Interaction of Antibiotics and Humic Substances: Environmental Consequences and Remediation Prospects
Abstract
:1. Introduction
2. The Sources and Fate of Antibiotic Pollution in the Environment
- disruption microbial communities by favoring the growth of resistant or tolerant microbial lineages [68];
3. Properties of Antibiotics
4. Sorption of Antibiotics by HS
4.1. Quantitative Characteristics of Antibiotic Sorption by HS
4.2. Discussion of the Quantification of Antibiotics—HS Interaction: Main Issues
4.3. Putative Mechanisms of HS and NOM Interaction with Antibiotics
4.3.1. Temperature Effect
4.3.2. pH Effect
4.3.3. Effect of Ionic Strength and Multivalent Metals
4.4. Discussion of the Putative Mechanisms of Antibiotic–HS Interaction: Main Issues
- ionic interaction (cation exchange);
- formation of metal bridges;
- hydrogen bonding;
- Pi-stacking;
- hydrophobic interaction.
5. Humic-Based Sorbents for Antibiotics
6. Environmental Consequences of Antibiotic–HS Interaction: Effect on ARGs Dissemination
- toxicity of the antibiotic–HS complex for bacteria, which depends both on peculiarities of bacteria and HS;
- effects of HS on the rate of degradation of ARGs, which depends on HS properties;
- a final effect of HS on the efficiency of HGT.
7. Prospects and Research Gaps
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merriam-Webster Dictionary, s.v. “Antibiotic”. Available online: https://www.merriam-webster.com/dictionary/antibiotic (accessed on 10 October 2022).
- Wang, J.; Zhuan, R.; Chu, L. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Sci. Total Environ. 2019, 646, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Drugs.com. Antibiotics Guide. Available online: https://www.drugs.com/article/antibiotics.html (accessed on 10 October 2022).
- Akhil, D.; Lakshmi, D.; Kumar, P.S.; Vo, D.-V.N.; Kartik, A. Occurrence and removal of antibiotics from industrial wastewater. Environ. Chem. Lett. 2021, 19, 1477–1507. [Google Scholar] [CrossRef]
- Lorenzo, P.; Adriana, A.; Subirats, J.; Jessica, S.; Carles, B.; Marinella, F.; Marta, L.; Luis, B.J.; Pierre, S. Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. Chemosphere 2018, 206, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Singh Oberoi, A.; Jia, Y.; Zhang, H.; Kumar Khanal, S.; Lu, H. Insights into fate and removal of antibiotics in engineered biological 2 treatment systems: A critical review. Environ. Sci. Technol. 2019, 53, 7234–7264. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef]
- Wise, R. Antimicrobial resistance: Priorities for action. J. Antimicrob. Chemother. 2002, 49, 585–586. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Grau, S.; Echeverria-Esnal, D.; Gómez-Zorrilla, S.; Navarrete-Rouco, M.E.; Masclans, J.R.; Espona, M.; Gracia-Arnillas, M.P.; Duran, X.; Comas, M.; Horcajada, J.P.; et al. Evolution of antimicrobial consumption during the first wave of COVID-19 pandemic. Antibiotics 2021, 10, 132. [Google Scholar] [CrossRef]
- Vaz, S., Jr.; Lopes, W.T.; Martin-Neto, L. Study of molecular interactions between humic acid from Brazilian soil and the antibiotic oxytetracycline. Environ. Technol. Innov. 2015, 4, 260–267. [Google Scholar] [CrossRef]
- Gu, C.; Karthikeyan, K.G. Sorption of the antibiotic tetracycline to humic-mineral complexes. J. Environ. Qual. 2008, 37, 704–711. [Google Scholar] [CrossRef]
- Zou, Y.; Zheng, W. Modeling manure colloid-facilitated transport of the weakly hydrophobic antibiotic florfenicol in saturated soil columns. Environ. Sci. Technol. 2013, 47, 5185–5192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aristilde, L.; Sposito, G. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances. Environ. Toxicol. Chem. 2013, 32, 1467–1478. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Zhang, Y.J.; Gao, Y.Z.; Boyd, S.A.; Zhu, D.; Li, H. Influence of dissolved organic matter on tetracycline bioavailability to an antibiotic-resistant bacterium. Environ. Sci. Technol. 2015, 49, 10903–10910. [Google Scholar] [CrossRef]
- Ding, Y.; Teppen, B.J.; Boyd, S.A.; Li, H. Measurement of associations of pharmaceuticals with dissolved humic substances using solid phase extraction. Chemosphere 2013, 91, 314–319. [Google Scholar] [CrossRef]
- Ferrie, R.P.; Hewitt, G.E.; Anderson, B.D. A fluorescence quenching analysis of the binding of fluoroquinolones to humic acid. Appl. Spectrosc. 2017, 71, 2512–2518. [Google Scholar] [CrossRef]
- Gu, C.; Karthikeyan, K.G.; Sibley, S.D.; Pedersen, J.A. Complexation of the antibiotic tetracycline with humic acid. Chemosphere 2007, 66, 1494–1501. [Google Scholar] [CrossRef]
- Guo, X.; Ge, J.; Yang, C.; Wu, R.; Dang, Z.; Liu, S. Sorption behavior of tylosin and sulfamethazine on humic acid: Kinetic and thermodynamic studies. RSC Adv. 2015, 5, 58865. [Google Scholar] [CrossRef]
- Guo, X.; Tu, B.; Ge, J.; Yang, C.; Song, X.; Dang, Z. Sorption of tylosin and sulfamethazine on solid humic acid. J. Environ. Sci. 2016, 43, 208–215. [Google Scholar] [CrossRef]
- Lei, K.; Han, X.; Fu, G.; Zhao, J.; Yand, L. Mechanism of ofloxacin fluorescence quenching and its interaction with sequentially extracted dissolved organic matter from lake sediment of Dianchi, China. Environ. Monit. Assess. 2014, 186, 8857–8864. [Google Scholar] [CrossRef]
- Liu, X.; Lu, S.; Liu, Y.; Meng, W.; Zheng, B. Adsorption of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic acid (HA): Characteristics and mechanism. RSC Adv. 2017, 7, 50449. [Google Scholar] [CrossRef]
