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Abstract: Finger millet (FM) is one of the little millets grown in Asia and Africa. Although still
classified as an “orphan crop”, there is an increasing interest in the research of FM seed coat (FMSC),
also known as bran. It houses 90% of the seed’s polyphenols and dietary fibre. The calcium and
phosphorus content of FMSC is about 6- to 25-fold that of other cereals. FMSC is specifically
beneficial for its polyphenols, arabinoxylans, phytates, and flavonoids content. Evidence of the
hypoglycaemic, nephroprotective, hypocholesterolemic, and anti-cataractogenic effects of FMSC has
been substantiated, thereby supporting the health claims and validating its nutraceutical potential for
diabetics. This article discusses FMSC extraction and nutritional properties, focusing on arabinoxylan
and polyphenols, their potential health benefits, and their application in food formulations. Although
there is a dearth of information on using FMSC in food formulation, this review will be a data
repository for further studies on FMSC.

Keywords: finger millet bran; polyphenols; arabinoxylan; dietary fibre; anticholesterolemic;
anti-cataractogenic

1. Introduction

Millets are cereal grains of the family Poaceae. They are regarded as underutilized
orphan crops and underutilized minor cereal crops and are majorly cultivated in Asia and
Africa. Finger millet (Eleusine coracana) is one of the millet seeds cultivated on the African
continent [1]. The seed coat comprises up to 20% of the total kernel weight, with rich
content of phytates, minerals, phytochemicals, colour pigments and non-starchy polysac-
charides [2]. The finger millet (FM) kernel is made up of three major layers, namely: seed
coat, which accounts for 13–15%, the embryo (1.5–2.5%), and the endosperm (80–85%). FM
is different from other millets due to its small size and the tight fusion of its seed coat to
the aleurone layer, thereby leading to the cluster of nutrients within the seed coat/bran.
The dietary fibre (11.5–19.6%) of FM is higher than other cereals such as oat, sorghum,
foxtail millet and proso millet (Table 1). When compared to major grains such as wheat
and rice, the consumption of FM elicits a substantially lower glycemic index—caused by
the presence of polyphenols in it [2]. In calcium content, FM surpasses other cereals. FM
has 6-, 8-, 12-, and 25-fold the calcium content of oats, pearl millet, wheat, and proso millet,
respectively [3–5]. The United States National Academies consider finger millet a possible
“super cereal,” as it is one of the most nutrient-dense of all the minor cereals [4]. There are
several in-depth reviews of the nutritional properties, technological processing, and food
use of finger millet [3,6–8]. However, there is only a small amount of research on the FM
seed coat (FMSC). To our knowledge, there has been no review paper on FMSC. Therefore,
this review compiles the research on the extraction, nutritional composition, health benefits
and food use of the seed coat matter of FM.
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Table 1. Nutritional composition of finger millet and other cereal grains.

Finger Millet Pearl Millet Foxtail Millet Proso Millet Wheat Sorghum Oat

Proximate (g/100 g)

Moisture 13.1 12.4 11.2 11.9 12.8 12.4 8.2
Protein 7.7 11.6 12.3 12.5 11.8 10.6 16.9
Fat 1.5 5 4.3 1.1 1.5 3.5 6.9
Carbohydrate 79.7 67.5 60.9 70.4 71.2 72.1 66.3
Dietary fibre 19.6 11.3 2.4 9.0 12.5 6.7 10.6
Ash 2.7 2.3 3.3 1.9 1.5 1.6 3.2
Energy (kcal) 336 361 331 341 346 329 389

Minerals and trace elements (mg/100 g)

Ca 350 42 31 14 30 13 54
Fe 3.9 8 2.8 0.8 3.5 3.36 4.7
Mg 137 137 81 153 138 165 177
P 283 296 290 206 298 222 523
Mn 5.94 1.15 0.6 0.6 2.29 0.78 45
Zn 2.3 3.1 2.4 1.4 2.7 1.7 3.97
Na 11 10.9 4.6 8.2 17.1 2 2
K 408 307 250 113 284 363 429

Vitamins (mg/100 g)

Thiamin (mg) 0.42 0.33 0.59 0.2 0.45 0.33 0.76
Riboflavin (mg) 0.19 0.25 0.11 0.18 0.17 0.096 0.14
Niacin (mg) 1.1 2.3 3.2 2.3 5.5 3.7 0.96
Vit E 22 - - - - 0.5 -
Folic acid (ug/100 g) 18.3 45.5 15 - 36.6 20 56

All values are expressed on a dry-matter basis. Sources: [3–5].

