Ultrasensitive Determination of Natural Flavonoid Rutin Using an Electrochemical Sensor Based on Metal-Organic Framework CAU−1/Acidified Carbon Nanotubes Composites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Electrochemical Responses of Different Modified Electrodes to Rutin
2.3. Optimization of CAU-1/MWCNT/GCE Preparation
2.3.1. Optimization of the Additional MWCNTs
2.3.2. Optimization of the Electrodeposition Turns of CAU−1
2.4. The Effect of pH on the Signal of Rutin
Eθ = −0.0619pH + 0.7309 (R2 = 0.9986)
Epc = −0.0579pH + 0.6846 (R2 = 0.9988)
2.5. Influence of Scan Rate
Ipa (μA)= −0.2153v (mV/s) + 1.5771 (R2 = 0.9977)
2.6. Influence of Accumulation Potential and Accumulation Time
2.7. Study on the Detection Performance of Modified Electrodes
2.8. Anti-Interference Detection
2.9. Stability and Reproducibility
2.10. Detection in Real Samples
3. Materials and Methods
3.1. Reagents and Apparatus
3.2. Preparation of CAU−1
3.3. Preparation of MWCNT-COOH
3.4. Preparation of CAU−1/MWCNT/GCE
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Negahdari, R.; Bohlouli, S.; Sharifi, S.; Maleki Dizaj, S.; Rahbar Saadat, Y.; Khezri, K.; Jafari, S.; Ahmadian, E.; Gorbani Jahandizi, N.; Raeesi, S. Therapeutic benefits of rutin and its nanoformulations. Phytother. Res. 2021, 35, 1719–1738. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, L.; Ren, L.; Xie, Y. Advances in structures required of polyphenols for xanthine oxidase inhibition. Food Front. 2020, 1, 152–167. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, H.; He, Z. Recent advances in polyphenols improving vascular endothelial dysfunction induced by endogenous toxicity. J. Appl. Toxicol. 2021, 41, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Sinha, M.; Sachan, D.K.; Bhattacharya, R.; Singh, P.; Parthasarathi, R. ToxDP2 Database: Toxicity prediction of dietary polyphenols. Food Chem. 2022, 370, 131350. [Google Scholar] [CrossRef]
- Sariga; George, A.; Rajeev, R.; Thadathil, D.A.; Varghese, A. A Comprehensive Review on the Electrochemical Sensing of Flavonoids. Crit. Rev. Anal. Chem. 2022, 1–41. [Google Scholar] [CrossRef]
- Yang, S.-L.; Li, G.; Feng, J.; Wang, P.-Y.; Qu, L.-B. Synthesis of core/satellite donut-shaped ZnO–Au nanoparticles incorporated with reduced graphene oxide for electrochemical sensing of rutin. Electrochim. Acta 2022, 412, 140157. [Google Scholar] [CrossRef]
- Elancheziyan, M.; Ganesan, S.; Theyagarajan, K.; Duraisamy, M.; Thenmozhi, K.; Weng, C.H.; Lin, Y.T.; Ponnusamy, V.K. Novel biomass-derived porous-graphitic carbon coated iron oxide nanocomposite as an efficient electrocatalyst for the sensitive detection of rutin (vitamin P) in food and environmental samples. Environ. Res. 2022, 211, 113012. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, K.S.; Vilian, A.T.E.; Ghoreishian, S.M.; Umapathi, R.; Huh, Y.S.; Han, Y.-K. An ultrasensitive electrochemical sensing platform for rapid detection of rutin with a hybridized 2D-1D MXene-FeWO4 nanocomposite. Sens. Actuators B Chem. 2021, 344, 130202. [Google Scholar] [CrossRef]
- Zhong, W.; Gao, F.; Zou, J.; Liu, S.; Li, M.; Gao, Y.; Yu, Y.; Wang, X.; Lu, L. MXene@Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples. Food Chem. 2021, 360, 130006. [Google Scholar] [CrossRef] [PubMed]