- Richter, M.K.; Sander, M.; Krauss, M.; Christl, I.; Dahinden, M.G.; Schneider, M.K.; Schwarzenbach, R.P. Cation binding of antimicrobial sulfathiazole to leonardite humic acid. Environ. Sci. Technol. 2009, 43, 6632–6638. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.; Thiele-Bruhn, S.; Eckhardt, K.-U.; Schulten, H.-R. Sorption of sulfonamide antibiotics to soil organic sorbents: Batch experiments with model compounds and computational chemistry. Int. Sch. Res. Not. 2012, 2012, 159189. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Shi, X.; Mao, J.; Zhu, D. Tetracycline sorption to coal and soil humic acids: An examination of humic structural heterogeneity. Environ. Toxicol. Chem. 2010, 29, 1934–1942. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ma, L.; Liu, B.; Zhang, D.; Pan, B. Co-contaminant effects on ofloxacin adsorption onto activated carbon, graphite, and humic acid. Environ. Sci. Pollut. Res. 2017, 24, 23834–23842. [Google Scholar] [CrossRef]
- Wang, R.; Yang, S.; Fang, J.; Wang, Z.; Chen, Y.; Zhang, D.; Yang, C. Characterizing the interaction between antibiotics and humic acid by fluorescence quenching method. Int. J. Environ. Res. Public Health 2018, 15, 1458. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhao, L.; Dong, Y.-H.; Huang, G.-Y. Sorption of norfloxacin onto humic acid extracted from weathered coal. J. Environ. Manag. 2012, 102, 165–172. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, G.; Zhang, X.; Cai, X.; Li, R.; Xie, X.; Wang, Z. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water. Sci. Total Environ. 2019, 688, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, K.; Shan, R.; Han, Z.; Shao, Y.; Tian, C. The influence of humification degree of humic acid on its sorption of norfloxacin during sewage sludge composting. Water Air Soil Pollut. 2018, 229, 160. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Ciniglia, C.; de Champdoré, M.; Giudice, R.L.; Marotta, R.; Zuccato, E. Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environ. Sci. Technol. 2004, 38, 6832–6838. [Google Scholar] [CrossRef]
- Batista, A.P.S.; Teixeira, A.C.S.C.; Cooper, W.J.; Cottrell, B.A. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine. Water Res. 2016, 93, 20–29. [Google Scholar] [CrossRef]
- Bialk, H.M.; Simpson, A.J.; Pedersen, J.A. Cross-coupling of sulfonamide antimicrobial agents with model humic constituents. Environ. Sci. Technol. 2005, 39, 4463–4473. [Google Scholar] [CrossRef] [PubMed]
- Bialk, H.M.; Pedersen, J.A. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances. Environ. Sci. Technol. 2008, 42, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Canonica, S.; Schönenberger, U. Inhibitory effect of dissolved organic matter on the transformation of selected anilines and sulfonamide antibiotics induced by the sulfate radical. Environ. Sci. Technol. 2019, 53, 11783–11791. [Google Scholar] [CrossRef]
- Guerard, J.J.; Chin, Y.-P. Photodegradation of ormetoprim in aquaculture and stream-derived dissolved organic matter. J. Agric. Food Chem. 2012, 60, 9801–9806. [Google Scholar] [CrossRef]
- Guerard, J.J.; Chin, Y.-P.; Mash, H.; Hadad, C.M. Photochemical fate of sulfadimethoxine in aquaculture waters. Environ. Sci. Technol. 2009, 43, 8587–8592. [Google Scholar] [CrossRef] [PubMed]
- Gulkowska, A.; Krauss, M.; Rentsch, D.; Hollender, J. Reactions of a sulfonamide antimicrobial with model humic constituents: Assessing pathways and stability of covalent bonding. Environ. Sci. Technol. 2012, 46, 2102–2111. [Google Scholar] [CrossRef] [PubMed]
- Leavey-Roback, S.L.; Krasner, S.W.; Suffet, I.H.M. The effect of natural organic matter polarity and molecular weight on NDMA formation from two antibiotics containing dimethylamine functional groups. Sci. Total Environ. 2016, 572, 1231–1237. [Google Scholar] [CrossRef]
- Li, S.; Hu, J. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms. J. Hazard. Mater. 2016, 318, 134–144. [Google Scholar] [CrossRef]
- Mangalgiri, K.P.; Blaney, L. Elucidating the stimulatory and inhibitory effects of dissolved organic matter from poultry litter on photodegradation of antibiotics. Environ. Sci. Technol. 2017, 51, 12310–12320. [Google Scholar] [CrossRef]
- Michael-Kordatou, I.; Iacovou, M.; Frontistis, Z.; Hapeshi, E.; Dionysiou, D.D.; Fatta Kassinos, D. Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation. Water Res. 2012, 85, 346–358. [Google Scholar] [CrossRef]
- Porras, J.; Bedoya, C.; Silva-Agredo, J.; Santamaría, A.; Fernández, J.J.; Torres-Palma, R.A. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water. Water Res. 2016, 94, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Huang, Q.; Li, S. Transformation and toxicity evaluation of tetracycline in humic acid solution by laccase coupled with 1-hydroxybenzotriazole. J. Hazard. Mater. 2017, 331, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Vione, D.; Koehler, B. Modelled phototransformation kinetics of the antibiotic sulfadiazine in organic matter-rich lakes. Sci. Total Environ. 2018, 645, 1465–1473. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, F.; Wang, F.; Zhang, Y.; Shi, Q.; Han, X.; Geng, H. Molecular characteristics of leonardite humic acid and the effect of its fractionations on sulfamethoxazole photodegradation. Chemosphere 2019, 246, 125642. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef] [PubMed]
- Cuprys, A.; Pulicharla, R.; Lecka, J.; Brar, S.K.; Drogui, P.; Surampalli, R.Y. Ciprofloxacin-metal complexes -stability and toxicity tests in the presence of humic substances. Chemosphere 2018, 202, 549–559. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Li, J.; Wang, Y.; Song, J.; Xia, S.; Jing, H.; Zhao, J. Effects of struvite-humic acid loaded biochar/bentonite composite amendment on Zn(II) and antibiotic resistance genes in manure-soil. Chem. Eng. J. 2019, 375, 122013. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Li, Y.; Yang, H.; Hu, D.; Jin, B.; Li, Y. Application of humic acid changes the microbial communities and inhibits the expression of tetracycline resistance genes in 4-chlorophenol wastewater treatment. J. Environ. Manage. 2019, 250, 109463. [Google Scholar] [CrossRef]
