, G.; Ağar, T.; Muthu, S.; Sert, Y. Quantum Computational, Spectroscopic Investigations on N-(2-((2-Chloro-4, 5-Dicyanophenyl) Amino) Ethyl)-4-Methylbenzenesulfonamide by DFT/TD-DFT with Different Solvents, Molecular Docking and Drug-Likeness Researches. Colloids Surf. Physicochem. Eng. Asp. 2022, 638, 128311. [Google Scholar] [CrossRef]
- Gümüş, M.; Babacan, Ş.N.; Demir, Y.; Sert, Y.; Koca, İ.; Gülçin, İ. Discovery of Sulfadrug–Pyrrole Conjugates as Carbonic Anhydrase and Acetylcholinesterase Inhibitors. Arch. Pharm. 2022, 355, 2100242. [Google Scholar] [CrossRef]
Ligand (PubChem ID) | Binding Energy (kcal/mol) | Ligand (PubChem ID) | Binding Energy (kcal/mol) | Ligand (PubChem ID) | Binding Energy (kcal/mol) |
---|---|---|---|---|---|
44258091 | −9.9 | 5281778 | −8.4 | 5280443 | −7.3 |
44258090 | −9.6 | 5281788 | −8.4 | 91458 | −7.1 |
174157 | −9.1 | 5318083 | −8.4 | 5280863 | −7.1 |
5481663 | −9 | 10494 | −8.2 | 5319292 | −7.1 |
101131595 | −9 | 14034195 | −8.1 | 91520 | −6.9 |
5280805 | −9 | 5315651 | −8.1 | 100332 | −6.6 |
44593361 | −9 | 24892726 | −8.1 | 14132338 | −6.4 |
5280601 | −8.9 | 84298 | −7.9 | 689043 | −6.2 |
9986606 | −8.9 | 44258433 | −7.9 | 12300213 | −6.2 |
5280637 | −8.8 | 5281605 | −7.8 | 132560907 | −6.1 |
5319484 | −8.8 | 5318987 | −7.8 | 445858 | −6.1 |
6476333 | −8.8 | 1794427 | −7.7 | 637775 | −5.9 |
21603201 | −8.7 | 64945 | −7.7 | 72 | −5.7 |
154809630 | −8.6 | 107848 | −7.7 | 370 | −5.7 |
442664 | −8.6 | 5280445 | −7.6 | 3469 | −5.6 |
5280704 | −8.6 | 46173850 | −7.6 | 1549106 | −5.6 |
5320623 | −8.6 | 5280343 | −7.5 | 8468 | −5.6 |
44423103 | −8.6 | 5281672 | −7.5 | 444539 | −5.5 |
6476333 | −8.5 | 9064 | −7.4 | 135 | −5.4 |
5273567 | −8.5 | 443354 | −7.4 | 338 | −5.3 |
5281800 | −8.5 | 11968737 | −7.4 | −− | −− |
5280804 | −8.4 | 5280633 | −7.3 | −− | −− |
Compounds | Re-Docking Score (kcal/mol) |
---|---|
Luteolin 7,3′-diglucuronide (44258091) | −9.9 |
Luteolin 7-glucuronide-3′-glucoside (44258090) | −9.6 |
Plantagoside (174157) | −9.0 |
Narcissoside (5481663) | −9.0 |
(alphaE,8S,9R)-N-(3,4-Dihydroxyphenethyl)-8-[(3,4-dihydroxyphenethyl)carbamoyl]-9-(1,3-benzodioxole-5-yl)-3aalpha,7aalpha-ethano-1,3-benzodioxole-5-acrylamide (101131595) | −9.0 |
PE8 (Reference) | −4.4 |
S.No. | Complex | H-Bond | Hydrophobic | Polar | π–π Stacking/π-Cation | Positive | Negative |
---|---|---|---|---|---|---|---|
1 | Monkey pox—Luteolin 7,3′-diglucuronide | A: Ser73, A: Arg119, B: Thr71, B: Tyr118 | A: Ala81, A: Met82, A: Tyr118, B: Ala81, B: Tyr118 | A: Thr71, A:Asn72, A:Ser73, A: Thr79, B: Thr71, B: Ser73, B:Thr79 | A: Tyr118 | A: Arg114 A: Arg115 A: Arg119 B: Arg114 B: Arg115 B: Arg119 B: Arg122 | A: Glu83 B: Glu83 |
