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Abstract: In the current study, we have synthesized an imidazolium based cross-linked polymer,
namely, 1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide (poly[veim][Tf2N]-TRIM)
using trimethylolpropane trimethacrylate as cross linker, and demonstrated its efficiency for the
removal of two extensively used ionic dyes—methylene blue and orange-II—from aqueous systems.
The detailed characterization of the synthesized poly[veim][Tf2N]-TRIM was performed with the
help of 1H NMR, TGA, FT-IR and FE-SEM analysis. The concentration of dyes in aqueous samples
before and after the adsorption process was measured using an UV-vis spectrophotometer. The
process parameters were optimised, and highest adsorption was obtained at a solution pH of 7.0,
adsorbent dosage of 0.75 g/L, contact time of 7 h and dye concentrations of 100 mg/L and 5.0 mg/L
for methylene blue and orange-II, respectively. The adsorption kinetics for orange-II and methylene
blue were well described by pseudo-first-order and pseudo–second-order models, respectively.
Meanwhile, the process of adsorption was best depicted by Langmuir isotherms for both the dyes.
The highest monolayer adsorption capacities for methylene blue and orange-II were found to be 1212
mg/g and 126 mg/g, respectively. Overall, the synthesized cross-linked poly[veim][Tf2N]-TRIM
effectively removed the selected ionic dyes from aqueous samples and provided >90% of adsorption
efficiency after four cycles of adsorption. A possible adsorption mechanism between the synthesised
polymeric adsorbent and proposed dyes is presented. It is further suggested that the proposed ionic
liquid polymer adsorbent could effectively remove other ionic dyes and pollutants from contaminated
aqueous systems.

Keywords: ionic liquids; adsorption; reusability; dye substances; Langmuir isotherm; wastewater

1. Introduction

Contamination of aqueous systems with dye effluents poses a significant threat to
the ecosystem and has a detrimental impact on human beings and ecosystem due to their
toxicity and carcinogenicity [1,2]. Azo dyes are extensively used synthetic organic dyes
and account for 60–70% of the total production of dyes. Amongst the several anionic
azo dyes, orange-II (O-II) is the most popular and is typically used in leather dyeing,
textiles and furniture industry [3]. For decades, it has been known for its acute toxicity,
carcinogenicity and mutagenic nature [4]. Cationic azo dyes are commonly used for the
colouring of nylon, silk and woollen clothes owing to their near contact with cloth surfaces.
A common example of cationic dyes is methylene blue (MB), which induces a range of
health problems such as dysfunctional breathing, fatigue, excessive sweating, mental
discomfort and methemoglobinemia when discharged into drinking water sources [5].
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Considering the high toxicity of dyes, several treatment processes have been reported
for their removal from aqueous systems including chemical oxidation, electrochemical
oxidation, precipitation, photochemical degradation, membrane filtration and adsorp-
tion [6]. Among the reported technologies, adsorption has been recognized as the most
successful process due to its easy separation, greater removal efficiency, affordable cost
and good material reusability [7]. Over the years, a large number of adsorbents such as
metal oxides, zeolites, natural clays, advanced carbon materials and metal nanoparticles
have been successfully employed for the removal of dyes from aqueous systems [8–14].
However, the heightened awareness of green chemistry principles created the necessity
for developing low-cost and green adsorbents that can effectively remove environmental
contaminants. Recently, ionic liquids (ILs) have received high attention as alternative
solvents in view of their remarkable characteristics including negligible vapour pressure,
low volatility, high thermal stability and good reusability. As a result, the applications of ILs
have been extensively studied in fuel cells, catalysis, nuclear systems and environmental
sustainability in recent years [15–21]. Although ILs have emerged as effective solvents for
the extraction/removal of toxic organic pollutants and dyes from contaminated waters,
most ILs are viscous and possess considerable solubility in water [22]. Consequently, the
regeneration of ILs for their subsequent utilization is critical and necessitates substantial
energy [23]. As a result, the polymerization of ILs and their subsequent utilization in
adsorption process has gained significant attention in recent times [24–26]. Polymerised ILs
(PILs) overcome the limitations of conventional ILs and provide additional designability,
mechanical resilience and ionic conductivity. Among the various advantages of PILs for
which they have received wide attention is their application in catalysis, reactive materials,
adsorption and other energy systems [27–31]. Further, the specific adsorbate and adsorbent
(PILs) interactions including electrostatic interactions, van der Waal forces and hydrogen
bonding are promising in the adsorption of organic dyes [32].

PILs effectively adsorb anionic dyes owing to the electrostatic forces of attraction
between dyes and the cationic group of the IL. For example, a polymeric adsorbent pre-
pared from polyvinyl benzyl chloride and 2-methylimidazole has provided a maximum
adsorption of 2012 mg/g for Acid Orange-7 anionic dye [33]. In another study, a novel
N-methyl pyrrolidinium polymer adsorbent provided maximum monolayer adsorption
capacities of 198.4 mg/g, 279.3 mg/g and 316.5 mg/g for Orange-G, Orange-II and Sunset
Yellow FCF, respectively [34]. Most recently, an imidazolium based PIL was synthesized
by surfactant-free IL microemulsion, and was evaluated for its adsorption capacity in the
removal of methyl orange and disperse red from contaminated sites. The highest adsorp-
tion efficiencies were determined to be 187 mg/g and 1080 mg/g for methyl orange and
disperse red, respectively [35]. In addition, a superabsorbent polymer (SAP) prepared
from starch phosphate carbamate (SPC) and acrylamide (AM) has shown an adsorption
capacity of 62.52 mg/g for the removal of methylene blue [36]. In addition, several studies
demonstrated the ability of microporous polymeric adsorbents for the removal of various
dyes and metal ions from aqueous systems [37–39].