- Yu, Z.; He, P.; Shao, L.; Zhang, H.; Lü, F. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: A preliminary insight into the role of landfill age. Water Res. 2016, 106, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, W.; Lin, H.; Wang, W.; Du, L.; Xing, W. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ. Int. 2018, 116, 60–73. [Google Scholar] [CrossRef]
- Afzal, M.Z.; Yue, R.; Sun, X.-F.; Song, C.; Wang, S.-G. Enhanced removal of ciprofloxacin using humic acid modified hydrogel beads. J. Colloid Interface Sci. 2019, 543, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Balarak, D.; Igwegbe, C.A.; Onyechi, P.C. Photocatalytic degradation of metronidazole using BIOI-MWCNT composites: Synthesis, characterization, and operational parameters. Sigma J. Eng. Nat. Sci. 2019, 37, 1231–1245. [Google Scholar]
- Braschi, I.; Martucci, A.; Blasioli, S.; Mzini, L.L.; Ciavatta, C.; Cossi, M. Effect of humic monomers on the adsorption of sulfamethoxazole sulfonamide antibiotic into a high silica zeolite Y: An interdisciplinary study. Chemosphere 2016, 155, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Pedersen, J.A. Sorption of sulfonamide antimicrobial agents to humic acid-clay complexes. J. Environ. Qual. 2010, 39, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.H.; Chuang, Y.H.; Li, H.; Teppen, B.J.; Boyd, S.A.; Gonzalez, J.M.; Johnston, C.T.; Lehmann, J.; Zhang, W. Sorption of lincomycin by manure-derived biochars from water. J. Environ. Qual. 2016, 45, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urdiales, C.; Gacitua, M.; Villacura, L.; Pizarro, C.; Escudey, M.; Canales, C.; Antilén, M. Variable surface charge of humic acid-ferrihydrite composite: Influence of electrolytes on ciprofloxacin adsorption. J. Hazard. Mater. 2020, 385, 121520. [Google Scholar] [CrossRef]
- Wang, L.; Yang, C.; Lu, A.; Liu, S.; Pei, Y.; Luo, X. An easy and unique design strategy for insoluble humic acid/cellulose nanocomposite beads with highly enhanced adsorption performance of low concentration ciprofloxacin in water. Bioresour. Technol. 2020, 302, 122812. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, J.; Ma, J.; Zhou, Y.; von Gunten, U. Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents. Water Res. 2019, 153, 200–207. [Google Scholar] [CrossRef]
- Yang, C.; Fan, L.; Chen, Y.; Xiong, Y. Effective adsorption of oxytetracycline from aqueous solution by lanthanum modified magnetic humic acid. Colloids Surf. A 2020, 602, 125135. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, H.; Jiang, M. Adsorptive removal of tetracycline from water using Fe (III)-functionalized carbonized humic acid. Chin. J. Chem. Eng. 2020, 28, 2689–2698. [Google Scholar] [CrossRef]
- Sun, Q.; Zheng, H.; Li, Y.; Li, M.; Du, Q.; Wang, C.; Sui, K.; Li, H.; Xia, Y. Calcium alginate/activated carbon/humic acid tri-system porous fibers for removing tetracycline from aqueous solution. Pol. J. Chem. Technol. 2020, 22, 9–16. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, W.; Lu, G.; Meng, F.Q.; Duan, S.B.; Zhang, Z.; Wei, L.S.; Pan, Y.Z. Adsorption of levofloxacin onto mechanochemistry treated zeolite: Modeling and site energy distribution analysis. Sep. Purif. Technol. 2019, 22, 30–34. [Google Scholar] [CrossRef]
- Yao, B.; Liu, Y.; Zou, D. Removal of chloramphenicol in aqueous solutions by modified humic acid loaded with nanoscale zero-valent iron particles. Chemosphere 2019, 226, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Danner, M.C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef]
- Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, N.; Alex, S.A.; Chandrasekaran, N.; Mukherjee, A.; Kannabiran, K. A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts. J. Environ. Chem. Eng. 2021, 9, 104796. [Google Scholar] [CrossRef]
- Gothwal, R.; Shashidhar, T. Antibiotic pollution in the environment: A review. Clean Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Tran, N.H.; Chen, H.; Reinhard, M.; Mao, F.; Gin, K.Y.H. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res. 2016, 104, 461–472. [Google Scholar] [CrossRef]
- Roose-Amsaleg, C.; David, V.; Alliot, F.; Guigon, E.; Crouzet, O.; Laverman, A.M. Synergetic effect of antibiotic mixtures on soil bacterial N2O-reducing communities. Environ. Chem. Lett. 2021, 19, 1873–1878. [Google Scholar] [CrossRef]
- Anh, H.Q.; Le, T.P.Q.; Le, N.D.; Lue, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Ohj, N.-H.; Oeurng, C.; et al. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci. Total Environ. 2021, 764, 142865. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Liu, W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Develop. 2012, 32, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, W.; Li, J.; Yuan, M.; Zhang, J.; Xu, F.; Wang, L. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum). Environ. Poll. 2020, 63 Pt A, 114554. [Google Scholar] [CrossRef]
- Wei, X.; Wu, S.C.; Nie, X.P.; Yediler, A.; Wong, M.H. The effects of residual tetracycline on soil enzymatic activities and plant growth. J. Environ. Sci. Health Part B 2009, 44, 461–471. [Google Scholar] [CrossRef]
- Liu, F.; Ying, G.G.; Tao, R.; Zhao, L.L.; Yang, J.F.; Zhao, L.F. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ. Pollut. 2009, 157, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.G.; Zhou, Q.X.; Luo, Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 2010, 158, 2992–2998. [Google Scholar] [CrossRef] [PubMed]
- Gudda, F.O.; Waigi, M.G.; Odinga, E.S.; Yang, B.; Carter, L.; Gao, Y. Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome. Environ. Pollut. 2020, 264, 114752. [Google Scholar] [CrossRef]
- Li, J.; Cao, J.; Zhu, Y.G.; Chen, Q.L.; Shen, F.; Wu, Y.; Xu, S.; Fan, H.; Da, G.; Huang, R.J.; et al. Global survey of antibiotic resistance genes in air. Environ. Sci. Technol. 2018, 52, 10975–10984. [Google Scholar] [CrossRef] [Green Version]
