Synthesis of 2-Aminopyrimidine Derivatives and Their Evaluation as β-Glucuronidase Inhibitors: In Vitro and In Silico Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Bioassay
2.2.1. In Vitro β-Glucuronidase Inhibition Activity
2.2.2. In Vitro Urease Inhibition Activity
2.2.3. Antioxidant Studies
2.3. In Silico Studies
3. Conclusions
4. Experiment
4.1. General
4.2. General Procedure for the Synthesis of 2-aminopyrimidine Derivatives
4.2.1. 6-Chloro-4-(N-phenyl)-2,4-pyrimidinediamine (1)
4.2.2. 6-Chloro-4-(N-(2-methoxy)phenyl)-2,4-pyrimidinediamine (2)
4.2.3. 6-Chloro-4-(N-(3-methoxy)phenyl)-2,4-pyrimidinediamine (3)
4.2.4. 6-Chloro-4-(N-(4-methoxy)phenyl)-2,4-pyrimidinediamine (4)
4.2.5. 6-Chloro-4-(N-(2,5-dimethoxy)phenyl)-2,4-pyrimidinediamine (5)
4.2.6. 6-Chloro-4-(N-(3-methoxy-4-methyl)phenyl)-2,4-pyrimidinediamine (6)
4.2.7. 6-Chloro-4-(N-(5-chloro-2,4-dimethoxy)phenyl)-2,4-pyrimidinediamine (7)
4.2.8. 6-Chloro-4-(N-(4-n-butoxy)phenyl)-2,4-pyrimidinediamine (8)
4.2.9. 6-Chloro-4-(N-(4-n-octoxy)phenyl-2,4-pyrimidinediamine (9)
4.2.10. 6-Chloro-4-(N-(4-bromo)phenyl)-2,4-pyrimidinediamine (10)
4.2.11. 6-Chloro-4-(N-(3-bromo)phenyl)-2,4-pyrimidinediamine (11)
4.2.12. 6-Chloro-4-(N-(4-chloro)phenyl)-2,4-pyrimidinediamine (12)
4.2.13. 6-Chloro-4-(N-(3-chloro)phenyl)-2,4-pyrimidinediamine (13)
4.2.14. 6-Chloro-4-(N-(4-iodo)phenyl)-2,4-pyrimidinediamine (14)
4.2.15. 6-Chloro-4-(N-benzyl)-2,4-pyrimidinediamine (15)
4.2.16. 6-Chloro-4-(N-(2-isopropyl)phenyl)-2,4-pyrimidinediamine (16)
4.2.17. 6-Chloro-4-(N-(2,3-dimethyl)phenyl)-2,4-pyrimidinediamine (17)
4.2.18. 6-Chloro-4-(N-(2,5-dimethyl)phenyl)-2,4-pyrimidinediamine (18)
4.2.19. 6-Chloro-4-(N-(5-chloro-2-methyl)phenyl)-2,4-pyrimidinediamine (19)
4.2.20. 6-Chloro-4-(N-(2,4-dimethyl)phenyl)-2,4-pyrimidinediamine (20)
4.2.21. 6-Chloro-4-(N-(3,4-dimethyl)phenyl)-2,4-pyrimidinediamine (21)
4.2.22. 6-Chloro-4-(N-(4-ethyl)phenyl)-2,4-pyrimidinediamine (22)
4.2.23. 6-Chloro-4-(N-(4-n-butyl)phenyl)-2,4-pyrimidinediamine (23)
4.2.24. 4-Chloro-6-(1-piperazinyl)-2-pyrimidinylamine (24)
4.2.25. 6-Chloro-6-(4-phenyl-1-piprazinyl)-2-pyrimidine amine (25)
4.2.26. 6-Chloro-4-(N-(3-pyridinyl)methyl)-2,4-pyrimidinediamine (26)
4.2.27. 6-Chloro-4-(N-(furan-2-yl)methyl)-2,4-pyrimidinediamine (27)
4.3. Protocol for β-Glucuronidase Inhibition
4.4. Protocol for Urease Inhibition
4.5. Protocol for DPPH Radical Scavenging
4.6. Protocol for Superoxide Scavenging
4.7. Molecular Docking Protocol
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mariana, C.A.; Diana, I.S.P.; Resende, P.M.C.; Madalena, M.M.P.; Emília, S. Tryptophan derived naturally marine alkaloids and synthetic derivatives as promising antimicrobial agents. Eur. J. Med. Chem. 2021, 209, 112945. [Google Scholar] [CrossRef]
- Éclair, V.F.; Erick, M.C.P.; Sergio, P.; Sandro, J.G. Aminopyrimidines: Recent synthetic procedures and anticancer activities. Tetrahedron 2021, 92, 132256. [Google Scholar] [CrossRef]