- Senocak, A.; Sanko, V.; Tumay, S.O.; Orooji, Y.; Demirbas, E.; Yoon, Y.; Khataee, A. Ultrasensitive electrochemical sensor for detection of rutin antioxidant by layered Ti3Al0.5Cu0.5C2 MAX phase. Food Chem. Toxicol. 2022, 164, 113016. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, Z. Application of Electrochemical Sensors Based on Carbon Nanomaterials for Detection of Flavonoids. Nanomaterials 2020, 10, 2020. [Google Scholar] [CrossRef] [PubMed]
- Arvand, M.; Farahpour, M.; Ardaki, M.S. Electrochemical characterization of in situ functionalized gold organosulfur self-assembled monolayer with conducting polymer and carbon nanotubes for determination of rutin. Talanta 2018, 176, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, B.H.; Tang, Y.; Zhao, F.Q.; Zeng, B.Z. Fabrication and application of a rutin electrochemical sensor based on rose-like AuNPs-MoS2-GN composite and molecularly imprinted chitosan. Microchem. J. 2021, 168, 106505. [Google Scholar] [CrossRef]
- de Barros, M.R.; Winiarski, J.P.; Elias, W.C.; de Campos, C.E.M.; Jost, C.L. Au-on-Pd bimetallic nanoparticles applied to the voltammetric determination and monitoring of 4-nitroaniline in environmental samples. J. Environ. Chem. Eng. 2021, 9, 105821. [Google Scholar] [CrossRef]
- Winiarski, J.P.; Tavares, B.F.; de Fátima Ulbrich, K.; de Campos, C.E.M.; Souza, A.A.U.; Souza, S.M.A.G.U.; Jost, C.L. Development of a multianalyte electrochemical sensor for depression biomarkers based on a waste of the steel industry for a sustainable and one-step electrode modification. Microchem. J. 2022, 175, 107141. [Google Scholar] [CrossRef]
- Zhong, T.; Guo, Q.; Yin, Z.; Zhu, X.; Liu, R.; Liu, A.; Huang, S. Polyphenol oxidase/gold nanoparticles/mesoporous carbon-modified electrode as an electrochemical sensing platform for rutin in dark teas. RSC Adv. 2019, 9, 2152–2155. [Google Scholar] [CrossRef] [Green Version]
- Ran, X.; Yang, L.; Zhang, J.; Deng, G.; Li, Y.; Xie, X.; Zhao, H.; Li, C.-P. Highly sensitive electrochemical sensor based on beta-cyclodextrine-gold@3, 4, 9, 10-perylene tetracarboxylic acid functionalized single-walled carbon nanohorns for simultaneous determination of myricetin and rutin. Anal. Chim. Acta 2015, 892, 85–94. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Zhou, Z.F.; Kong, Q.X. Progress in the Electrochemical Analysis of Flavonoids: A Scientometric Analysis in CiteSpace. Curr. Pharm. Anal. 2022, 18, 43–54. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.X.; Ying, Y.B. Recent advances in sensing applications of metal nanoparticle/metaleorganic framework composites. Trac-Trends Anal. Chem. 2021, 143, 116395. [Google Scholar] [CrossRef]
- Lu, K.D.; Aung, T.; Guo, N.N.; Weichselbaum, R.; Lin, W.B. Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018, 30, 1707634. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, G.; Park, I.H.; Medishetty, R.; Vittal, J.J. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751–3891. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Astruc, D. State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Fu, G. Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. Nanoscale 2022, 14, 1679–1699. [Google Scholar] [CrossRef]
- Ma, T.; Li, H.; Ma, J.-G.; Cheng, P. Application of MOF-based materials in electrochemical sensing. Dalton Trans. 2020, 49, 17121–17129. [Google Scholar] [CrossRef]