- AMR Alliance Science-Based PNEC Targets for Risk Assessments. Available online: https://www.amrindustryalliance.org/wp-content/uploads/2020/01/AMR-Table-1-Update-February-2021.pdf (accessed on 21 February 2021).
- Boy-Roura, M.; Mas-Pla, J.; Petrovic, M.; Gros, M.; Soler, D.; Brusi, D.; Menció, A. Towards the understanding of antibiotic occurrence and transport in groundwater: Findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain). Sci. Total Environ. 2018, 612, 1387–1406. [Google Scholar] [CrossRef]
- Lu, Z.-Y.; Ma, Y.-L.; Zhang, J.-T.; Fan, N.-S.; Huang, B.-C.; Jin, R.-C. A critical review of antibiotic removal strategies: Performance and mechanisms. J. Water Process Eng. 2020, 38, 101681. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Larsson, D.G.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016, 86, 140–149. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine. National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound (accessed on 30 March 2021).
- Qiang, Z.; Adams, C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 2004, 38, 2874–2890. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.L.; Riley, C.M. Dissociation and complexation of the fluoroquinolone antimicrobials—An update. J. Pharmac. Biomed. Anal. 1994, 12, 1325–1331. [Google Scholar] [CrossRef]
- Scholar, E. Enoxacin. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Pei, L.; Yang, W.; Fu, J.; Liu, M.; Zhang, T.; Li, D.; Huang, R.; Zhang, L.; Peng, G.; Shu, G.; et al. Synthesis, characterization, and pharmacodynamics study of enrofloxacin mesylate. Drug Des. Dev. Ther. 2020, 14, 715–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djurdjevic, P.; Jelikic-Stankov, M.; Laban, A. High-performance liquid chromatographic assay of fleroxacin in human serum using fluorescence detection. Talanta 2011, 55, 631–638. [Google Scholar] [CrossRef]
- Schott, H.; Astigarrabia, E. Isoelectric points of some sulfonamides: Determination by microelectrophoresis and by calculations involving acid–base strength. J. Pharmac. Sci. 1988, 77, 918–920. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lin, C.-E. Migration behavior and separation of tetracycline antibiotics by micellar electrokinetic chromatography. J. Chromatogr. A 1998, 802, 95–105. [Google Scholar] [CrossRef]
- Swallow, S. Fluorine in medicinal chemistry. Prog. Med. Chem. 2015, 54, 65–133. [Google Scholar] [CrossRef]
- Buckingham, D.A.; Clark, C.R.; Nangia, A. The acidity of norfloxacin. Aust. J. Chem. 1990, 43, 301–309. [Google Scholar] [CrossRef]
- Vitorino, G.P.; Barrera, G.D.; Mazzieri, M.R.; Binning, R.C.; Bacelo, D.E. A DFT study of hydration in neutral and zwitterionic norfloxacin. Chem. Phys. Lett. 2006, 432, 538–544. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Sharma, G.; Ala’a, H.; Naushad, M.; Ghfar, A.A.; Stadler, F.J. Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J. 2018, 334, 462–478. [Google Scholar] [CrossRef]
- Bhatt, V.K.; Jee, R.D. Micro-ionization acidity constants for tetracyclines from fluorescence measurements. Anal. Chim. Acta 1985, 167, 233–240. [Google Scholar] [CrossRef]
- Soares, S.; Mateus, N.; Freitas, V.D. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary a-amylase (HSA) by fluorescence quenching. J. Agric. Food Chem. 2007, 55, 6726–6735. [Google Scholar] [CrossRef]
- Bai, L.; Zhao, Z.; Wang, C.; Wang, C.; Liu, X.; Jiang, H. Multi-spectroscopic investigation on the complexation of tetracycline with dissolved organic matter derived from algae and macrophyte. Chemosphere 2017, 187, 421–429. [Google Scholar] [CrossRef]
- Laor, Y.; Rebhun, M. Evidence for Nonlinear Binding of PAHs to Dissolved Humic Acids. Environ. Sci. Technol. 2002, 36, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hu, Z.; Yang, X.; Cai, X.; Wang, Z.; Xie, X. Noncovalent interactions between fluoroquinolone antibiotics with dissolved organic matter: A 1H NMR binding site study and multi-spectroscopic methods. Environ. Pollut. 2019, 248, 815–822. [Google Scholar] [CrossRef]
- Eadie, B.J.; Morehead, N.R.; Val Klump, J.; Landrum, P.F. Distribution of hydrophobic organic compounds between dissolved and particulate organic matter in Green Bay waters. J. Great Lakes Res. 1992, 18, 91–97. [Google Scholar] [CrossRef]
- Peuravuori, J. Partition coefficients of pyrene to lake aquatic humic matter determined by fluorescence quenching and solubility enhancement. Anal. Chim. Acta 2001, 429, 65–73. [Google Scholar] [CrossRef]
- Plis, J.R.V.; Laird, D.A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ. Sci. Technol. 2007, 41, 1928–1933. [Google Scholar] [CrossRef]
- Christl, I.; Ruiz, M.; Schmidt, J.R.; Pedersen, J.A. Clarithromycin and tetracycline binding to soil humic acid in the absence and presence of calcium. Environ. Sci. Technol. 2016, 50, 9933–9942. [Google Scholar] [CrossRef]
- Xu, J.; Yu, H.-Q.; Sheng, G.-P. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis. J. Hazard. Mater. 2016, 302, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hu, Y.-Y.; Li, X.-Y.; Chen, J.-J.; Sheng, G.-P. Rapidly probing the interaction between sulfamethazine antibiotics and fulvic acids. Environ. Pollut. 2018, 243 Pt A, 752–757. [Google Scholar] [CrossRef]
- Berns, A.E.; Philipp, H.; Lewandowski, H.; Choi, J.H.; Lamshöft, M.; Narres, H.D. Interactions of 15N-sulfadiazine and soil components as evidenced by 15N-CPMAS NMR. Environ. Sci. Technol. 2018, 52, 3748–3757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef] [PubMed]
- Sassman, S.A.; Lee, L.S. Sorption of three tetracyclines by several soils: Assessing the role of pH and cation exchange. Environ. Sci. Technol. 2005, 39, 7452–7459. [Google Scholar] [CrossRef] [PubMed]