The existing data suggests that many studies have been conducted for the removal
of a single category of dyes (either anionic or cationic) using various PILs. By contrast,
there are no studies reported for the simultaneous removal of anionic and cationic dyes.
Thus, in the present investigation, we have synthesized a cross-linked poly[veim][Tf2N]-
TRIM adsorbent and demonstrated its adsorption efficiency towards MB and O-II dyes
from aqueous systems. The cross-linker trimethylolpropane trimethaacrylate (TRIM) was
incorporated into the polymer adsorbent to control the morphology and physical prop-
erties of the polymer matrix, to provide additional mechanical stability and to stabilize
the binding sites of the polymer matrix [40]. In fact, TRIM is a superior crosslinker that
provides excellent binding capacity to the polymer matrix through its vinyl groups. Several
studies have already confirmed that the incorporation of TRIM during the synthesis of
polymer adsorbents significantly enhanced their adsorption capacity for various analytes
and pollutants [41–43]. For instance, a study concluded that microparticles synthesised us-
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ing the TRIM cross-linker have shown higher adsorption properties towards 5-fluorouracil
than those synthesized without a cross-linker. Similarly, a few TRIM based molecularly
imprinted polymers (MIPs) confirmed the usefulness of cross-linkers in adsorption studies.
Further, a recent study reported that the usage of an appropriate amount of cross-linker is
essential to obtain a porous structure with high mechanical strength and to keep the binding
sites [44]. Furthermore, our previous study confirmed the surface area and pore volume
of poly[veim][Tf2N]-TRIM through N2 adsorption desorption measurements, which were
found to be 27 m2/g and 0.14 cm3/g respectively [45]. Although the values are relatively
lower than the other micelle incorporated poly[veim][Tf2N]+SMI materials, the results
confirmed the porous structure and availability of binding sites in poly[veim][Tf2N]-TRIM
for the selected dyes. In addition, the synthesized PIL have certain advantages over other
reported adsorbents including its high adsorption capacity, simple process optimization
and process adaptability. The dye removal occurred at mild operating conditions and the
process does not produce any toxic by-products. The impact of various process parameters
including the initial dye concentration, adsorbent dosage, contact time, solution pH and
temperature on adsorption efficiency of the proposed polymer adsorbent was examined
to determine the optimum conditions that produce maximum adsorption. Moreover, the
kinetic parameters and adsorption isotherms were assessed comprehensively.

2. Experimental
2.1. Chemicals and Reagents

Bromoethane and 1-vinyl imidazole were purchased in their highest grades (≥99%)
from Merck (Darmstadt, Germany). Lithium bis(trifluoromethyl)sulphonamide (LiTf2N,
≥99%), 2,2′-azobis(2-methylpropionitrile), and trimethylolpropane trimethacrylate were
purchased from Sigma Aldrich (St. Louis, MO, USA). Next, the dye standards—namely,
methylene blue (>99%) and orange-II (>99%), and ethanol, ethyl acetate and acetone were
purchased from Fisher Scientific (Loughborough, UK) in AR Grade. A highly precise
Sartorius®-CP124S competence laboratory balance was used to weigh the standards and
to prepare standard solutions. The synthesized ILs were tightly closed and stored in a
desiccator to prevent hydration. Millipore water was employed during the preparation of
standard and stock solutions.

2.2. [veim][Br] and [veim][Tf2N] Monomer Synthesis

The detailed preparation of [veim][Br] and [veim][Tf2N] monomers is presented
in our previous study [46]. Briefly, 1-vinyl-3-ethylimidazolium bromide [veim][Br] was
synthesized by slowly adding 0.3 mol−1 (33 g) bromoethane to the round bottom flask
that contained 0.3 mol−1 (28 g) 1-vinylimidazole and stirred vigorously for 2 h at 40 ◦C.
At completion of the reaction, the [veim][Br] monomer was produced as white precipitate,
which was dissolved in ethyl acetate to complete the precipitation and to isolate the
unreacted materials. The washing procedure was repeated several times with ethyl acetate
and finally the monomer was dried under reduced pressure using a rotary evaporator
(rotavapor) for about 6 h. The resulting [veim][Br] monomer was analysed using 1H NMR
for the confirmation of its chemical structure.