2. Finger Millet Seed Coat (Bran)

The FM seed coat or bran is the by-product of millet grain milling and has a healthy
amount of dietary fibre, minerals, and phytochemicals [6,9]. Normally, FM is milled
along with its seed coat, where most nutrients, dietary fibre, and bioactive compounds are
concentrated, thus offering nutritional and health benefits [10,11]. The FM wholemeal flour
has a dark hue, thereby limiting its use in some bakery products owing to the low consumer
appeal and the chewy, gritty texture [12]. To obtain a more acceptable refined millet flour
with more potential for food formulation, the bran or seed coat is removed, constituting
waste products that end up in landfills or are used as animal feed. The FMSC can be
used to make composite flour for bakery products. The seed coat contains a significant
number of tannins which accounts for the astringency associated with FM-based products.
FM-rich foods alleviate diabetes, obesity, and related co-morbidities. An FMSC-rich diet has
been shown to reduce inflammation, improve plasma lipid profile, reduce oxidative stress,
control the expression levels of numerous obesity-related genes, and increase beneficial gut
bacteria such as Roseburia, Bifidobacteria and Lactobacillus spp [2,13].

2.1. Extraction of Finger Millet Seed Coat

Two main methods of extraction are explained in the literature by Malleshi [14]
and Shobana et al. [15]. The aim of the former was to produce decorticated FM grains
(Figure 1A). The seed coat (SC) was a by-product of this process. Most cereal grains
are easily de-branned, but due to the small size and tight adherence of FM bran to the
endosperm, a hydrothermal pre-treatment was needed to extract the SC, leaving an intact
endosperm-rich decorticated FM grain [14]. The aim of the method of Shobana et al., on the
other hand, was to extract the seed coat directly [5,15]. The process of de-branning starts
with tempering the grains with 5–10% w/v water for ten to thirty minutes. The grains are
milled and sieved three times to obtain the tailings retained on the sieve. The tailings are
washed, dried, and pulverised to obtain the bran (Figure 1B). With FM still cultivated on a
minor scale in Africa, the SC is not commercially available like the bran of other cereals
such as oat and wheat. An increase in the cultivation and food application of FM will
potentially lead to the commercial availability of FMSC in stores.
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Figure 1. Extraction of finger millet seed coat. (A) Malleshi [14]; (B) Shobana et al. [15].

2.2. Effect of Grain Pre-Treatments on Nutrient Composition of Finger Millet Seed

The purpose of pre-treatments is to weaken or degrade the cellulosic-phenolic network
in plants to release and recover phenolic compounds while also disrupting the structure of
the plant cell wall [16]. Bran of other cereals, including wheat [16,17], oat [18], corn [19],
rice [20], foxtail millet [21], and pearl millet [22] have been pre-treated to improve their
functionality and nutritional profile [23]. However, in the case of FM, the documented
pre-treatment attempts have been on the grains, followed by bran extraction analysis. This
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is mostly due to the size of the seeds, leading to low bran yield. Hithamani and Srini-
vasan [24] assessed the effect of roasting, sprouting, microwave heating, open-pan boiling
and pressure cooking on the phenolic compounds of FM wholemeal. They found out that
roasting and sprouting increased the bioaccessibility of FM polyphenols. Krishnan et al. [12]
utilised two pre-treatments: malting and hydrothermal treatments and characterised the
physicochemical composition. They observed that malting increased protein, soluble and
total dietary fibre and reduced the fat, carbohydrate, ash, calcium, phosphorus and phytate
content. On the other hand, hydrothermal treatment reduced protein, ash and phosphorus
while increasing fat, calcium, and insoluble and total dietary fibre (Table 2). These nutrient
variations are due to pre-treatment differences, especially the germination process in the
malted FMSC, which reduced the carbohydrate content [12]. During germination, amylase
in the endosperm is activated, catalysing the growth process. The starch in the endosperm
thus serves as a food source for the new acrospire being formed in the germinated plant,
hence the reduced carbohydrates in the malted FMSC (Table 2). The yield and functional
properties of the FMSC differed depending on the pre-treatment used. Hydrothermal
treatment caused a low yield of the SC due to the pearling of the SC. Due to the heat
treatment during the kilning of malted and hydrothermally treated grains, the lightness of
the FMSC was reduced due to the Maillard reaction [25]. Heating gelatinised the starch
and thus reduced the cooked paste viscosity in the pre-treated SC matter compared to the
native FMSC.