- Fabrega, J.; Jafvert, C.T.; Li, H.; Lee, L.S. Modeling short-term soil-water phase distribution of aromatic amines. Environ. Sci. Technol. 1998, 32, 2788–2794. [Google Scholar] [CrossRef]
- Wu, Z.J.; Liu, H.N.; Zhang, H.F. Research progress on mechanisms about the effect of ionic strength on adsorption. Environ. Chem. 2010, 29, 997–1003. [Google Scholar]
- MacKay, A.A.; Canterbury, B. Oxytetracycline sorption to organic matter by metal-bridging. J. Environ. Qual. 2005, 34, 1964–1971. [Google Scholar] [CrossRef]
- Bialk, H.M.; Hedman, C.; Castillo, A.; Pedersen, J.A. Laccase-mediated Michael addition of N-15-sulfapyridine to a model humic constituent. Environ. Sci. Technol. 2007, 41, 3593–3600. [Google Scholar] [CrossRef]
- Schwarz, J.; Knicker, H.; Schaumann, G.E.; Thiele-Bruhn, S. Enzymatic transformation and bonding of sulfonamide antibiotics to model humic substances. J. Chem. 2015, 2015, 829708. [Google Scholar] [CrossRef] [Green Version]
- Kulikova, N.A.; Perminova, I.V. Interactions between humic substances and microorganisms and their implications for nature-like bioremediation technologies. Molecules 2021, 29, 2706. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Shi, P.; He, N.; Zhang, Q.; Duan, X. Antibiotic resistance genes removal and membrane fouling in secondary effluents by combined processes of PAC/BPAC–UF. J. Water Health 2019, 17, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, J.; Fan, W.-Y.; Yao, M.-C.; Yuan, L.; Sheng, G.-P. Enhanced photodegradation of extracellular antibiotic resistance genes by dissolved organic matter photosensitization. Environ. Sci. Technol. 2019, 53, 10732–10740. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Y.; Shi, D.Y.; Yang, D.; Yin, J.; Yang, Z.W.; Li, J.W.; Yang, W.; Jin, M. Putative environmental levels of levofloxacin facilitate the dissemination of antibiotic-resistant Escherichia coli via plasmid-mediated transformability. Ecotoxicol. Environ. Saf. 2020, 195, 110461. [Google Scholar] [CrossRef]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic resistance: One health one world outlook. Front. Cell Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef]
Class | Wastewater, ng/L | Surface Water, ng/L | ||
---|---|---|---|---|
Min | Max | Min | Max | |
Africa | ||||
FQ | 40 (LEV, Kenya) | 510 (CIP, Kenya) | 40 (LEV, Kenya) | 14,331 (CIP, South Afica) |
MA | 1 (ERY, South Africa) | 1149 (ERY, Ghana) | ||
SU | 270 (SMZ, South Africa) | 53,828 (SMX, Mozambique) | ||
TE | 26 (OTC, Ghana) | 68 (DOX, Ghana) | ||
Asia | ||||
FQ | 240 (CIP, China) | 4960 (CIP, India) | 3 (ENR, China) | 6060 (NOR, Taiwan) |
MA | 7.5 (ROX, China) | 5542 (ERY, Vietnam) | 1 (CLA, Japan) | 2910 (ERY, China) |
SU | 15 (SPY, Vietnam) | 9020 (SMX, India) | 1 (SMX, Japan) | 19,153 (SMR, Vietnam) |
TE | 682 (CTC, South Korea) | 32,000,000 (OTC, China) | 84 (OTC, China) | 484,000 (OTC, China) |
Australia | ||||
FQ | 530 (CIP) | 1150 (NOR) | 1300 (CIP) | |
MA | 15 (ROX) | 350 (ROX) | ||
SU | 3750 (SMX) | |||
TE | ||||
Europe | ||||
FQ | 185 (CIP, Spain) | 3700 (CIP, Italy) | 90 (NOR, Spain) | 9660 (CIP, France) |
MA | 10 (ERY, Italy) | 780 (CLA, Italy) | 10 (CLA, Spain) | 2330 (CLA, France) |
SU | 19 (SMX, Spain) | 1150 (SMX, Spain) | 326 (SMX, Germany) | 11,920 (SMX, Spain) |
TE | 7 (OTC, Luxembourg) | 1000 (TET, UK) | ||
North America | ||||
FQ | 315 (CIP, USA) | 30 (CIP, USA) | ||
MA | 46 (ERY, USA) | 145 (ERY, Canada) | 66 (ROX, Canada) | 180 (ERY, USA) |
SU | 650 (SMX, USA) | 60 (SMR, USA) | 15,000 (SDM, USA) | |
TE | 110 (MEC, USA) | 1340 (OTC, USA) | ||
South America | ||||
FQ | 156 (NOR, Brazil) | 51 (NOR, Brazil) | 119 (CIP, Brazil) | |
MA | ||||
SU | 9.9 (SMX, Brazil) | 106 (SMX, Brazil) | 218 (SMX, Bolivia) | |
TE | 11 (TET, Brazil) |
Class | Antibiotic | Index | MM [6] | S, mg/L [6] | logKOW [85] | pKa1 | pKa2 | pKa3 | pKa4 | pI |
---|---|---|---|---|---|---|---|---|---|---|
FQ | Ciprofloxacin | CIP | 331.34 | 30,000 | 0.28 | 3.0 [86] | 6.1 [86] | 8.7 [86] | 10.6 [86] | 7.4 [87] |
Enoxacin | ENO | 347.34 | 34,310 | −0.2 | 6.0 [88] | 8.5 [88] | 7.4 [87] | |||
Enrofloxacin | ENR | 359.4 | 53,900 | 0.27 | 3.9 [86] | 6.2 [86] | 7.6 [86] | 9.9 [86] | 6.9 [89] | |
Fleroxacin | FLE | 369.34 | 770 | 0.24 | 5.5 [6] | 8.1 [6] | 7.3 [90] | |||
Norfloxacin | NOR | 319.33 | 178,000 | 0.46 | 3.1 [86] | 6.1 [86] | 8.6 [86] | 10.6 [86] | 7.4 [87] | |
Ofloxacin | OFL | 361.37 | 4000 | −0.39 | 5.9 [6] | 8.3 [6] | 6.9 [87] | |||
MA | Tylosin | TYL | 916.1 | 5000 | 1.63 | 7.5 [86] | ||||
SU | Sulfadiazine | SDZ | 250.28 | 77 | −0.09 | 2.1 [6] | 6.5 [6] | 4.7 [91] | ||
Sulfadimethoxine | SDM | 310.33 | 343 | 1.63 | 2.1 [6] | 6.3 [6] | ||||
Sulfamethazine | SMZ | 278.33 | 1500 | 0.14 | 2.7 [6] | 7.7 [6] | ||||
Sulfamethoxazole | SMX | 253.28 | 610 | 0.89 | 1.9 [6] | 10.6 [6] | 3.3 [91] | |||
Sulfanilamide | SAA | 172.2 | 7500 | −0.62 | 1.9 [6] | 10.6 [6] | ||||
Sulfapyridine | SPY | 249.29 | 270 | 0.35 | 2.9 [6] | 8.4 [6] | 4.3 [91] | |||
Sulfathiazole | STZ | 255.32 | 470 | 0.05 | 2.0 [86] | 7.1 [86] | ||||
TE | Oxytetracycline | OTC | 460.4 | 313 | −0.91 | 3.2 [86] | 7.5 [86] | 8.9 [86] | 4–6 [92] | |
Tetracycline | TET | 444.43 | 1700 | −1.37 | 3.3 [86] | 7.8 [86] | 9.6 [86] | 4–6 [92] |
Class | AB | Reaction Media | Constants | Ref. |
---|---|---|---|---|
Stern–Volmer Constant KSV / Binding Constant Kb | ||||
FQ | CIP | 298 K, 303 K, 308K, 313K, 318 K; pH 7.0; 0.03 M phosphate buffer; Pahokee peat HA 0.25–2.5 mg L−1 | nd/0.1719; 0.16; 0.1389; 0.133; 0.1151 L mg−1 | [17] |
288 K, 298 K, 308 K, 318 K; pH 7.0; 0.001 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.149; 0.123; 0.118; 0.115 L mg−1/0.166; 0.125; 0.121; 0.121 L mg−1 | [101] | ||
288 K; pH 3.1, 5.5, 7.2, 9.1; 0.001 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.062; 0.202; 0.123; 0.071 L mg−1/0.044; 0.202; 0.125; 0.059 L mg−1 | [101] | ||
