Theoretical-Computational Modeling of Gas-State Thermodynamics in Flexible Molecular Systems: Ionic Liquids in the Gas Phase as a Case Study
Abstract
:1. Introduction
2. Theory
2.1. The Gamma State Model
2.2. Parameterization Strategy
3. Computational Details
4. Results and Discussion
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- East, A.L.L.; Radom, L. Ab initio statistical thermodynamical models for the computation of third-law entropies. J. Chem. Phys. 1997, 106, 6655. [Google Scholar] [CrossRef] [Green Version]
- DeLos, F. De Tar Calculation of Entropy and Heat Capacity of Organic Compounds in the Gas Phase. Evaluation of a Consistent Method without Adjustable Parameters. Applications to Hydrocarbons. J. Phys. Chem. A 2007, 111, 4464–4477. [Google Scholar]
- Fabian, W.M.F. Accurate thermochemistry from quantum chemical calculations? Monatsh Chem. 2008, 139, 309–318. [Google Scholar] [CrossRef]
- Ghahremanpour, M.M.; van Maaren, P.J.; Ditz, J.D.; Lindh, R.; van der Spoel, D. Large-scale calculations of gas phase thermochemistry: Enthalpy of formation, standard entropy, and heat capacity. J. Chem. Phys. 2016, 145, 114305. [Google Scholar] [CrossRef] [Green Version]
- Pracht, P.; Grimme, S. Calculation of absolute molecular entropies and heat capacities made simple. Chem. Sci. 2021, 12, 6551. [Google Scholar] [CrossRef]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys. 2007, 126, 84108. [Google Scholar] [CrossRef]
- Martin, J.M.L.; de Oliveira, G. Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. J. Chem. Phys. 1999, 111, 1843–1856. [Google Scholar] [CrossRef] [Green Version]
- Karton, A.; Daon, S.; Martin, J.M. W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data. Chem. Phys. Lett. 2011, 510, 165–178. [Google Scholar] [CrossRef]
- Montgomery, J.A., Jr.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 2000, 112, 6532–6542. [Google Scholar] [CrossRef]
- Simmie, J.M. and Somers, K.P. Benchmarking compound methods (CBS-QB3, CBS-APNO, G3, G4, W1BD) against the active thermochemical tables: A litmus test for cost-effective molecular formation enthalpies. J. Phys. Chem. A 2015, 119, 7235–7246. [Google Scholar] [CrossRef]
- Katzer, G.; Sax, A.F. Identification and thermodynamic treatment of several types of large-amplitude motions. J. Comput. Chem. 2005, 26, 1438–1451. [Google Scholar] [CrossRef] [PubMed]
- Kuhler, K.M.; Truhlar, D.G.; Isaacson, A.D. General method for removing resonance singularities in quantum mechanical perturbation theory. J. Chem. Phys. 1995, 104, 4664–4671. [Google Scholar] [CrossRef]
- Martin, J.M.L. and Taylor, P.R. Benchmark ab initio thermochemistry of the isomers of diimide, N2H2, using accurate computed structures and anharmonic force fields. Mol. Phys. 1999, 96, 681–692. [Google Scholar] [CrossRef]
- Barone, V. Anharmonic vibrational properties by a fully automated second-order perturbative approach. J. Chem. Phys. 2005, 122, 014108. [Google Scholar] [CrossRef] [PubMed]
- Barone, V.; Biczysko, M.; Bloino, J.; Borkowska-Panek, M.; Carnimeo, I.; Panek, P. Toward anharmonic computations of vibrational spectra for large molecular systems. Int. J. Quantum Chem. 2012, 112, 2185–2200. [Google Scholar] [CrossRef]
- Njegic, B.; Gordon, M.S. Exploring the effect of anharmonicity of molecular vibrations on thermodynamic properties. J. Chem. Phys. 2006, 125, 224102. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-P.; Bell, A.T.; Head-Gordon, M. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules. J. Chem. Theory Comput. 2016, 12, 2861–2870. [Google Scholar] [CrossRef] [Green Version]