Similarly, the IL monomer 1-viny-3-ethylimidazolium bis(trifluoromethyl-sulfonyl)imide
[veim][Tf2N] was synthesised by a simple ion exchange process between [veim][Br] and
lithium bis(trifluoromethyl)sulphonamide (Li[Tf2N]). A slight excess of anionic salt was
added at a molar ratio of 1:1.1 to ensure the total ion exchange and the mixture was contin-
uously stirred for 8 h until the formation of two clear separate layers of [veim][Tf2N] and
LiBr. After the formation of clear layers, the [veim][Tf2N] obtained in the bottom phase
was isolated and rinsed with distilled water to eliminate the unreacted reactants and then
dried on a rotavapor to remove the moisture and other residual solvents. The formation of
[veim][Tf2N] was ensured through 1H NMR analysis.
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2.3. Synthesis of Cross-Linked poly[veim][Br] and poly[veim][Tf2N]

The cross-linked poly[veim][Br]-TRIM and poly[veim][Tf2N]-TRIM materials were
synthesized using free radical polymerization. To synthesize the poly[veim][Br]-TRIM,
equal amounts (w/w) of [veim][Br] (1.0 g) and ethanol (1.0 g) were taken into the flask
and used along with nitrogen to purge the mixture for 15 min. After purging, the reaction
mixture, 20 mg of free radical initiator (AIBN) and 50 mg of cross-linker (TRIM) were added
as cross-linker and again used to purge the reaction mixture for 10 min under nitrogen; the
reaction mixture was subsequently stirred in oil bath at 65 ◦C for approximately 30 min
until the formation of an elastic gel-type polymeric material. The resulted polymeric gel
was diluted with a small fraction of reaction solvent and then acetonitrile was added to
precipitate the poly[veim][Br]-TRIM. The resultant product was then rinsed, dried and
stored in a desiccator.

Similarly, the synthesis of poly[veim][Tf2N]-TRIM was conducted by adding equal
amounts of [veim][Tf2N] (1.0 g, 0.003 mol) and ethanol (1.0 g, 0.002 mol) to a flask and
purging the mixture with nitrogen for 30 min. Afterwards, the solution was enriched with
20 mg of AIBN (0.12 mol) and 50 mg of TRIM (0.15 mmol) and again purged with nitrogen
for 10 min. The reaction mixture was then stirred at 65 ◦C for about 30 min until it formed a
polymeric gel. After the polymerization was completed, a small fraction of reaction solvent
was added to dilute the resultant product, and subsequently poly[veim][Tf2N]−TRIM
was precipitated by pouring into water. The resultant polymer was initially dried and
preserved in a desiccator until further use. The schematic representation for the formation
cross-linked PIL-TRIM is presented in Figure 1.
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Figure 1. Schematic representation for the formation of the cross-linked poly[veim][Tf2N]−TRIM
structure.

2.4. Characterization of Synthesized IL Monomer and Polymers

The structural confirmation of synthesised IL monomers was ascertained using INOVA
500 MHz NMR spectrometer. For the 1H NMR analysis, the IL monomers were dissolved
in deuterated methanol, mixed, filtered and clear samples were poured into NMR tubes.
Next, the FT-IR spectra of prepared IL polymers were scanned between 4000–600 cm−1

using Shimadzu IR-Tracer-100 fitted with a diamond ATR module [38]. Thereafter, the
surface morphology of synthesized PIL materials was characterized using FE-SEM (S-4300,
Hitachi), before which the samples were precisely ground to form a thin layer of gold
coating using the evaporator. The thermal characterization of synthesised IL polymers
was conducted using thermogravimetric analysis (TGA/DTG, Perkin Elmer Simultaneous
Analyzer STA 6000). The thermograms were recorded at a temperature range between
50–700◦C with 10 ◦C/min heat increments under an inert N2 atmosphere. The measure-
ments were taken with a precision of ±0.1% weight.
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2.5. Dye Adsorption Experiments

Two analytes namely MB (cationic dye) and O-II (anionic dye) were selected as model
analytes to determine the adsorption efficiency of synthesised PIL adsorbents. Initially, the
individual standard stock solutions of dyes were prepared by adding an accurately weighed
quantity of dyes to distilled water. From the above standard stock solutions, six calibration
standards of each dye were prepared through serial dilution. An amount of 0.1 M NaOH
and 0.1 M HCl solutions were used to adjust the pH of the samples. The effect of adsorbent
dosage on overall adsorption was assessed by altering the initial adsorbent concentration in
the aqueous dye solution. The stirring speed of the test solution was maintained at 100 rpm
for a predetermined time at ambient temperature. The standard adsorption experiments
were performed with 100 mL of aqueous solution containing 50 mg/L of each dye at 25 ◦C
for 7 h. After the reaction time was complete, the test samples were centrifuged and the
aqueous phase subsequently analysed using UV-vis spectrophotometer to determine the
concentration of unextracted dyes. The extraction efficiency (%E) and adsorption capacity
Q (mg/g) of synthesized PIL-TRIM towards each dye was assessed using the following
Equations (1) and (2):

E% =
C0 −Ce

C0
× 100 (1)

Qe = (C0 −Ce)

(
V
m

)
(2)

where, C0 and Ce are initial and equilibrium dye concentrations (mg/L), respectively; V is
test sample volume (L); and m is adsorbent mass (g).

2.6. Desorption

To determine the reusability of prepared PIL adsorbents, desorption studies were
performed using a mixture of choline chloride in water and ethanol (5.0 wt.% in 1:1
v/v). For this, 50 mg of post-adsorption material was taken and soaked in 5.0 mL of the
aforementioned solution mixture and slowly stirred for about 30 min at room temperature.
Later, the polymeric adsorbents were filtered, washed and dried at 50 ◦C under vacuum.
The processed adsorbent was re-examined to determine its performance efficiency towards
the removal of the same dyes. The desorption experiments were repeated for four cycles to
compare the removal efficiency of the PIL-TRIM adsorbent and its lifespan.