298 K; pH 7.0; 0.01/0.1 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.116; 0.081 L mg−1/0.118; 0.089 L mg−1 | [101] | ||
ENO | 298 K, 303 K, 308K, 313K, 318 K, pH 7.0, 0.03 M phosphate buffer, Pahokee peat HA 0.25–2.5 mg L−1 | nd/0.0547; 0.0474; 0.042; 0.0353; 0.0262 L mg−1 | [17] | |
ENR | 288 K, 298 K, 308 K, 318 K; pH 7.0; 0.001 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.16; 0.147; 0.135; 0.124 L mg−1/0.179; 0.154; 0.141; 0.124 L mg−1 | [101] | |
288 K; pH 3.1, 5.5, 7.2, 9.1, 11.0; 0.001 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.091; 0.27; 0.147; 0.05; 0.092 L mg−1/0.087; 0.268; 0.154; 0.053; 0.073 L mg−1 | [101] | ||
298 K; pH 7.0; 0.01/0.1 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.117; 0.077 L mg−1/0.119; 0.069 L mg−1 | [101] | ||
FLE | 298 K, 303 K, 308K, 313K, 318 K, pH 7.0, 0.03 M phosphate buffer, Pahokee peat HA 0.25–2.5 mg L−1 | nd/0.0642; 0.0544; 0.0531; 0.048; 0.043 L mg−1 | [17] | |
NOR | 298 K, 303 K, 308K, 313K, 318 K, pH 7.0, 0.03 M phosphate buffer, Pahokee peat HA 0.25–2.5 mg L−1 | nd/0.075; 0.0704; 0.0694; 0.0661; 0.0651 L mg−1 | [17] | |
288 K, 298 K, 308 K, 318 K; pH 7.0; 0.001 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.178; 0.163; 0.148; 0.138 L mg−1/0.194; 0.164; 0.147; 0.143 L mg−1 | [101] | ||
288 K; pH 3.1, 5.5, 7.2, 9.1; 0.001 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.052; 0.136; 0.163; 0.118 L mg−1/0.044; 0.137; 0.164; 0.115 L mg−1 | [101] | ||
298 K; pH 7.0; 0.01/0.1 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.163; 0.093 L mg−1/0.163; 0.097 L mg−1 | [101] | ||
OFL | 298 K, 303 K, 308K, 313K, 318 K, pH 7.0, 0.03 M phosphate buffer, Pahokee peat HA 0.25–2.5 mg L−1 | nd/0.0332; 0.0339; 0.0289; 0.0297; 0.0304 L mg−1 | [17] | |
288 K, 298 K, 308 K, 318 K; pH 7.0; 0.001 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.127; 0.106; 0.098; 0.09 L mg−1/0.131; 0.109; 0.099; 0.097 L mg−1 | [101] | ||
288 K; pH 3.1, 5.5, 7.2, 9.1, 11.0; 0.001 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.077; 0.051; 0.106; 0.022; 0.077 L mg−1/0.067; 0.07; 0.109; 0.015; 0.083 L mg−1 | [101] | ||
298 K; pH 7.0; 0.01/0.1 M phosphate buffer; HA purchased from Alfa Aesar Chemical Company 0.2–2 mg L−1 | 0.091; 0.062 L mg−1/0.094; 0.06 L mg−1 | [101] | ||
SU | SDZ | 288 K, 298K, 313 K; pH 7; water with NaOH/HCL to adjust pH; HA (no description) 2–20 mg L−1 | 13,174; 9811; 5055 L mol−1/12,784; 7183; 3223 L mol−1 | [27] |
298K; pH 4, 8, 10; water with NaOH/HCL to adjust pH; HA (no description) 2–20 mg L−1 | 7282; 10,916; 10,363 L mol−1/6430; 9872; 8890 L mol−1 | [27] | ||
TE | OTC | 288 K, 298K, 313 K; pH 7; water with NaOH/HCL to adjust pH; HA (no description) 2–20 mg L−1 | 7513; 5271; 3163 L mol−1/5533; 3123; 2051 L mol−1 | [27] |
298K; pH 4, 8, 10; water with NaOH/HCL to adjust pH; HA (no description) 2–20 mg L−1 | 3894; 4043; 3946 L mol−1/3724; 4015; 3824 L mol−1 | [27] | ||
Distribution coefficient Kd | ||||
FQ | CIP | 298 K; pH 6.0; 0.001/0.005/0.01/0.05/0.1 M CaCl2; HA purchased from Sinopharm Chemical Reagent 4000 mg L−1 (in solid) | 445.31; 421.7; 400.34; 329.93; 277.17 L kg−1 | [22] |
NOR | 298 K; pH 6.0; 0.01 M CaCl2 + 0.01 M NaN3; compost HA 400 mg L−1 (in solid) | 10.73 L g−1 | [30] | |
OFL | RT, pH 7.1, 0.01 M NaCl+200 mg L–1 NaN3; different fractions of HA from the Dianchi Lake sediment 5–42 mg L−1 | 70; 190; 60; 180; 50; 140; 40; 120 L kg−1 | [21] | |
298 K; 0.01 M CaCl2 +200 mg L−1 NaN3; HA (no description) 2–20 mg L−1 (in solid) | 5570; 14,300 L kg−1 | [26] | ||
MA | TYL | 278 K, 288K, 308 K; pH 3.0, 0.01 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 174,6; 301.2; 620.7 L kg−1 | [19] |
298 K, pH 3.0; 4.0; 5.0; 7.0, 0.01 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 386.1; 352.7; 297.5; 268.4 L kg−1 | [20] | ||
298 K, pH 3.0; 0/0.05/0.1 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 457.6; 423.7; 375.4 L kg−1 | [20] | ||
SU | SMZ | 288 K, 308 K, 318 K; pH 3.5; 0.01 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 192.6; 243.2; 305.2 L kg−1 | [19] |
298 K; pH 2.5, 3.5, 5.5, 7.5; 0.01 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 235.6; 216.4; 189.7; 165.4 L kg−1 | [20] | ||
298 K; pH 3.5; 0/0.05/0.1 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 258.4; 176.5; 154.2 L kg−1 | [20] | ||
SMX | 298 K; pH 6.0; 0.001 M, 0.005 M, 0.01 M, 0.05 M, 0.1 M CaCl2; HA purchased from Sinopharm Chemical Reagent 4000 mg L−1 (in solid) | 88.33; 84.64; 82.73; 62.98; 46.73 L kg−1 | [22] | |
STZ | 292 K; pH 1.7, 2.5; 3.3; 4.9; 5.4; 6.0; 7.7; 10 mM ammonium phosphate at all pH except for 10 mM ammonium acetate at pH 4.9 and 5.4; coal HA 300, 800, 1800, 6400 mg L−1 | Log(Kd, L kg−1): 2.65; 2.36; 3.06; 2.66; 3.28; 2.81; 3.42; 2.88; 3.72; 3.12; 3.65; 2.98; 3.71; 2.84 | [23] | |
TE | TET | RT; pH 5.0; 0.02M NaCl/0.02M NaCl + Zn 16.5 mg L−1; soil HA ca. 800 mg L−1 (in solid) | 1300; 2700; 1600; 3100 L kg−1 | [25] |
RT; pH 5.0; 0.02M NaCl/0.02M NaCl + Zn 16.5 mg L−1; coal HA ca. 800 mg L−1 (in solid) | 1700; 3700; 5500; 9100 L kg−1 | [25] | ||
RT, pH ~8, water with NaOH/HCL to adjust pH; leonardite HA 79.4 mg OC L−1 | 40,522 L kg−1 | [16] | ||
RT, pH 7.0, LB media; Elliott soil HA, Pahokee peat HA, Waskish peat HA 9–91 mg L−1 | 12,036; 6732; 2750 L kg OC−1 | [15] | ||
Freundlich constant KF / nonlinearity n | ||||
FQ | CIP | RT; pH 4, 5, 6, 7, 8; 0.01 M acetate/phosphate buffer + synthetic freshwater; Elliott soil HA 10 mg L−1 | 91.59; 121.33; 166.72; 133.15; 172.38 mmol1−n Ln kg−1/0.95; 0.99; 0.97; 0.98; 0.94 | [14] |
RT; pH 4, 5, 6, 7, 8; 0.01 M acetate/phosphate buffer + synthetic freshwater; Pahokee peat HA 10 mg L−1 | 106.38; 159.6; 160.63; 149.99; 144.02 mmol1−n Ln kg−1/0.96; 0.99; 0.97; 0.99; 0.99 | [14] | ||
RT; pH 4, 5, 6, 7, 8; 0.01 M acetate/phosphate buffer + synthetic freshwater; Suwannee River HA 10 mg L−1 | 96.15; 84.47; 88.48; 83.34; 83 mmol1−n Ln kg−1/1.02; 0.97; 0.98; 0.98; 0.97 | [14] | ||