- Nitha, L.P.; Aswathy, R.; Mathews, N.E.; Kumari, B.S.; Mohanan, K. Synthesis, spectroscopic characterization, DNA cleavage, super oxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Nadur, N.F.; Azevedo, L.L.D.; Caruso, L.; Graebin, C.S.; Lacerda, R.B.; Kümmerle, A.E. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure. Eur. J. Med. Chem. 2021, 212, 113123. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.-X.; Zhu, Y.-Y.; Wang, C.; Wang, H.-F.; Liu, G.-Y.; Cao, S.; Huang, L. Recent discoveries in HIV-1 reverse transcriptase inhibitors. Curr. Opin. Pharmacol. 2020, 54, 166–172. [Google Scholar] [CrossRef]
- Mizukawa, Y.; Ikegami-Kawai, M.; Horiuchi, M.; Kaiser, M.; Kojima, M.; Sakanoue, S.; Miyagi, S.; Chick, C.N.; Togashi, H.; Tsubuki, M.; et al. Quest for a potent antimalarial drug lead: Synthesis and evaluation of 6,7-dimethoxyquinazoline-2,4-diamines. Bioorg. Med. Chem. 2021, 33, 116018. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, H.; Silakari, O. Kinases inhibitors in lung cancer: From bench side to bedside. Biochim. Biophys. Acta Rev. Cancer 2016, 1866, 128–140. [Google Scholar] [CrossRef]
- Kwapisz, D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: Palbociclib, ribociclib, and abemaciclib. Breast Cancer Res. Treat. 2017, 166, 41–54. [Google Scholar] [CrossRef]
- Bharti, R.; Kumari, P.; Parvin, T.; Choudhary, L.H. Recent advances of amino pyrimidines in multicomponent reactions. Curr. Org. Chem. 2018, 22, 417–445. [Google Scholar] [CrossRef]
- Koroleva, E.V.; Gusak, K.N.; Ignatovich, Z.V. Synthesis and applications of 2-aminopyrimidine derivatives as key intermediates in chemical synthesis of biomolecules. Russ. Chem. Rev. 2010, 79, 655–682. [Google Scholar] [CrossRef]
- Sinnott, M. Comprehensive Biological Catalysis; Academic Press: Manchester, UK, 1998; Volume 1, pp. 119–138. ISBN 0-126-46860-5. [Google Scholar]
- Roberts, A.P.; Frampton, J.; Karim, S.M.; Beard, R.W. Estimation of β-glucuronidase activity in urinary-tract infection. New Engl. J. Med. 1967, 276, 1468–1470. [Google Scholar] [CrossRef] [PubMed]
- Gonick, H.C.; Kramer, H.J.; Schapiro, A.E. Urinary β-glucuronidase activity in renal disease. Arch. Intern. Med. 1973, 132, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Hradec, E.; Petřík, R.; Pezlarová, J. The activity of β-glucuronidase in cases of bladder neoplasms. J. Urol. 1965, 94, 430–435. [Google Scholar] [CrossRef]
- Plum, C.M. β-Glucuronidase activity in serum, cerebrospinal fluid, and urine in normal subjects and neurological and mental patients. Enzymol. Biol. Clin. 1967, 8, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Sly, W.S.; Quinton, B.A.; McAlister, W.H.; Rimoin, D.L. β-Glucuronidase deficiency: Report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J. Pediatr. 1973, 82, 249–257. [Google Scholar] [CrossRef]
- Weissmann, G.; Zurier, R.B.; Spieler, P.J.; Goldstein, I.M. Mechanisms of lysosomal enzyme release from leukocytes exposed to immune complexes and other particles. J. Exp. Med. 1971, 134, 149–165. [Google Scholar] [CrossRef]
- Pineda, E.P.; Goldberg, J.A.; Banks, B.M.; Rutenburg, A.M. The significance of serum β-glucuronidase activity in patients with liver disease: A preliminary report. Gastroenterology 1959, 36, 202–213. [Google Scholar] [CrossRef]