3. Results and Discussions
3.1. Synthesis and Characterization of PIL-TRIM Adsorbent

Prior to the synthesis of PILs, the prepared monomers [veim][Br] and [veim][Tf2N]
were characterized for their structural confirmation using 1H NMR. The results confirmed
the structure and purity of synthesized IL monomers. The 1H NMR data of [veim][Br] and
[veim][Tf2N] confirmed the successful synthesis of IL monomers evidenced through the
total number of hydrogens in each monomer.

1H NMR data of [veim][Br] (500 MHz; MeOD): δ 9.50 (s, 1H, N-CH-N), 8.20 (s, 1H, N-
CH-CH-N), 7.85 (s, 1H, N-CH-CH-N), 7.30 (dd, 1H, N-CH-CH2); 5.95 (dd, 1H, N-CH-CH2),
5.32 (dd, 2H, N-CH-CH2); 4.22 (q, 2H, N-CH2-CH3); 1.55 (t, 3H, CH2-CH3).

1H NMR data of [veim][Tf2N] (500 MHz; MeOD): δ 9.20 (s, 1H, N-CH-N); 7.95 (s,
1H; N-CH-CH-N); 7.75 (s, 1H, N-CH-CH-N); 7.25 (dd, 1H, N-CH-CH2); 5.90 (dd, 1H,
N-CH-CH2), 5.45 (dd, 2H, N-CH-CH2); 4.30 (q, 2H, N-CH2-CH3); 1.60 (t, 3H, CH2-CH3).

The synthetic route affirmed for the preparation of poly[veim][Br]-TRIM and
poly[veim][Tf2N]-TRIM is presented in Figure 2. The formation of cross-linking in imida-
zolium backbone was intended to enhance the physiochemical properties of the resultant
polymer and subsequently improved the sorption efficiency of PIL-TRIM. In addition,
the aromatic rings on imidazolium improves the π–π interactions between adsorbent
and adsorbate molecules, and subsequently improves the overall adsorption potential of
polymer [34,39].
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Figure 2. Schematic representation for the synthesis of poly[(veim)(Tf2N)−TRIM].

The FT-IR scanning of poly[veim][Br]-TRIM and poly[veim][Tf2N]-TRIM confirmed
the formation of the respective polymers and the incorporation of TRIM during polymerisa-
tion. The corresponding FT-IR spectra of poly[veim][Br]-TRIM and poly[veim][Tf2N]-TRIM
are presented in Figure 3. The three peaks appeared between 2920–3100 cm−1 in both
poly[veim][Br]-TRIM and poly[veim][Tf2N]-TRIM spectra representing the alkene C–H
(C=C–H; sp2) stretch of the imidazolium ring. Further, the peaks that appeared at 1675 cm−1

and 1550 cm−1 correspond to the C=C and C=N stretch of the imidazolium ring, respec-
tively [33,45]. Next, a couple of peaks detected at 1485 cm−1 and 1160 cm−1 correspond to
C–H bending and C–N bending of the imidazolium ring, respectively. Additionally, the
two peaks that appeared at 1355 cm−1 and 1055 cm−1 only in poly[(veim)(Tf2N)-TRIM]
are characteristic peaks of SO2 symmetric and asymmetric bonding on Tf2N anions, re-
spectively. At last, the peak at 1730 cm−1 in both the polymers is the characteristic peak of
trimethylolpropane trimethacrylate (TRIM) corresponding to the C=O group.
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The surface morphology of the synthesized polymers viz., poly[veim][Br]-TRIM and
poly[veim][Tf2N]-TRIM, was examined with the aid of FE-SEM. The morphology results
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helped to assess the porous nature of the polymers based on the particle sizes in frame-
works (1.0 µm–200 nm) as manifested in Figure 4. Figure 4a,b depicts that the surface of
poly[veim][Tf2N]-TRIM is relatively more porous than that of poly[veim][Br]-TRIM. In sup-
port of this, EDX analysis of elemental composition confirmed the higher content of carbon,
oxygen, and fluorine atoms in poly[veim][Tf2N]-TRIM than in poly[veim][Br]-TRIM which
could enhance the dye adsorption. Further, the surface morphology of poly[veim][Tf2N]-
TRIM after MB and O-II adsorption is conveyed in Figure 4c,d, wherein the adsorption
of dye molecules onto the adsorbent can be seen clearly while surface roughness of the
adsorbent has been altered. Overall, there is a clear difference in surface morphology of
poly[veim][Tf2N]-TRIM before and after dye adsorption.
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Figure 4. Surface morphology of (a) poly[veim][Br]-TRIM, (b) poly[veim][Tf2N]-TRIM,
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The higher thermal stability of synthesised IL polymers is another prerequisite for their
potential application in dyes adsorption. Hence, the thermal stability of poly[veim][Br]-
TRIM and poly[veim][Tf2N]-TRIM was evaluated through thermogravimetric analysis
(TGA) under inert N2 atmosphere. The TGA plots presented in Figure 5 provide precise
information about the thermal stability of both the polymers. As seen in Figure 5, the
poly[veim][Tf2N]-TRIM showed higher T10% (Temperature at 10 wt.% loss) and slower
decomposition rates compared to poly[veim][Br]-TRIM. From the TGA data, it is perceived
that the anion influenced (Tf2N>Br) the thermal stability of the polymers, which is in
good agreement with reported studies [45,46]. Specifically, the findings revealed that the
weight loss of samples began around 50 ◦C. The cleavage of ethyl group connecting to
the imidazolium ring might have contributed to a weight loss of 7 percent. The two-step
decomposition process at around 300 ◦C and 400 ◦C provisionally confirmed the formation
of cross-linked polymeric structures. Finally, at 450 ◦C, the polymers substantially decom-
posed because of the breakage of the large polymeric chains of the respective polymers.
A good degree of cross-linking in the polymers provided relatively higher thermal stabil-
ity [35,47]. The higher thermal stability of synthesized PILs demonstrates a higher degree
of polymerization and good cross-linking formation among the polymeric chains, and their
subsequent ability to apply at high temperatures during the adsorption of dyes. Addi-
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tionally, the derivative thermogravimetric (DTG) plots in Figure 5 provided a precise and
accurate information package regarding the thermal stability of the PILs. The respective
peaks indicated that poly[veim][Tf2N]-TRIM is more stable than poly[veim][Br]-TRIM.
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3.2. Study of Adsorption Performance