RT; pH 4, 5, 6, 7, 8; 0.01 M acetate/phosphate buffer + synthetic freshwater; Suwannee River FA 10 mg L−1 | 56.86; 49.06; 51.57; 34.27; 47.26 mmol1−n Ln kg−1/1.13; 0.98; 0.93; 0.96; 0.96 | [14] | ||
298 K, 308 K, 318 K; pH 6.0; 0.01 M NaCl+200 mg L−1 NaN3; HA purchased from Sinopharm Chemical Reagent 4000 mg L−1 (in solid) | 1.48; 1.24; 1.01 mg1−n Ln g–1/0.66; 0.65; 0.65 | [22] | ||
NOR | 298K; pH 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0; 0.01 M CaCl2 + 0.01 M NaN3; coal HA 400 mg L−1 (in solid) | 33.08; 37.14; 42.84; 57.9; 45.01; 51.09; 46.98 mmol1−n Ln kg−1/0.44; 0.51; 0.46; 0.30; 0.41; 0.46; 0.40 | [28] | |
288K, 308K; pH 5.0; 0.01 M CaCl2 + 0.01 M NaN3; coal HA 400 mg L−1 (in solid) | 64.81; 42.61 mmol1−n Ln kg−1/0.41; 0.42 | [28] | ||
298K; pH 5.0; 0.05 M CaCl2/0.1 M CaCl2 + 0.01 M NaN3; coal HA 400 mg L−1 (in solid) | 31.06; 29.41 mmol1−n Ln kg−1/0.46; 0.44 | [28] | ||
298 K; pH 6.0; 0.01 M CaCl2 + 0.01 M NaN3; compost HA 400 mg L−1 (in solid) | 90.01 mmol1−n Ln kg−1/0.29 | [30] | ||
OFL | RT, pH 7.1, 0.01 M NaCl+200 mg L−1 NaN3; different fractions of HA from the Dianchi Lake sediment 5–42 mg L−1 | 0.7449; 0.7176; 0.6888; 0.5412 mg1−n Ln g−1/0.6051; 0.6312; 0.5395; 0.5668 | [21] | |
MA | TYL | 278 K, 288K, 308 K; pH 3.0, 0.01 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 0.998; 1.385; 1.876 mg1−n Ln g−1/0.23; 0.36; 0.61 | [19] |
298 K; pH 3.0; 4.0; 5.0; 7.0, 0.01 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 1.61; 1.432; 1.187; 0.986 mg1−n Ln g−1/0.55; 0.44; 0.37; 0.32 | [20] | ||
298 K; pH 3.0; 0/0.05/0.1 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 1.923; 1.752; 1.487 mg1−n Ln g−1/0.67; 0.60; 0.49 | [20] | ||
SU | SDM | 294 K; pH 4.5, 6.0; 7.5; 0.025 Na formateformic acid buffer/0.2 M phosphate buffer; coal HA 2000 mg L−1 (in solid) | 211; 124; 37 mmol1−n Ln kg−1/0.87; 1.01; 0.26 | [24] |
SMZ | 288 K, 308 K, 318 K; pH 3.5; 0.01 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 0.769; 0.942; 1.015 mg1−n Ln g−1/0.77; 0.88; 0.92 | [19] | |
298 K, pH 2.5, 3.5, 5.5, 7.5; 0.01 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 1.013; 0.839; 0.764; 0.687 mg1−n Ln g−1/0.89; 0.85; 0.77; 0.69 | [20] | ||
298 K, pH 3.5; 0/0.05/0.1 M KNO3 + 0.003 M NaN3; HA purchased from JuFeng Chemical Corporation (in solid) | 0.986; 0.765; 0.681 mg1−n Ln g−1/0.89; 0.75; 0.67 | [20] | ||
298 K, 308 K, 318 K; pH 6.0; 0.01 M CaCl2 + 200 mg L−1 NaN3; HA purchased from Sinopharm Chemical Reagent 4000 mg L−1 (in solid) | 0.47; 0.65; 0.95 mg1−n Ln kg−1/0.61; 0.65; 0.62 | [22] | ||
SAA | 294 K; pH 4.5, 6.0; 7.5; 0.025 Na formateformic acid buffer/0.2 M phosphate buffer; coal HA 2000 mg L−1 (in solid) | 49; 30; 48 mmol1−n Ln kg−1/0.66; 0.56; 0.50 | [24] | |
SPY | 294 K; pH 4.5, 6.0; 7.5; 0.025 Na formateformic acid buffer/0.2 M phosphate buffer; coal HA 2000 mg L−1 (in solid) | 84; 44; 66 mmol1−n Ln kg−1/0.45; 0.50; 0.49 | [24] | |
STZ | 292 K; pH 1.7, 2.5; 3.3; 4.9; 5.4; 6.0; 7.7; 10 mM ammonium phosphate at all pH except for 10 mM ammonium acetate at pH 4.9 and 5.4; coal HA 300, 800, 1800, 6400 mg L−1 | log(KF,mol1−nLnkg OC−1) (1.58; 1.6; 1.57; 1.45; 1.53; 1.19; 0.53 / 0.85; 0.80; 0.77; 0.73; 0.70; 0.66; 0.56 | [23] | |
TE | TET | RT, pH 4.3, 0.01 M NaCl/0.1 M NaCl; Elliott soil HA 24 mg OC L−1 | 4290; 2270 mol1−n Ln kg OC−1/0.99; 0.98 | [18] |
RT; pH 5.0; 0.02M NaCl/0.02M NaCl + Zn 16.5 mg L−1; soil HA ca. 800 mg L−1 (in solid) | 380; 380; 900; 900 mmol1−n Ln kg−1/0.73; 0.73; 0.83; 0.83 | [25] | ||
RT; pH 5.0; 0.02M NaCl/0.02M NaCl + Zn 16.5 mg L−1; coal HA ca. 800 mg L−1 (in solid) | 700; 700; 6000; 6000 mmol1−n Ln kg−1/0.76; 0.76; 0.98; 0.98 | [25] | ||
Langmuir constant KL / Maximum adsorption b | ||||
FQ | CIP | 298 K, 308 K, 318 K; pH 6.0; 0.01 M CaCl2 + 200 mg L−1 NaN3; HA HA purchased from Sinopharm Chemical Reagent 4000 mg L−1 (in solid) | 0.09; 0.077; 0.059 L mg−1/15.72; 14.45; 13.64 mg g−1 | [22] |
NOR | 298K; pH 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0; 0.01 M CaCl2 + 0.01 M NaN3; coal HA 400 mg L−1 (in solid) | 0.027; 0.024; 0.03; 0.042; 0.036; 0.049; 0.042 L μmol−1/338.29; 529.53; 466.75; 462.13; 461.95; 374.84; 391.47 μmol g−1 | [28] | |
288K, 308K; pH 5.0; 0.01 M CaCl2 + 0.01 M NaN3; coal HA 400 mg L−1 (in solid) | 0.048; 0.043 L μmol−1/488.88; 377.61 μmol g−1 | [28] | ||
298K; pH 5.0; 0.05 M CaCl2/0.1 M CaCl2 + 0.01 M NaN3; coal HA 400 mg L−1 (in solid) | 0.05; 0.039 L μmol−1/271.75; 246.46 μmol g−1 | [28] | ||
298 K; pH 6.0; 0.01 M CaCl2 + 0.01 M NaN3; compost HA 400 mg L−1 (in solid) | 0.128 L μmol−1 / 340 μmol g−1 | [30] | ||
SU | SMZ | 298 K, 308 K, 318 K; pH 6.0; 0.01 M CaCl2 + 200 mg L−1 NaN3; HA HA purchased from Sinopharm Chemical Reagent 4000 mg L−1 (in solid) | 0.039; 0.046; 0.061 L mg−1/7.54; 10.21; 11.74 mg g−1 | [22] |
AB | Stern-Volmer Model | Linear Model | Langmuir Model | Freundlich Model | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KSV, L mol–1 | Kb, L mol−1 | Kd, L kg−1 | KL, L mol−1 | b, mol kg−1 | KF, mol1−nLn/kg OC | n | |||||||||||||
Min | Max | N | Min | Max | N | Min | Max | N | Min | Max | Min | Max | N | Min | Max | Min | Max | N | |
Fluoroquinolones | |||||||||||||||||||
CIP | 20,543 | 66,931 | 10 | 14,579 | 66,931 | 15 | 277 | 445 | 5 | 19,549 | 29,821 | 0.041 | 0.047 | 3 | 65 | 3333 | 0.65 | 1.13 | 23 |
ENO | 9100 | 18,999 | 5 | ||||||||||||||||
ENR | 17,970 | 97,038 | 11 | 19,048 | 96,319 | 11 | |||||||||||||
FLE | 15,882 | 23,712 | 5 | ||||||||||||||||
NOR | 16,605 | 56,841 | 10 | 14,051 | 61,950 | 15 | 10,730 | 10,730 | 1 | 24,000 | 128,000 | 0.246 | 0.530 | 13 | 58 | 173 | 0.29 | 0.51 | 13 |
OFL | 7950 | 45,894 | 11 | 5421 | 47,339 | 21 | 40 | 14,300 | 11 | 929 | 1289 | 0.54 | 0.63 | 4 | |||||
Macrolides | |||||||||||||||||||
TYL | 175 | 621 | 10 | 1883 | 3672 | 0.23 | 0.67 | 10 | |||||||||||