2 | Monkey pox—Luteolin 7-glucuronide-3′-glucoside | A: Glu83 A: Arg115 A: Tyr118 B: Glu83 B: Tyr118 | A: Ala81, A: Met82, A: Tyr118, B: Ala81, B: Tyr118 | A: Thr71, A:Asn72, A: Ser73, A: Thr79, B: Thr71, B: Ser73, B:Thr79 | A: Tyr118 | A: Arg114 A: Arg115 A: Arg119 B: Arg114 B: Arg115 B: Arg119 B: Arg122 | A: Glu83 B: Glu83 |
3 | Monkey pox—Plantagoside | A: Glu83 A: Arg119 B: Glu83 B: Tyr118 | A: Tyr118 B: Tyr118 | A: Thr71 B: Thr71, B: Ser73, B:Thr79 | A: Tyr118 | A: Arg114 A: Arg115 A: Arg119 A: Arg122 B: Arg114 B: Arg115 B: Arg119 B: Arg122 | A: Glu83 B: Glu83 |
4 | Monkey pox—Narcissoside | A: Glu83 A: Asp123 | A: Tyr118 B: Tyr118 | A: Thr71, A: Ser73, A: Thr79, B: Thr71 B: Thr126 | -- | A: Arg114 A: Arg115 A: Arg119 A: Arg122 B: Arg114 B: Arg115 B: Arg119 B: Arg122 | A: Glu83 A: Asp123 B: Glu83 B: Asp123 |
5 | Monkey pox—(alphaE,8S,9R)-N-(3,4-Dihydroxyphenethyl)-8-[(3,4-dihydroxyphenethyl)carbamoyl]-9-(1,3-benzodioxole-5-yl)-3aalpha,7aalpha-ethano-1,3-benzodioxole-5-acrylamide | A: Thr71, A: Arg115 B: Glu83 | A: Ala81, A: Met82, A: Tyr118, B: Ala81, B: Tyr118 | A: Thr71, A:Asn72, A: Ser73, A: Thr79, B: Thr71, B: Ser73, B:Thr79 | A: Tyr118 A: Arg114 * B: Arg114 * | A: Arg114 A: Arg115 A: Arg119 A: Arg122 B: Arg114 B: Arg115 | A: Glu83 B: Glu83 |
6 | PE8 (reference) | A:Arg127, A: Arg119, B: Glu77, B: Asn78 | A: Ile11, A: Phe17, B: Tyr80 | A: Asn14, A: Thr120, A: His124, B: Asn78, B: Thr126 | -- | A: Lys16, A: Arg115, A: Arg119, A: Arg127, B: Arg129, B: Arg122, | A: Asp10, A: Asp116, A: Asp123, B: Glu78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajrai, L.H.; Alharbi, A.S.; El-Day, M.M.; Bafaraj, A.G.; Dwivedi, V.D.; Azhar, E.I. Identification of Antiviral Compounds against Monkeypox Virus Profilin-like Protein A42R from Plantago lanceolata. Molecules 2022, 27, 7718. https://doi.org/10.3390/molecules27227718
Bajrai LH, Alharbi AS, El-Day MM, Bafaraj AG, Dwivedi VD, Azhar EI. Identification of Antiviral Compounds against Monkeypox Virus Profilin-like Protein A42R from Plantago lanceolata. Molecules. 2022; 27(22):7718. https://doi.org/10.3390/molecules27227718
Chicago/Turabian StyleBajrai, Leena H., Azzah S. Alharbi, Mai M. El-Day, Abrar G. Bafaraj, Vivek Dhar Dwivedi, and Esam I. Azhar. 2022. "Identification of Antiviral Compounds against Monkeypox Virus Profilin-like Protein A42R from Plantago lanceolata" Molecules 27, no. 22: 7718. https://doi.org/10.3390/molecules27227718
APA StyleBajrai, L. H., Alharbi, A. S., El-Day, M. M., Bafaraj, A. G., Dwivedi, V. D., & Azhar, E. I. (2022). Identification of Antiviral Compounds against Monkeypox Virus Profilin-like Protein A42R from Plantago lanceolata. Molecules, 27(22), 7718. https://doi.org/10.3390/molecules27227718