- Tu, X.; Gao, F.; Ma, X.; Zou, J.; Yu, Y.; Li, M.; Qu, F.; Huang, X.; Lu, L. Mxene/carbon nanohorn/beta-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. J. Hazard. Mater. 2020, 396, 122776. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, G.; Xia, J.; Zhang, F.; Liu, Q. One-step synthesis of a Methylene Blue@ZIF-8-reduced graphene oxide nanocomposite and its application to electrochemical sensing of rutin. Microchim. Acta 2018, 185, 279. [Google Scholar] [CrossRef]
- Sivam, T.; Gowthaman, N.S.K.; Lim, H.N.; Andou, Y.; Arul, P.; Narayanamoorthi, E.; John, S.A. Tunable electrochemical behavior of dicarboxylic acids anchored Co-MOF: Sensitive determination of rutin in pharmaceutical samples. Colloids Surf. A-Physicochem. Eng. Asp. 2021, 622, 126667. [Google Scholar] [CrossRef]
- El Jaouhari, A.; Yan, L.; Zhu, J.; Zhao, D.; Zaved Hossain Khan, M.; Liu, X. Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin. Anal. Chim. Acta 2020, 1106, 103–114. [Google Scholar] [CrossRef]
- Ahnfeldt, T.; Stock, N. Synthesis of isoreticular CAU-1 compounds: Effects of linker and heating methods on the kinetics of the synthesis. CrystEngComm 2012, 14, 505–511. [Google Scholar] [CrossRef]
- Pauzi, M.Z.M.; Mahpoz, N.M.A.; Abdullah, N.; Rahman, M.A.; Abas, K.H.; Aziz, A.A.; Padzillah, M.H.; Othman, M.H.D.; Jaafar, J.; Ismail, A.F. Feasibility study of CAU-1 deposited on alumina hollow fiber for desalination applications. Sep. Purif. Technol. 2019, 217, 247–257. [Google Scholar] [CrossRef]
- Zhao, H.; Hou, S.; Zhao, X.; Liu, D. Adsorption and pH-Responsive Release of Tinidazole on Metal–Organic Framework CAU-1. J. Chem. Eng. Data 2019, 64, 1851–1858. [Google Scholar] [CrossRef]
- Guo, X.; Huang, H.; Liu, D.; Zhong, C. Improving particle dispersity and CO2 separation performance of amine-functionalized CAU-1 based mixed matrix membranes with polyethyleneimine-grafting modification. Chem. Eng. Sci. 2018, 189, 277–285. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Heidenreich, N.; Lenzen, D.; Stock, N. Knoevenagel condensation reaction catalysed by Al-MOFs with CAU-1 and CAU-10-type structures. CrystEngComm 2017, 19, 4187–4193. [Google Scholar] [CrossRef]
- Kemnitzer, T.W.; Tschense, C.B.L.; Wittmann, T.; Rössler, E.A.; Senker, J. Exploring Local Disorder within CAU-1 Frameworks Using Hyperpolarized 129Xe NMR Spectroscopy. Langmuir 2018, 34, 12538–12548. [Google Scholar] [CrossRef]
- Ming, S.S.; Gowthaman, N.S.K.; Lim, H.N.; Arul, P.; Narayanamoorthi, E.; Ibrahim, I.; Jaafar, H.; John, S.A. Aluminium MOF fabricated electrochemical sensor for the ultra-sensitive detection of hydroquinone in water samples. J. Electroanal. Chem. 2021, 883, 115067. [Google Scholar] [CrossRef]
- Geng, H.; Qin, M.; Li, J. A facile approach to cellulose/multi-walled carbon nanotube gels-Structure, formation process and adsorption to methylene blue. Int. J. Biol. Macromol. 2022, 217, 417–427. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Kaliyaraj Selva Kumar, A.; Compton, R.G. Does Nitrogen Doping Enhance the Electrocatalysis of the Oxygen Reduction Reaction by Multiwalled Carbon Nanotubes? ACS Catal. 2022, 12, 8740–8745. [Google Scholar] [CrossRef]