Sulfanilamides | |||||||||||||||||||
SDZ | 3163 | 7513 | 6 | 2051 | 5533 | 6 | |||||||||||||
SDM | 83 | 474 | 0.26 | 1.01 | 3 | ||||||||||||||
SMZ | 154 | 305 | 10 | 1300 | 1938 | 0.67 | 0.92 | 10 | |||||||||||
SMX | 47 | 88 | 5 | 9878 | 15,450 | 0.030 | 0.046 | 3 | 1058 | 2139 | 0.61 | 0.65 | 3 | ||||||
SAA | 67 | 110 | 0.50 | 0.65 | 3 | ||||||||||||||
SPY | 99 | 189 | 0.415 | 0.50 | 3 | ||||||||||||||
STZ | 229 | 5248 | 14 | 3 | 40 | 0.56 | 0.85 | 7 | |||||||||||
Tetracyclines | |||||||||||||||||||
OTC | 5055 | 13,174 | 6 | 3223 | 12,784 | 6 | |||||||||||||
TET | 1300 | 40,522 | 12 | 695 | 10,309 | 0.73 | 0.99 | 10 |
Class | AB | AB Reactive Moiety | HS Reactive Moiety | Ref. |
---|---|---|---|---|
Cation Exchange/Ionic Interactions | ||||
FQ | CIP | Amino group in diazine cycle | Carboxylic | [14] |
nd | nd | [22] | ||
Amine | Hydroxy | [59] | ||
NOR | Piperazinyl | Carboxylic | [28] | |
SU | SMZ | nd | Carboxylic | [19,20] |
SMX | nd | nd | [22] | |
SAA, SDM, SPY | nd | nd | [24] | |
STZ | Aniline group | Carboxylic and phenolic | [23] | |
TE | TET | nd | Carboxylic | [18] |
Quaternary ammonium functional group | Carboxylic | [104] | ||
nd | Carboxylic | [25] | ||
Tricarbonylamide, phenolic diketone, dimethylamine | Carboxylic, Phenolic | [105] | ||
Cation (metal) Bridging | ||||
TE | TET | nd | Carboxylic | [18] |
Tricarbonyl methane keto-enol moiety | Carboxylic | [104] | ||
nd | Salicylate- and phthalate-like | [25] | ||
Tricarbonylamide, phenolic diketone, dimethylamine | Carboxylic, Phenolic | [105] | ||
H-Bonding | ||||
FQ | CIP | O atoms in the carbonyl group | Aromatic carboxyl or hydroxyl groups | [22] |
Carboxyl | Hydroxy | [27] | ||
O-H, C-H, -COOH, N-H | nd | [101] | ||
ENR | O-H, C-H, -COOH | nd | [101] | |
NOR | O-H, C-H, -COOH, N-H | nd | [101] | |
Carboxylic | Carbonyl | [46] | ||
OFL | O-H, C-H, -COOH | nd | [101] | |
SU | SMX | Sulfonamide N, heterocycle ring N | Carbonyl * | [55] |
Amide | Hydroxy | [22] | ||
SMZ | nd | O-alkyl structures | [20] | |
nd | nd | [106] | ||
STZ | Amine | Carbonyl | [23] | |
SAA, SDM, SPY | nd | nd | [24] | |
TE | OTC | nd | nd | [11,27] |
TET | nd | Carboxylic | [18] | |
Polar groups | Acidic groups | [104] | ||
Hydroxyl, ketone, amino | Carboxylic, Phenolic | [25] | ||
Hydroxyl, Carbonyl groups (as H-bond acceptors) | nd | [105] | ||
Dimethylamine | Phenolic | [39] | ||
π–π Interaction | ||||
FQ | CIP | Aromatic ring | Aromatic rings | [14] |
nd | nd | [101] | ||
ENR, NOR, OFL | nd | nd | [101] | |
SU | SDZ | Aromatic ring | Aromatic rings | [27] |
SMZ | nd | nd | [20] | |
Aromatic ring | Aromatic rings | [107] | ||
TE | TET | Aromatic ring | Aromatic rings | [105] |
Dipole-dipole interaction | ||||
SU | SDZ | Pyrimidinyl | Polar structures | [108] |
SAA, SDM, SPY | nd | nd | [24] | |
Hydrophobic Binding | ||||
FQ | CIP | nd | nd | [22] |
NOR | nd | Aromatic structures | [28] | |
OFL | nd | nd | [21] | |
SU | SMZ | nd | nd | [19,106,107] |
SMX | Oxazole ring | Benzene ring | [22] | |
SAA, SDM, SPY | nd | nd | [24] | |
TE | OTC | nd | nd | [11] |
Covalent Binding | ||||
SU | SDZ | Aromatic amine | Quinones | [108] |
SMZ | Aromatic amine | Quinones | [38] |
AB | Sorbent | Ref. |
---|---|---|
Fluoroquinolones | ||
CIP | Magnetic biochar coated with HA | [29] |
Humic acid/cellulose nanocomposite beads | [59] | |
ENO | Magnetic biochar coated with HA | [29] |
LEV | HA treated zeolite | [64] |
NOR | Magnetic biochar coated with HA | [29] |
Tetracyclines | ||
OTC | Fe3O4–HA–La composite | [61] |
TET | Fe (III)-functionalized carbonized HA | [62] |
TET | Calcium alginate/activated carbon/HA tri-system porous fibers | [63] |
Isolated from Streptomyces venezuelae | ||
Chloramphenicol | HA loaded with nZVI particles | [65] |
AB Class | NOM | Media | Target ARG | Effect | Ref. |
---|---|---|---|---|---|
MA | HMCC 100 g/kg | Zn(II) contaminated manure-soil | ermB | Decreased abundance by 88% | [49] |
SU | HA from landfill leachate | Landfill leachate | sulI, sulII, sulIII | Positive correlation between HA and ARGs concentrations | [51] |
FA from landfill leachate | sulI, sulII, sulIII | Negative correlation between FA and ARGs concentrations | |||
HMCC 100 g/kg | Zn(II) contaminated manure-soil | sulI, sulII | Decreased abundance by 30–38% | [49] | |
DOC 21-59 mg/L | Wastewater | sulI, sulII | Sorption on DOC | [117] | |
TE | HMCC 100 g/kg | Zn(II) contaminated manure-soil | tetG | Increased abundance by 28% | [49] |
tetT, tetQ, tetX, tetW | Decreased abundance by 11–58% | ||||
DOC 21-59 mg/L | Wastewater | tetA, tetW | Sorption on DOC | [117] | |
Model DOM 20 mg/L | Water | tetA | Increased photodegradation rate constant by 1.8-fold. Transformation efficiency decreased | [118] | |
HA 25 mg/L | Wastewater sludge | tetC, tetG, tetW, tetX | Down-regulation | [50] | |
tetM, tetO | No effect or up-regulation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikova, N.A.; Solovyova, A.A.; Perminova, I.V. Interaction of Antibiotics and Humic Substances: Environmental Consequences and Remediation Prospects. Molecules 2022, 27, 7754. https://doi.org/10.3390/molecules27227754
Kulikova NA, Solovyova AA, Perminova IV. Interaction of Antibiotics and Humic Substances: Environmental Consequences and Remediation Prospects. Molecules. 2022; 27(22):7754. https://doi.org/10.3390/molecules27227754
Chicago/Turabian StyleKulikova, Natalia A., Alexandra A. Solovyova, and Irina V. Perminova. 2022. "Interaction of Antibiotics and Humic Substances: Environmental Consequences and Remediation Prospects" Molecules 27, no. 22: 7754. https://doi.org/10.3390/molecules27227754
APA StyleKulikova, N. A., Solovyova, A. A., & Perminova, I. V. (2022). Interaction of Antibiotics and Humic Substances: Environmental Consequences and Remediation Prospects. Molecules, 27(22), 7754. https://doi.org/10.3390/molecules27227754