The adsorption capacity of synthesised PIL materials was examined to assess their
adsorption capacity towards the selected dyes. To evaluate the influence of anions attached
to the PILs, the two cationic and anionic dyes—respectively, MB and O-II—were selected
as representative adsorbates, and the adsorption efficiency of both PIL adsorbents was then
examined using a UV-vis spectrophotometer. Figure 6 shows the adsorption performance
of poly[veim][Br]-TRIM and poly[veim][Tf2N]-TRIM towards the removal of the selected
dyes. The initial experiments were conducted with 50 mg/L of dye concentration, 0.5 g/L
of adsorbent dosage, solution pH of 6.5 and stirring speed of 100 rpm for about 7 h to
ensure complete adsorption.

As shown in Figure 6, the poly[veim][Br]-TRIM adsorbent showed relatively good
adsorption efficiency for the anionic dye, i.e., O-II, but its ability towards the adsorption
of MB is very poor. This can be explained by the electrostatic repulsions between MB and
poly[veim][Br]-TRIM that might have inhibited the adsorption of MB onto the adsorbent,
while the SO3

− functional group of the O-II dye could have favoured the dye adsorption
via electrostatic interactions. The presence of Br− ion in poly[veim][Br]-TRIM enhanced
the surface positive charge. Accordingly, the cationic dye (MB) adsorption was reduced,
and the anionic dye adsorption was increased. By contrast, in the case of poly[veim][Tf2N]-
TRIM, the removal of MB and O-II dyes was found to be 98% and 36%, respectively. This is
because poly[veim][Tf2N]-TRIM was prepared by ion-exchange reaction, in which bulk
cation combines effectively with bulk anion in accordance with the hard/soft-acid/base
principle (HSAB) [48,49], so a non-homogeneous charge distribution produces considerable
potential surface power and leads to the adsorption of both ionic dyes to neutralize some
electric charge on the surface via electrostatic interactions. It was reported that imidazolium-
based ILs with the Tf2N anion showed relatively high extraction efficiency for MB [18]. The
difference in adsorption capacity for both individual dyes was because of their dissimilar
functional groups. The steric hindrance between the SO3

− and Tf2N anions caused low
adsorption efficiency for O-II, but it is evident that the N+ atom of the imidazolium ring
along with the Tf2N anion can interact electrostatically with the SO3

− group of O-II [34].
Moreover, the surface morphology of poly[veim][Tf2N]-TRIM analysed by FE-SEM indi-
cates that the material is exceedingly more porous than the poly[veim][Br]-TRIM, which
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has showed high adsorption potential for both ionic dyes. These results suggested that the
Br− based PIL adsorbent, i.e., poly[veim][Br]-TRIM, is favourable only for the adsorption of
anionic dyes, while the Tf2N based PIL adsorbent, i.e., poly[veim][Tf2N]-TRIM, is capable
of adsorbing both cationic and anionic dyes effectively. Therefore, the Tf2N anion based
PIL i.e., poly[veim][Tf2N]-TRIM, was selected for further optimization studies.
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3.2.1. Effect of Solution pH