- Gao, F.; Yan, Z.; Cai, Y.; Yang, J.; Zhong, W.; Gao, Y.; Liu, S.; Li, M.; Lu, L. 2D leaf-like ZIF-L decorated with multi-walled carbon nanotubes as electrochemical sensing platform for sensitively detecting thiabendazole pesticide residues in fruit samples. Anal. Bioanal. Chem. 2021, 413, 7485–7494. [Google Scholar] [CrossRef]
- Qin, D.; Li, T.; Li, X.; Feng, J.; Tang, T.; Cheng, H. A facile fabrication of a hierarchical ZIF-8/MWCNT nanocomposite for the sensitive determination of rutin. Anal. Methods 2021, 13, 5450–5457. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Cao, J.; Zhao, J.; Xie, Y.X.; Fei, J.J.; Cai, Y.L. Temperature-responsive amperometric H2O2 biosensor using a composite film consisting of poly(N-isopropylacrylamide)-b-poly (2-acrylamidoethyl benzoate), graphene oxide and hemoglobin. Microchim. Acta 2016, 183, 2501–2508. [Google Scholar] [CrossRef]
- Zhao, P.C.; Huang, L.Z.; Wang, H.; Wang, C.X.; Chen, J.; Yang, P.P.; Ni, M.J.; Chen, C.; Li, C.Y.; Xie, Y.X.; et al. An ultrasensitive high-performance baicalin sensor based on C3N4-SWCNTs/reduced graphene oxide/cyclodextrin metal-organic framework nanocomposite. Sens. Actuator B-Chem. 2022, 350, 130853. [Google Scholar] [CrossRef]
- Liu, Z.; Xue, Q.; Guo, Y. Sensitive electrochemical detection of rutin and isoquercitrin based on SH-beta-cyclodextrin functionalized graphene-palladium nanoparticles. Biosens. Bioelectron. 2017, 89 Pt 1, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y. Flow injection analysis of zinc pyrithione in hair care products on a cobalt phthalocyanine modified screen-printed carbon electrode. Talanta 2004, 62, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Goularte, R.B.; Winiarski, J.P.; Latocheski, E.; Jost, C.L. Novel analytical sensing strategy using a palladium nanomaterial-based electrode for nimesulide electrochemical reduction. J. Electroanal. Chem. 2022, 920, 116622. [Google Scholar] [CrossRef]
- Zamarchi, F.; Silva, T.R.; Winiarski, J.P.; Santana, E.R.; Vieira, I.C. Polyethylenimine-Based Electrochemical Sensor for the Determination of Caffeic Acid in Aromatic Herbs. Chemosensors 2022, 10, 357. [Google Scholar] [CrossRef]
- Yang, H.T.; Li, B.Y.; Cui, R.J.; Xing, R.M.; Liu, S.H. Electrochemical sensor for rutin detection based on Au nanoparticle-loaded helical carbon nanotubes. J. Nanoparticle Res. 2017, 19, 354. [Google Scholar] [CrossRef]
- Xing, R.M.; Yang, H.T.; Li, S.N.; Yang, J.H.; Zhao, X.Y.; Wang, Q.L.; Liu, S.H.; Liu, X.H. A sensitive and reliable rutin electrochemical sensor based on palladium phthalocyanine-MWCNTs-Nafion nanocomposite. J. Solid State Electrochem. 2017, 21, 1219–1228. [Google Scholar] [CrossRef]
- Zhen, Q.; Ma, H.; Jin, Z.; Zhu, D.; Liu, X.; Sun, Y.; Zhang, C.; Pang, H. Electrochemical sensor for rutin detection based on N-doped mesoporous carbon nanospheres and graphene. New J. Chem. 2021, 45, 4986–4993. [Google Scholar] [CrossRef]
- Pang, P.; Li, H.; Liu, Y.; Zhang, Y.; Feng, L.; Wang, H.; Wu, Z.; Yang, W. One-pot facile synthesis of platinum nanoparticle decorated reduced graphene oxide composites and their application in electrochemical detection of rutin. Anal. Methods 2015, 7, 3581–3586. [Google Scholar] [CrossRef]
- Zou, C.E.; Bin, D.; Yang, B.; Zhang, K.; Du, Y. Rutin detection using highly electrochemical sensing amplified by an Au–Ag nanoring decorated N-doped graphene nanosheet. RSC Adv. 2016, 6, 107851–107858. [Google Scholar] [CrossRef]