Table 2. Nutritional composition of wholemeal, refined flour and seed coat matter of finger millet.

Proximate Composition (g/100 g) Native FMSC Malted FMSC Hydrothermally
Treated FMSC

Wholemeal FM
Flour Refined FM Flour

Moisture 11.0–11.3 11 11 9.8 11
Fat 3.2–3.4 2.6 3.7 1.5 0.9
Protein 11.64–13.6 13.4 9.5 8.7 3.6
Carbohydrates 18.3–18.6 16.5 18.8 72 87
Ash 5.1–5.6 4.3 4.8 2.2 1.1
Dietary fibre
Soluble 1.2–6.38 1.4 1.1 3.5 1.6
Insoluble 38.4–51.00 42.5 47.7 16.1 5.2
Total 39.6–57.38 43.9 48.8
Minerals (mg/100 g)
Calcium 711–830 707 864 321 163
Iron 5.9–6.5 5.5 7.5 3.3 0.33
Zinc 2.7–2.86 2.7 2.2 1.6 1.32
Phosphorus 369–526 253 344 201 106
Potassium 502 - - 472 469
Phytochemicals (mg/100 g)
Phytates 130–503 0.9 1.2 217 69
Polyphenols 2356–11,200 330 470 2300 1480
Tannins 2305 840 243
Flavonoids 209 136 106

Sources: [12,15,26], FMSC: finger millet seed coat.

2.3. Nutritional Composition and Health Benefits of Finger Millet Seed Coat

The comparative nutritional profile of FM wholemeal flour, refined flour, native,
hydrothermally treated, and malted seed coat of FM is presented in Table 2. The SC
accounts for the amply higher nutrients in wholemeal flour. The protein of FM is said to
be easily digestible, hence its common use as raw material for infant weaning foods [27].
The FMSC contains more proteins (12–13.6%) than wholemeal (8.7%) or refined flour
(3.6%). This makes the SC a more nutritional food material. FM proteins are made up of
albumins (8%), globulins (15%) and prolamins (35–50%) and contain the highest amount of
methionine compared to other cereals [28]. With the high digestibility reported, the SC will
find applications in various food products, from bakery to powdered products. The lipid
content of FMSC is about 3 g/100 g (Table 2). The lipids in FM are mostly triglycerides,
with oleic, linoleic, and palmitic acids as the main fatty acids. FM lipids have been reported
to lower the risk of duodenal ulcers [6]. There is, however, a paucity of research on the
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fatty acid profile of FMSC lipids. With an increase in the lipid content of hydrothermally
treated FMSC, there could be a change in the fatty acid profile. This warrants further
studies. FMSC contains minerals such as calcium, iron, zinc, manganese, magnesium,
and phosphorus (P). FM is especially rich in calcium and phosphorus, which are more
concentrated in the seed coat fraction (711–830 mg/100 g). During germination, there is
increased phytase activity leading to the phytate content due to the action of endogenous
phytase in the grain, as well as exogenous phytase from yeast and sourdough fermentation,
which can both release phytic acid complexed minerals. It is well known that phenolic acids
function as antioxidants by giving electrons or hydrogen. Additionally, the oxidation of
several food constituents, particularly fatty acids and oils, is inhibited by their stable radical
precursors. The FMSC is quite low in carbohydrates (<20%) and high in dietary fibre and
phenolic compounds. The hypoglycaemic, nephroprotective, hypocholesterolemic, and
anti-cataractogenic properties of FMSC were proved in streptozotocin-induced diabetic
rats on a 20% FMSC diet [29]. Conversely, Okoyomoh et al. [30] reported antidiabetic,
antioxidant, hypoglycemic and nephroprotective properties of FMSC in streptozotocin-
induced diabetic rats on a 40% FMSC diet. To achieve these protective effects, the authors
noted that alkaline phosphatase, aspartate transaminase, and alanine transaminase serum
levels were reduced.