The effect of solution pH on the adsorption of MB and O-II was assessed because the
surface charge of adsorbent and degree of ionization of substrate are pH dependent, and
they determine the overall adsorption capacity [50–53]. Adsorption tests were performed
taking the dye concentrations as 20 mg/L of O-II and 500 mg/L of MB with respect to
0.5 g/L of adsorbent at varying pH values between 2.0–12.0. As shown in Figure 7A, the
MB adsorption onto poly[veim][Tf2N]-TRIM was magnified with a rise in solution pH,
because the MB adsorption is anticipated by the chemical and electrostatic interactions
between the adsorbate and surface of adsorbent molecules. The increase in solution pH
enhanced the OH− ion concentration in aqueous solution and the surface of adsorbent
underwent deprotonation which intensified the negative charge. Therefore, electrostatic
attractions between a positive dye molecule and negative adsorbent surface is increased [54].
Subsequently, the rate of adsorption of MB onto poly[veim][Tf2N]-TRIM was raised by
increasing the pH of solution. By contrast, in the case of O-II, a reverse trend was observed
with respect to solution pH, which is mainly because of electrostatic repulsion between the
negatively charged dye molecule and the adsorbent surface charge at higher pH values.
The high extraction of O-II at low solution pH was mainly due to the high concentration of
proton ions in the adsorbent, which created electrostatic attraction with the dye molecules
and increased the extraction efficiency of O-II [55]. The findings revealed that electrostatic
forces are crucial and preside over the adsorption of MB and O-II onto poly[veim][Tf2N]-
TRIM. In view of the above findings, an optimum solution pH of 7.0 was maintained for
further optimisation.
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3.2.2. Effect of Adsorbent Dosage

To determine the minimum amount of adsorbent that can provide maximum dye
removal efficiency, a proper optimization of adsorbent concentration is required. The



Molecules 2022, 27, 7775 11 of 19

extraction efficiency of adsorbent was observed by adding various amounts, i.e., 0.1, 0.25,
0.5, 0.75 and 1.0 g/L of poly[veim][Tf2N]-TRIM to the aqueous dye solutions. Figure 7B
indicates that the dye removal was proportionally increased with adsorbent concentration
as the number of adsorption sites for dyes are increased with adsorbent quantity, which
is in good concurrence with the published studies [34,56,57]. Approximately 80 percent
of dyes from aqueous solution were extracted on to adsorbent in 7 h of contact time with
a dosage of 0.75 g/L. However, the adsorption rate was not progressively increased by
further increasing the adsorbent dosage beyond 0.75 g/L, which implies that the adsorbent
saturation potential might not be achievable. For dye-contaminated waters at high con-
centration, large surface area and higher functional adsorption sites could be available by
adding a sufficient amount of adsorbent [58]. Taking into consideration the dye adsorption
capacity and removal efficiency, 0.75 g/L of adsorbent dosage was specified as the optimum
value for adsorption tests.

3.2.3. Effect of Temperature

The effect of temperature on the adsorption process was examined through controlled
adsorption experiments varying the temperature from 25 ◦C to 55 ◦C as depicted in Fig-
ure 7C. At higher temperatures, the diffusion of adsorbate molecules over the boundary
layers was found to be high, and hence the solution viscosity decreased. Furthermore, the
change in temperature affected the adsorbent equilibrium capacity [59]. As delineated in
Figure 7C, the rate of removal for the O-II dye increased from 74.5% to 84.6% when the
temperature altered from 25 ◦C to 55 ◦C; similarly, for MB it increased from 74.3% to 81.8%.
The results were comparable with the reported studies, meaning that a rise in temperature
leads to a higher adsorption capacity [60,61]. As the higher temperature is beneficial to the
adsorption of both ionic dyes by poly[veim][Tf2N]-TRIM, this indicates that dye adsorption
is an endothermic operation.

3.2.4. Effect of Contact Time

The influence of contact time on adsorption efficiency of poly[veim][Tf2N]-TRIM for
the selected dyes was examined between 0–30 h. Figure 7D demonstrates the impact of
contact time on the rate of adsorption at an initial concentration of 20 mg/L for O-II and 500
mg/L for MB. The test solutions were kept with the adsorbents for up to 30 h in order to
assess the adsorption potential at equilibrium. It can be seen that the dyes’ adsorption was
found to be rapid during the initial hours as the availability of adsorption sites are greater
in number and the adsorbent contains the porous poly[veim][Tf2N]-TRIM framework,
resulting in a powerful binding and diffusion of the dyes on the surface of the adsorbent.
Later, the adsorption rate gradually decreased with the decrease in total number of vacant
sites on adsorbent surface. The slow rate of adsorption especially towards the end of
the experiments shows that the adsorbent surface may have a monolayer formation of
MB [62,63]. This might be attributed to the shortage of accessible active sites necessary for
more adsorption when the equilibrium has been reached. It is worth mentioning that O-II
needed a lengthier time to achieve equilibrium. For consistency, the optimum equilibrium
time for both the dyes was taken as 7 h which is more rapid than other reported Tf2N anion
based IL polymers for the removal of O-II by adsorption [34]. At the completion of the
adsorption process, MB showed relatively higher adsorption than O-II (Figure 7D).

3.2.5. Effect of Dye Concentration

The impact of dye concentration on the extraction/adsorption process was examined
in this study. The initial dye concentration is a leading force to diminish the mass transfer
resistance of dyes between the aqueous phase and polymer adsorbent. Figure 7E,F show
the adsorption behaviour of poly[veim][Tf2N]-TRIM with respect to dye concentration.
The adsorption of dyes gradually declined with the increase in dye concentration, because
the binding sites on the adsorbent reduce with increase in dye concentration. In particular,
the efficiency of dye removal decreased from 97% to 35%, and 87% to 25% for MB and
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O-II, respectively, with an increase in dye concentration from 100 to 1000 mg/L and 5
to 200 mg/L, respectively. The synthesised poly[veim][Tf2N]-TRIM adsorbent was more
effective for the removal of MB at all concentrations compared to O-II. Conversely, the
quantity of adsorbed dye per adsorbent mass Qe (mg/g) enhanced relative to rise in dye
concentration as seen in Figure 8, which is further explored in an adsorption isotherm
study. These findings were well matched with the previous reports [64]. The rise in Qe with
respect to initial dye concentration is attributed to the higher dye gradient that served as
the driving force for the mass transfer operation, permitting the introduction of additional
dye molecules to facilitate the adsorption on the adsorbent surface [34,65].
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3.3. Adsorption Kinetic Study