- Paulechka, Y.U.; Kabo, G.J.; Emel’yanenko, V.N. Structure, Conformations, Vibrations, and Ideal-Gas Properties of 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide Ionic Pairs and Constituent Ions. J. Phys. Chem. B 2008, 112, 15708–15717. [Google Scholar] [CrossRef]
- Piccini, G.; Sauer, J. Quantum Chemical Free Energies: Structure Optimization and Vibrational Frequencies in Normal Modes. J. Chem. Theory Comput. 2013, 9, 5038–5045. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, T.; Papajak, E.; Alecu, I.M.; Mielke, S.L.; Truhlar, D.G. Practical methods for including torsional anharmonicity in thermochemical calculations on complex molecules: The internal-coordinate multistructural approximation. Phys. Chem. Chem. Phys. 2011, 13, 10885–10907. [Google Scholar] [CrossRef]
- Zheng, J.; Truhlar, D.G. Quantum Thermochemistry: Multistructural Method with Torsional Anharmonicity Based on a Coupled Torsional Potential . J. Chem. Theory Comput. 2013, 9, 1356–1367. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chang, C.-E.; Gilson, M.K. Calculation of Cyclodextrin Binding Affinities: Energy, Entropy, and Implications for Drug Design. Biophys. J. 2004, 87, 3035–3049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hnizdo, V.; Tan, J.; Killian, B.J.; Gilson, M.K. Efficient Calculation of Configurational Entropy from Molecular Simulations by Combining the Mutual-Information Expansion and Nearest-Neighbor Methods. J. Comput. Chem. 2008, 29, 1605–1614. [Google Scholar] [CrossRef] [Green Version]
- King, B.M.; Silver, N.W.; Tidor, B. Efficient Calculation of Molecular Configurational Entropies Using an Information Theoretic Approximation. J. Phys. Chem. B 2012, 116, 2891–2904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, E.; Díaz, N.; Suarez, D. Entropy Calculations of Single Molecules by Combining the Rigid-Rotor and Harmonic-Oscillator Approximations with Conformational Entropy Estimations from Molecular Dynamics Simulations. J. Chem. Theory Comput. 2011, 7, 2638–2653. [Google Scholar] [CrossRef]
- Carta, V.; Ciccioli, A.; Gigli, G. The antimony-group 11 chemical bond: Dissociation energies of the diatomic molecules CuSb, AgSb, and AuSb. J. Chem. Phys. 2014, 140, 064305. [Google Scholar] [CrossRef]
- Amadei, A.; Apol, M.E.F.; Di Nola, A.; Berendsen, H.J.C. The quasi-Gaussian entropy theory: Free energy calculations based on the potential energy distribution. J. Chem. Phys. 1996, 104, 1560–1574. [Google Scholar] [CrossRef]
- Amadei, A.; Apol, M.-E.-F.; Di Nola, A.; Berendsen, H.J.C. Extensions of the quasi-Gaussian entropy theory. J. Chem. Phys. 1997, 106, 1893–1912. [Google Scholar] [CrossRef] [Green Version]
- D’Abramo, M.; Del Galdo, S.; Amadei, A. Theoretical-computational modelling of the temperature dependence of the folding-unfolding thermodynamics and kinetics: The case of a Trp-cage. Phys. Chem. Chem. Phys. 2019, 21, 23162–23168. [Google Scholar] [CrossRef]
- Zanetti Polzi, L.; Daidone, I.; Amadei, A. A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water. J. Chem. Phys. 2022, 156, 044506. [Google Scholar] [CrossRef]
- Aston, J.G.; Messerl, G.H. The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of n-Butane. J. Am. Chem. Soc. 1940, 62, 1917–1923. [Google Scholar] [CrossRef]