- Franzoi, A.C.; Peralta, R.A.; Neves, A.; Vieira, I.C. Biomimetic sensor based on MnIIIMnII complex as manganese peroxidase mimetic for determination of rutin. Talanta 2009, 78, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-M.; Chao, L.-Q.; Mei, L.; Chen, Z.-H.; Li, X.-M.; Miao, M.-S. Soluble tetraaminophthalocyanines indium functionalized graphene platforms for rapid and ultra-sensitive determination of rutin in Tartary buckwheat tea. Food Control 2022, 132, 108550. [Google Scholar] [CrossRef]
- Feng, G.; Yang, Y.; Zeng, J.; Zhu, J.; Liu, J.; Wu, L.; Yang, Z.; Yang, G.; Mei, Q.; Chen, Q.; et al. Highly sensitive electrochemical determination of rutin based on the synergistic effect of 3D porous carbon and cobalt tungstate nanosheets. J. Pharm. Anal. 2022, 12, 453–459. [Google Scholar] [CrossRef]
- Yao, X.; Kou, X.; Qiu, J. Acidified multi-wall carbon nanotubes/polyaniline composites with high negative permittivity. Org. Electron. 2016, 38, 55–60. [Google Scholar] [CrossRef]
Rutin Sensors | LOD | Linear Range | Detection Measures |
---|---|---|---|
AuNPs-HCNT/GCE [47] | 81 nM | 1.0 × 10−7–3.1 × 10−5 M | CV |
PdPc-MWCNT/GCE [48] | 75 nM | 1.0 × 10−7–5.1 × 10−5 M | CA |
N-MCS@GO/GCE [49] | 50 nM | 5.0 × 10−7–1.9 × 10−4 M | DPV |
PtNP–rGO/GCE [50] | 10 nM | 5.0 × 10−8–1 × 10−5 M | DPV |
Au–Ag nanorings/NG [51] | 10 nM | 5.0 × 10−7–2.4 × 10−4 M | DPV |
[MnIIIMnII(Ldtb)(μ-OAc)2] BPh4 [52] | 17.5 nM | 9.99 × 10−7–6.54 × 10−5 M | SWV |
rGO-InTAPc/GCE [53] | 2.0 nM | 5.0 × 10−9–1.0 × 10−4 M | DPV |
PC/CoWO4/GCE [54] | 0.45 ng/mL | 5–5000 ng/mL | DPV |
CAU−1/MWCNT/GCE (This work) | 0.67 nM | 1.0 × 10−9–3.0 × 10−6 M | DPV |
Original | Add | Detected | Recovery | RSD | |
---|---|---|---|---|---|
1 | 49 nM | 0 | 49 nM | --- | 1.56% |
2 | 49 nM | 25 nM | 69 nM | 92% | 2.03% |
3 | 49 nM | 50 nM | 101 nM | 104% | 1.35% |
4 | 49 nM | 75 nM | 121 nM | 96% | 3.66% |
5 | 49 nM | 100 nM | 148 nM | 99% | 2.63% |
6 | 49 nM | 125 nM | 181 nM | 105.6% | 3.98% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tang, J.; Lin, Y.; Li, J.; Yang, Y.; Zhao, P.; Fei, J.; Xie, Y. Ultrasensitive Determination of Natural Flavonoid Rutin Using an Electrochemical Sensor Based on Metal-Organic Framework CAU−1/Acidified Carbon Nanotubes Composites. Molecules 2022, 27, 7761. https://doi.org/10.3390/molecules27227761
Li Y, Tang J, Lin Y, Li J, Yang Y, Zhao P, Fei J, Xie Y. Ultrasensitive Determination of Natural Flavonoid Rutin Using an Electrochemical Sensor Based on Metal-Organic Framework CAU−1/Acidified Carbon Nanotubes Composites. Molecules. 2022; 27(22):7761. https://doi.org/10.3390/molecules27227761
Chicago/Turabian StyleLi, Yuhong, Jianxiong Tang, Yueli Lin, Jiejun Li, Yaqi Yang, Pengcheng Zhao, Junjie Fei, and Yixi Xie. 2022. "Ultrasensitive Determination of Natural Flavonoid Rutin Using an Electrochemical Sensor Based on Metal-Organic Framework CAU−1/Acidified Carbon Nanotubes Composites" Molecules 27, no. 22: 7761. https://doi.org/10.3390/molecules27227761
APA StyleLi, Y., Tang, J., Lin, Y., Li, J., Yang, Y., Zhao, P., Fei, J., & Xie, Y. (2022). Ultrasensitive Determination of Natural Flavonoid Rutin Using an Electrochemical Sensor Based on Metal-Organic Framework CAU−1/Acidified Carbon Nanotubes Composites. Molecules, 27(22), 7761. https://doi.org/10.3390/molecules27227761