Adsorption kinetics predict the pace at which an analyte/pollutant is extracted from
aquatic solutions, and also provide useful information regarding the adsorption mechanism.
The adsorption kinetics of MB and O-II dyes were best fitted into pseudo-first-order and
pseudo-second-order kinetic models, respectively. Figure 9 displays the experimentally
obtained adsorption results and their kinetic plots, which are non-linearly fitted to MB
and O-II by pseudo-first-order and pseudo-second-order kinetic models, respectively. The
determined kinetic parameters are presented in Table 1.
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Table 1. The kinetic parameters of MB and O-II dye adsorption.

Name of
Dye

Experimental
Adsorption Pseudo-First-Order Pseudo-Second-Order

Qe,exp Qe,cal k1 R2 ARE Qe,cal k2 R2 ARE

MB 717.7 717.3 1.054 0.951 0.076 668.3 0.0026 0.981 0.041

O-II 29.84 29.12 0.532 0.990 0.085 25.12 0.025 0.979 0.142

Qe,exp—experimental adsorption capacity; Qe,cal—calculated adsorption capacity.

During the adsorption of MB onto poly[veim][Tf2N]-TRIM, the coefficient of deter-
mination (R2) in the pseudo-second-order model was found to be greater than in the
pseudo-first-order model since the difference between the theoretical and experimental
adsorption capacities is less. Thus, MB adsorption by poly[veim][Tf2N]-TRIM is better
fitted into the pseudo-second-order kinetic model. The chemical adsorption process is a key
control step that determines the adsorption rate and the chemical relationship occurring
between MB and the polymer adsorbent [34,66,67]. The EDX analysis further confirmed
the decrease in nitrogen content due to anion exchange between MB and poly[veim][Tf2N]-
TRIM counter ions. As a result, a strong chemisorption interplayed between adsorbent and
MB, due to which MB attached to the backbone of the cross-linked polymer. By contrast, in
the adsorption of O-II onto poly[veim][Tf2N]-TRIM, the coefficient of determination (R2)
obtained in the pseudo-first-order kinetic model was found larger compared to the pseudo-
second-order kinetic model. Moreover, the adsorption data of the pseudo-first-order kinetic
model is closer to the experimental data, which is supported by a low ARE error value.
These results demonstrated that O-II dye adsorption onto poly[veim][Tf2N]-TRIM is best
described by the pseudo-first-order kinetic model, indicating that the diffusion process is a
rate control step [35].

3.4. Adsorption Isotherms

Freundlich and Langmuir adsorption models were selected to fit the O-II and MB
adsorption isotherms and to examine the mechanisms involved between the dye molecules
and poly[veim][Tf2N]-TRIM. The curve fittings of both the models are presented in Figure 9.
The correlation coefficients (R2), average relative error (ARE), and determined Langmuir
and Freundlich isotherm constants are shown in Table 2. The data presented in Table 2
reveal that ARE values are minimum and R2 values for MB and O-II dyes adsorption
by poly[veim][Tf2N]-TRIM approached unity in the Langmuir model; whereas in the
Freundlich adsorption isotherm model, ARE values are relatively high and R2 values
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deviate from unity. Therefore, it is confirmed that the experimental results are best fitted
into a Langmuir adsorption model rather than a Freundlich model, suggesting a monolayer
adsorption [68]. The maximum monolayer adsorption capacity of MB and O-II reached
Qm values of 1212 mg/g and 126 mg/g, respectively. The anionic Tf2N in the imidazolium
backbone and cavities created by the cross-linked structure are key characteristics for
higher adsorption of MB. The lower magnitude of Langmuir constant (KL) indicates the
lower affinity between adsorbed molecules and porous adsorbent surface, which means
the adsorbent surface is not entirely occupied by adsorbed molecules and additional
adsorption may take place with a rise in concentration until it achieves equilibrium. Next,
the separation factor (RL) with reference to the Langmuir isotherm model was another
significant parameter calculated for both MB and O-II dyes at varying concentrations and
the results are presented in Figure 9. In both instances, the RL value relative to concentration
was seen to be below unity and above zero, an indicator of their favourable adsorption
nature, given that the RL value is a good sign of the adsorption method.

Table 2. Adsorption isotherm parameters for MB and O-II dyes.