Additionally, the content of thiobarbituric acid reactive compounds was dramatically
reduced while the activities of catalase and superoxide dismutase were elevated [30].
Recently, the anti-ageing effect of FM has been documented [31]. Therefore, millet SC can
be used as a functional component for the creation of functional foods for diabetics to gain
positive benefits in preventing dyslipidaemia and the regulation of glucose homeostasis,
thereby aiding in the management of diabetes and its co-morbidities [29]. A study on the
hyperglycemia reduction in non-insulin-dependent adult diabetics revealed that pancreatic
amylase and intestine α-glucosidase could effectively inhibit FMSC [32]. The reduced starch
digestibility and subsequent postprandial glycemic response of FMSC can be attributed
to its dietary phytates and polyphenols. The health-promoting qualities of FMSC can be
ascribed to its phenolic compounds and dietary fibre.

2.3.1. Dietary Fibre

The SC of FM contains more percentage of insoluble fibre (38.4–51%) than soluble
fibre (1.2–6.4%). Dietary fibre is divided into several categories, including pectin, cellulose,
lignin, and arabinoxylan. So far, the latter has gained the most research attention, as seen
in the subsequent section.

Arabinoxylan

Arabinoxylan (AX) is a non-starch polysaccharide made of branched heteroglycans
with a side chain composed of pentose sugars, arabinose, and xylose [28]. Recently, AX
has gained popularity due to its health-promoting effects in treating diabetes and colon
cancer. They are effective natural immunomodulators and prebiotics and are functional
food ingredients [33]. The FM-AX has been successfully extracted using alkaline solutions
and water. Water-extractable xylan extracted by Prashanth & Muralikrishna [28] revealed
that the xylan was heat stable (up to 200 ◦C) and amorphous. Given that xylose was the
predominant sugar found, the potential of the water-soluble xylan from FM seed coat for
producing useful ingredients such as xylitol may be further explored [28]. On the other
hand, insoluble AX (primarily made up of arabinose and xylose) was extracted from FMSC
using saturated barium hydroxide and 1M potassium hydroxide. The AX had average
molecular weights ranging from 40 to 1028 kDa [27,32]. According to recent research, a
nutraceutical made from AX extracted from finger millet may alleviate obesity from a
high-fat diet [34].

Arabinoxylans have also been reported to be a strong natural immunomodulator,
specifically because of the hydroxycinnamic acids present in the bran [35,36]. This was
demonstrated by extracting AX from FM-SMC using alkaline solutions: barium hydroxide
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Ba (OH)2 and potassium hydroxide (KOH). The AXs were subsequently purified and
comparatively examined for their immune-stimulatory properties with the aid of murine
lymphocytes and peritoneal exudate macrophages. The results indicate that significant
macrophage activation, including phagocytosis and mitogenic activity, was shown by
the arabinoxylans [37]. The AX extracted using Ba (OH)2 demonstrated above two-fold
lymphocyte proliferation and macrophage phagocytosis than the AX extracted with KOH
AX [35]. The ability of AX to induce macrophage phagocytosis is attributed to the ferulic
acid content. Moreover, their findings demonstrated unequivocally that ferulic acid content
directly correlates with the immunostimulatory action of AX [36].

As functional food ingredients, AXs influence weight regulation and reduction [13].
Sarma et al. [34] studied the effect of FM-AX on metabolic and gut bacterial abnormalities
brought on by a high-fat diet (60% kcal from fat) in albino mice. Supplementing with
FM-AX stopped weight gain from the HFD and reduced changes in hepatic inflammation,
lipid accumulation, and glucose tolerance. This weight gain suppression is attributable to
propionate—an end-product of FM-AX fermentation in the gut [38]. Specifically, propionate
works by reducing cholesterol synthesis and suppressing the expression of HMG CoA
reductase in the liver. Meanwhile, colonic administration of the drug has been found to
increase GLP-1 and PYY in mouse jugular vein plasma [39]. Gene expression in the liver
and white adipose tissue was improved. Additionally, AX supplementation enhanced the
health of the ileum and colon and prevented metabolic endotoxemia. It also prevented
metagenomic changes in the cecum.