- Nawaz, H.R.; Malik, A.; Khan, P.M.; Shujaat, S.; Rahman, A. A novel β-glucuronidase inhibiting triterpenoid from Paeonia emodi. Chem. Pharm. Bull. 2000, 48, 1771–1773. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.B.; Kim, N.J.; Kim, D.H. β-Glucuronidase inhibitory activity and hepatoprotective effect of 18β-glycyrrhetinic acid from the rhizomes of Glycyrrhiza Ural. Planta Med. 2000, 66, 40–43. [Google Scholar] [CrossRef]
- Kim, D.H.; Shim, B.; Kim, N.J.; Jang, I.S. β-Glucuronidase inhibitory activity and hepatoprotective effect of Ganoderma lucidum. Biol. Pharm. Bull. 1999, 22, 162–164. [Google Scholar] [CrossRef]
- Hayashi, T.; Kawasaki, M.; Okamura, K.; Tamada, Y.; Morita, N. Scoparic acid A, a beta-glucuronidase inhibitor from Scoparia dulcis. J. Nat. Prod. 1992, 55, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Tina, S.; Koldso, R.H.; Nakagawa, S.; Kato, A.; Schiøtt, B.; Jensen, H.H. Synthesis of uronic-noeurostegine: A potent bacterial β-glucuronidase inhibitor. Org. Biomol. Chem. 2011, 9, 7807–7813. [Google Scholar] [CrossRef] [Green Version]
- Barakat, A.; Islam, M.S.; Al-Majid, A.M.; Ghabbour, H.A.; Yousuf, S.; Ashraf, M.; Shaikh, N.N.; Choudhary, M.I.; Khalil, R.; Ul-Haq, Z. Synthesis of pyrimidine-2,4,6-trione derivatives: Anti-oxidant, anti-cancer, alpha-glucosidase, β-glucuronidase inhibition, and their molecular docking studies. Bioorg. Chem. 2016, 68, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Baharudin, M.S.; Ismail, N.H.; Selvaraj, M.; Salar, U.; Alkadi, K.A.; Khan, K.M. Synthesis and in silico studies of novel sulphonamides having oxadiazole ring: As β-glucuronidase inhibitors. Bioorg. Chem. 2017, 71, 86–96. [Google Scholar] [CrossRef]
- Salar, U.; Taha, M.; Ismail, N.H.; Khan, K.M.; Imran, S.; Perveen, S.; Riaz, M. Thiadiazole derivatives as a new class of β-glucuronidase inhibitors. Bioorg. Med. Chem. 2016, 24, 1909–1918. [Google Scholar] [CrossRef]
- Khan, K.M.; Karim, A.; Saied, S.; Ambreen, N.; Rustamova, X.; Naureen, S.; Morales, G.A. Evaluation of the thiazole Schiff bases as β-glucuronidase inhibitors and their in-silico studies. Mol. Divers. 2014, 18, 295–306. [Google Scholar] [CrossRef]
- Ali, F.; Khan, K.M.; Salar, U.; Iqbal, S.; Taha, M.; Ismail, N.H.; Perveen, S.; Wadood, A.; Gufran, M.; Ali, B. Dihydropyrimidones: As a novel class of β-glucuronidase inhibitors. Bioorg. Med. Chem. 2016, 24, 3624–3635. [Google Scholar] [CrossRef]
- Iqbal, S.; Shaikh, N.N.; Khan, K.M.; Naz, S.; Ul-Haq, Z.; Perveen, S.; Choudhary, M.I. 2-Oxo-1,2,3,4-tetrahydropyrimidines ethyl ester as potent β-glucuronidase inhibitors: One-pot synthesis, in vitro and in silico studies. Med. Chem. 2018, 14, 818–830. [Google Scholar] [CrossRef]
- Khan, K.M.; Saad, S.M.; Shaikh, N.N.; Hussain, S.; Fakhri, M.I.; Perveen, S.; Taha, M.; Choudhary, M.I. Synthesis and β-glucuronidase inhibitory activity of 2-arylquinazolin-4(3H)-ones. Bioorg. Med. Chem. 2014, 22, 3449–3454. [Google Scholar] [CrossRef]
- Khan, K.M.; Iqbal, S.; Bashir, M.A.; Ambreen, N.; Perveen, S.; Voelter, W. An efficient and simple methodology for the synthesis of 2-amino-4-(N-alkyl/arylamino)-6-chloropyrimidines. Tetrahedron Lett. 2015, 56, 1179–1182. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE); 2022.02; Chemical Computing Group ULC: Montreal, QC, Canada, 2022.