Dye Name
Langmuir Isotherm Freundlich Isotherm

Qm (mg/L) KL ARE R2 KF n ARE R2

MB 1212 0.002 0.081 0.968 10.26 9.77 0.277 0.870

O-II 126.32 0.014 0.078 0.970 7.97 10.95 0.362 0.960

The maximum adsorption (Qm) capacity of poly[veim][Tf2N]−TRIM adsorbent is
compared with the efficiency of other reported adsorbents for the removal of the same dyes
from aqueous solutions (Table 3). The adsorption capacity of poly[veim][Tf2N]−TRIM
towards MB and O-II removal is significantly greater and comparable to that of reported ad-
sorbents in the literature. In particular, the adsorption capacity of poly[veim][Tf2N]−TRIM
towards MB was higher than all other reported adsorbent materials. In the case of O-II
adsorption, the proposed adsorbent is relatively effective for treating the mixture of dyes.
The high adsorption capacity of poly[veim][Tf2N]−TRIM towards ionic dyes might have
been induced by the greater surface area, unique surface morphology, strong hydrogen
bonding and good electrostatic interaction of dye with selected adsorbent. Consequently,
the adsorbent suggested for MB and O-II in this analysis may be viewed as a promising
substitute for ionic dye removal and their separation from aqueous solution.

Table 3. A relative comparison of adsorption efficiency of various adsorbents for the removal of MB
and O-II dyes.

Name of Adsorbent Name of Dye Adsorption Capacity
Qm (mg/g) Reference

Poly[veim][Tf2N]−TRIM

MB

1212 This study

Graphene hydrogel 660 [8]

Fe3O4–βCD–DCA polymer composite [Fe@CDA2] 333 [69]

Halloysite-Cyclodextrin nano sponges 226 [70]

PIL@PDA@Fe3O4 72 [24]

Poly[veim][Tf2N]−TRIM

O-II

126 This work

Apricot shell-AC 14 [71]

Amino-functionalized
titanosilicate 189 [72]

3.5. Reusability Performance

The development of a stable and robust adsorbent that can effectively perform multi-
ple adsorption–desorption cycles with respect to the target substrate is a positive feature
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since the process cost depends on its reusability [73]. The adsorbent was accessibly sepa-
rated through filtration after each cycle of dye adsorption. The recycling of spent adsorbent
was carried out by immersing it in a mixture of choline chloride–aqueous ethanol solu-
tion chosen for its low-cost and environmentally benign nature. As seen in Figure 10,
after the 1st cycle, the adsorption efficiency decreased very slightly, but the recycled
adsorbent efficiency was sustained above 90% in the following cycles. The instant de-
crease in adsorption efficiency at the 4th step indicates that even after desorption, most
active areas are over-saturated. In addition, the negligible weight loss of adsorbent after
the post-adsorption process suggested the stability of the adsorbent for multiple cycles.
The findings showed long-term reliability in adsorption and desorption processes of the
poly[veim][Tf2N]−TRIM, while a slight drop in dye adsorption occurred due to a small
insufficiency of desorption.
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4. Adsorption Mechanism

A proper understanding of adsorption mechanism is very important to assess the adsorp-
tion efficiency of the proposed adsorbent. The structures of the dyes and poly[veim][Tf2N]-TRIM
indicates a charge induced adsorption mechanism between the dye molecules and the
ionic liquid polymer (Figure 11). The synergistic effects together with π–π interactions,
electrostatic interactions and hydrophobic interactions are attributed to the adsorption of
ionic dyes with the polymeric adsorbent, with electrostatic interaction having the major ef-
fect [24,52]. In our case, chemical adsorption constitutes the primary adsorption mechanism
as demonstrated by adsorbent/dye characterization, adsorption kinetics and isotherms.

The first step towards a potential mechanism of adsorption is to closely investigate
both the adsorbent and the adsorbate’s chemical structures. The positive N+ atom of the
imidazolium ring and negative NTf2

− anion of poly[veim][Tf2N]−TRIM will impair with
adsorbates through electrostatic attractions. Hence, the SO3

− group of the O-II dye interacts
with the N+ atom of the imidazolium ring, and the N+ atom of the MB dye attaches to
the NTf2

− anion electrostatically. There are hydrogen bonds between the ionic dyes and
the polymer groups comprising hydroxyl and nitrogen. In addition, aromatic moieties
present in adsorbent and adsorbates could lead to enhanced adsorption by π–π interactions
among phenyl rings of the dye molecules and polymer structure. Therefore, superior
electrostatic interactions, improved hydrogen bonding and π–π interactions play a critical
role in improving the adsorption capacity of ionic dyes onto the poly[veim][Tf2N]-TRIM
polymer.
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5. Conclusions

In this paper, a cross linked poly[veim][Tf2N]-TRIM adsorbent was synthesized via
radical polymerization and used for the removal of two ionic dyes, namely, MB and O-II.
The prepared adsorbent was found effective towards the removal of both MB and O-II
dyes under optimized conditions. The pseudo-first-order kinetic model explained the ad-
sorption data of O-II; and we observed the reverse behaviour for MB adsorption for which
the data is well fitted into a pseudo-second-order kinetic model. Further, the Freundlich
and Langmuir adsorption models were used to fit the experimental data. In particular,
the adsorption data of O-II and MB were best fitted with the Langmuir adsorption model,
and the maximum adsorption capacities obtained were 126 mg/g and 1212 mg/g, re-
spectively. Therefore, the proposed adsorbent could be an effective alternative for the
simultaneous removal of selected anionic and cationic dyes from contaminated aqueous
systems. However, our future studies will examine the impact of a cross linker on the
porosity of poly[veim][Tf2N], and the possible ion-exchange process between a synthesized
IL polymer and analytes/regeneration solvents.
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