Prebiotic Potential of Finger Millet Seed Coat Arabinoxylan

There is ongoing research into the bioconversion of agricultural by-products (such
as AXs) into valuable functional macromolecules such as prebiotic xylooligosaccharides
(XOS). Potential uses for the depolymerised xylan products, including xylose and XOS,
include food, medicine, feed formulations, and agriculture. XOS, a non-digestible dietary
component, is composed of xylobiose, xylotriose, and xylotetrose and has a lower degree
of polymerisation (2 ≤ 10) than other sugars [40]. XOS has several health advantages,
including decreasing the risk of colon cancer, lowering blood cholesterol levels, improving
gut health and mineral absorption, encouraging probiotic growth, and helping those with
Type 2 diabetes [41]. Palaniappan et al. [33] produced XOS from extracted water-soluble
xylan of FMSC using enzymatic treatment, characterised it and tested the prebiotic efficacy
of the derived XOS. There was a 72% yield of XOS from the enzymatic treatment of xylan,
showing that this macromolecule can be produced on an industrial scale. Compared to
commercial XOS and dextrose, the FMSC XOS was an efficient substrate for accelerating the
growth rate and cell mass of L. plantarum [33]. Thereby validating the prebiotic potential
of AX of FMSC.

2.3.2. Polyphenols

Polyphenols are bioactive compounds found in plants with health-promoting properties
when consumed [42]. Polyphenols impart anti-ageing, antioxidant and anti-hyperglycemic
effects on humans when consumed [31]. Additionally, polyphenols stop the production
of advanced glycation end products and restrict glucose absorption. The total polyphenol
content of native FMSC ranged from 2356–11,200 mg/100 g [15,26], while the tannins
and flavonoids were 2305 and 209 mg/100 g, respectively. The polyphenol content of
native FMSC was higher than the wholemeal of FM (2300 mg/100 g) [33]. Conventionally,
polyphenols are extracted from FM using the heat-reflux method—this entails refluxing
the food material in acidified methanol. Balasubramaniam et al. [43] compared three
polyphenol extraction methods: conventional heat-reflux, ultrasonication, and enzyme
treatment (xylanase) plus ultrasonication (EU). They observed that enzymatic plus ultra-
sonic treatment enhanced phenolic yield by 2.3 times compared to the conventional method.
However, yield with ultrasonication alone was on par with the conventional method. Total
flavonoids increased by 1.4 times and 1.3 times, respectively, in ultrasonicated and EU ex-
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tracts. Tannin concentrations rose dramatically (1.1-fold in ultrasonicated and 1.2-fold in EU
extracts). The phenolic acid composition of FMSC, as identified in high-performance liquid
chromatography and direct infusion electrospray ionisation mass spectrometry, includes
proto-catechuic acid, naringenin, gallic acid, p-hydroxybenzoic acid, luteolin glycoside,
ferulic acid, apigenin, syringic acid, p-coumaric acid, and trans-cinnamic acid, protocate-
chuic acid, gentistic acid, catechin gallates, epicatechin, caffeic acid, trans-cinnamic acid,
kaempferol, and phloroglucinol [15,42,44].

2.4. Food Applications of Finger Millet Seed Coat
2.4.1. Food Packaging

The environmental impact of plastic pollution is one of the problems that came with
increased industrialisation. This has led to the demand for more sustainable and biodegrad-
able packaging [45,46]. FMSC was recently used as a polysaccharide base for developing
green food packaging material made from chitosan and squid gelatine [45]. The thickness
of the film with 1% FMSC extracts increased by 65% compared with the film without
bran extract. This increase is due to reduced space among the polymer chains in the film.
Similarly, film opacity increased from 18% in the control sample to 68% in chitosan film
with 1% FMSC. Thereby limiting the amount of light passing through the packaging. Mean-
while, a concomitant decrease in light transmittance (a result of increased thickness), water
vapour permeability (62.5%) and absorption (due to polyphenol interaction in the film) was
observed. The films with FMSC extract had higher antibacterial, antifungal and antioxidant
activity than those without FMSC extract [45].