- Wallace, B.D.; Wang, H.; Lane, K.T.; Scott, J.E.; Orans, J.; Koo, J.S.; Venkatesh, M.; Jobin, C.; Yeh, L.-A.; Mani, S.; et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010, 330, 831–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, R.A.; Ng, T.B.; Fong, W.P.; Wan, C.C.; Yeung, H.W. Inhibition of glycohydrolase enzymes by aqueous extracts of chinese medicinal herbs in a microplate format. Biochem. Mol. Biol. Int. 1997, 42, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Badami, S.; Gupta, M.K.; Suresh, B. Antioxidant activity of the ethanolic extract of Striga orobanchioides. J. Ethnopharmacol. 2003, 85, 227–230. [Google Scholar] [CrossRef]
- Ferda, C. Effect of Rhus coriarial L. (Anacardiaceae) on superoxide radical scavenging and xanthine oxidase activity. J. Enzym. Inhib. Med. Chem. 2003, 18, 59–62. [Google Scholar] [CrossRef]
Comp. No. | R | IC50 ± SEM (µM) | Comp. No. | R/R″ | IC50 ± SEM (µM) |
1 | NA | 15 | NA | ||
2 | NA | 16 | NA | ||
3 | NA | 17 | NA | ||
4 | NA | 18 | NA | ||
5 | NA | 19 | NA | ||
6 | NA | 20 | NA | ||
7 | NA | 21 | NA | ||
8 | 72.0 ± 6.20 | 22 | 300.24 ± 12.15 | ||
9 | 126.43 ± 6.16 | 23 | 257.0 ± 4.18 | ||
10 | NA | 24 | H | 2.8 ± 0.10 | |
11 | NA | 25 | NA | ||
12 | NA | 26 | NA | ||
13 | NA | 27 | NA | ||
14 | NA | D-Saccharic acid 1,4-lactone | 45.75 ± 2.16 |
Groups | IC50 | Compound |
---|---|---|
Group A (Highly active) | 1–50 µM | Compound 24 |
Group B (Moderately active) | 50–100 µM | Compound 8 |
Group C (Least active) | ≥100 µM | Compounds 9, 22, 23 |
Group D (Inactive) | No inhibition | Compounds 1–7, 10–21, and 25–27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, S.; Shaikh, N.N.; Khan, K.M.; Kiran, S.; Naz, S.; Ul-Haq, Z.; Perveen, S.; Choudhary, M.I. Synthesis of 2-Aminopyrimidine Derivatives and Their Evaluation as β-Glucuronidase Inhibitors: In Vitro and In Silico Studies. Molecules 2022, 27, 7786. https://doi.org/10.3390/molecules27227786
Iqbal S, Shaikh NN, Khan KM, Kiran S, Naz S, Ul-Haq Z, Perveen S, Choudhary MI. Synthesis of 2-Aminopyrimidine Derivatives and Their Evaluation as β-Glucuronidase Inhibitors: In Vitro and In Silico Studies. Molecules. 2022; 27(22):7786. https://doi.org/10.3390/molecules27227786
Chicago/Turabian StyleIqbal, Sarosh, Nimra Naveed Shaikh, Khalid Mohammed Khan, Shumaila Kiran, Sehrish Naz, Zaheer Ul-Haq, Shahnaz Perveen, and M. Iqbal Choudhary. 2022. "Synthesis of 2-Aminopyrimidine Derivatives and Their Evaluation as β-Glucuronidase Inhibitors: In Vitro and In Silico Studies" Molecules 27, no. 22: 7786. https://doi.org/10.3390/molecules27227786
APA StyleIqbal, S., Shaikh, N. N., Khan, K. M., Kiran, S., Naz, S., Ul-Haq, Z., Perveen, S., & Choudhary, M. I. (2022). Synthesis of 2-Aminopyrimidine Derivatives and Their Evaluation as β-Glucuronidase Inhibitors: In Vitro and In Silico Studies. Molecules, 27(22), 7786. https://doi.org/10.3390/molecules27227786