2.4.2. Natural Antioxidants in Oils-Based Products

There is a rising demand for natural antioxidants from edible plant sources for food
preservation and shelf-life extension. High-fat food items such as mayonnaise and salad
dressings can be produced with natural antioxidants that are efficient, safe, and health-
promoting to satisfy the rising demand for synthetic chemical-free products. The antioxi-
dant capacity of FMSC polyphenols against lipid oxidation in mayonnaise was compared to
a synthetic antioxidant (BHT). The study demonstrated that FMSC polyphenols (1.0 mg/g1)
are more efficient than synthetic antioxidants (BHT) at preventing oxidative rancidity in a
full-fat spread such as mayonnaise for seven (7) weeks at 4 ◦C [47]. In addition, the protein
and total mineral content of the FMSC-enriched mayonnaise were markedly higher than
its synthetic counterpart. Similarly, dose-dependent addition (200–1000 ppm) of FMSC
polyphenols inhibited free-radical formation in peanut oil, thereby preventing oxidative
rancidity and deterioration in oils during regular and accelerated storage of 7.8 weeks,
respectively [43,48]. FMSC polyphenols were significantly effective in reducing primary
and secondary oxidation products at 800 and 1000 ppm in oils stored for up to three months.

2.4.3. Biscuits

Incorporating FM by-products in biscuits may provide natural health benefits, includ-
ing calcium, iron, and zinc, to consumers. Krishnan et al. [12] studied the physicochemical
and functional properties of native, malted and hydrothermally treated FMSC and then
substituted them in wheat flour at 10 and 20% to make composite flour for biscuits (labelled
as NFMSC, MFMSC and HTFMSC). The biscuits with significant nutrient variation from
the control biscuit were 10% NFMSC, 20% MFMSC and 10% HT-FMSC biscuits. The protein
content of MFMSC and HTFMSC increased by 8%, and carbohydrates decreased in the
three samples by 6.8, 11.3 and 7.5%, respectively. There was a 3.5-, 7.6- and a 5-fold increase
in the insoluble dietary fibre of the three biscuits. Dietary fibre, calcium, iron, and zinc
of the biscuits made from composite flours increased. The 20% MFMSC biscuit had the
highest increase in zinc and polyphenols at 26% and 70%, respectively [12]. The sensory
scores showed that native and hydrothermally processed millet, the malted millet seed
coat, was the best for making biscuits at 10% and 20%, respectively [12]. The instrumental
colour profile of the biscuits was measured using the CIELab colour system, while the
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texture was assessed by testing the biscuits’ breaking strength using the three-point break
technique. The addition of FMSC darkened and hardened the biscuits. Similarly, the aver-
age colour sensory score of the biscuits was 7, indicating an above-average likeness. Due to
the roughness of the integrated fibre, the score for surface features was slightly lower, at
6.1. The biscuit had a texture score of 6.2, meaning it was less crisp but still maintained an
acceptable rating of 7.6 for eating quality [7].

3. Possibilities and Viability of FMSC as a Source of Active Compounds

The nutrient profile of FMSC reported in this review, especially the bioactive com-
pounds, albeit from a handful of studies, are comparable to those found in wheat bran—one
of the most extensively-studied cereal brans in the literature. Moreover, the health-
promoting properties of wheat bran bioactive compounds, including phenolic acids, ara-
binoxylans, alkylresorcinol and phytosterols, have been validated in animal and human
studies [16]. The few in vivo studies, such as the strong inhibitory activity of FMSC towards
α-glucosidase and pancreatic amylase [25], validate it as a functional food. The superior
calcium content of FMSC, compared to other cereals, also makes it a unique functional
ingredient, thereby justifying the need for its valorisation.

4. Conclusions

In contrast to its size, finger millet is a powerhouse of nutrients, especially the seed
coat fraction. The process of FMSC extraction using the method of Shobana et al. [15]
is simple and effective and requires less complicated technological operations than the
method of Malleshi [14]. This does not mean the latter is less effective. It simply shows that
during the production of decorticated FM grains, the by-product can be further utilised for
food production, thereby reducing waste. The utilisation of FMSC is not limited to waste
reduction because it accounts for the greater portion of nutrients in the cereal. FMSC is
rich in calcium, phosphorus, polyphenols, tannins, and dietary fibre and less in fat. The
nephroprotective, hypoglycaemic, anti-cataractogenic, and hypocholesterolemic effect of
FMSC has been proven in animal studies and the anti-diabetic effect in animal and human
studies. Regarding food use, there is a paucity of data—a clear indication of a huge research
gap waiting to be tapped. Compared to major grains such as wheat, maize and rice, and
other millets such as foxtail and pear millet, FM is still largely underutilised and cultivated
at subsistence levels; it is no wonder the FMSC has lacked research attention, especially
due to the literature data trend in the past decade. To contribute to the “zero hunger” goal
of SDG by 2030, more research investments into developing FMSC-rich foods are required.
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