- Dailey, B.P.; Felsing, W.A. Heat capacities and hindered rotation in n-butane and Isobutane1. J. Am. Chem. Soc. 1943, 65, 44–46. [Google Scholar] [CrossRef]
- Chen, S.S.; Wilhoit, R.C.; Zwolinski, B.J. Ideal Gas Thermodynamic Properties and Isomerization of n-Butane and Isobutane. J. Phys. Chem. Ref. Data 1975, 4, 859–869. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, B.; Ciccioli, A.; Gigli, G.; Lapi, A.; Misceo, N.; Tanzi, L.; Vecchio Ciprioti, S. Vaporization of the prototypical ionic liquid BMImNTf2 under equilibrium conditions: A multitechnique study. Phys. Chem. Chem. Phys. 2014, 16, 15653–15661. [Google Scholar] [CrossRef]
- Volpe, V.; Brunetti, B.; Gigli, G.; Lapi, A.; Vecchio Ciprioti, S.; Ciccioli, A. Toward the Elucidation of the Competing Role of Evaporation and Thermal Decomposition in Ionic Liquids: A Multitechnique Study of the Vaporization Behavior of 1-Butyl-3-methylimidazolium Hexafluorophosphate under Effusion Conditions. J. Phys. Chem. B 2017, 121, 10382–10393. [Google Scholar] [CrossRef]
- Blokhin, A.V.; Paulechka, Y.U.; Strechan, A.A.; Kabo, G.J. Physicochemical Properties, Structure, and Conformations of 1-Butyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide [C4mim]NTf2 Ionic Liquid. J. Phys. Chem. B 2008, 112, 4357–4364. [Google Scholar] [CrossRef]
- Paulechka, Y.U.; Kabo, G.J.; Blokhin, A.V.; Vydrov, O.A. Thermodynamic Properties of 1-Butyl-3-methylimidazolium Hexafluorophosphate in the Ideal Gas State. J. Chem. Eng. Data 2003, 48, 457–462. [Google Scholar] [CrossRef]
- Chao, J.; Hall, K.R.; Marsh, K.N.; Wilhoit, R.C. Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4. Part 2. Ideal Gas Properties. J. Phys. Chem. Ref. Data 1986, 15, 1386–1946. [Google Scholar] [CrossRef] [Green Version]
- Counsell, J.F.; Hales, J.L.; Martin, J.F. Thermodynamic properties of organic oxygen compounds. Part 16.—Butyl alcohol. Trans. Faraday Soc. 1965, 61, 1869. [Google Scholar] [CrossRef]
- Scott, D.W. Correlation of the chemical thermodynamic properties of alkane hydrocarbons. J. Chem. Phys. 1974, 60, 3144–3165. [Google Scholar] [CrossRef]
- Hossenlopp, I.A. Vapor heat capacities and enthalpies of vaporization of five alkane hydrocarbons. J. Chem. Thermodyn. 1981, 13, 415–421. [Google Scholar] [CrossRef]
- Handbook of Statistical Distributions; Marcel Dekker: New York, NY, USA, 1976.
- Amadei, A.; Apol, M.E.F.; Di Nola, A.; Berendsen, H.J.C. On the use of the quasi-Gaussian entropy theory in non-canonical ensembles I Prediction of temperature dependence of thermodynamic properties. J. Chem. Phys. 1998, 109, 3004–3016. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; van der Spoel, D.; van Druned, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- van der Spoel, D.; Lindahl, A.; Hess, B.; van Buuren, A.R.; Apol, E.; Meulenhoff, P.J.; Tieleman, D.P.; Sijbers, A.L.T.M.; Feenstra, K.A.; van Drunen, R.; et al. Gromacs User Manual Version 4.5.6. 2010. Available online: https//ftp.gromacs.org (accessed on 1 October 2022).
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2017, 126, 014101–014109. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Frajie, J.C.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 81, 1463–1472. [Google Scholar] [CrossRef]
- Daidone, I.; Amadei, A. Essential dynamics: Foundation and applications. WIREs Comput. Mol. Sci. 2012, 2, 762–770. [Google Scholar] [CrossRef]
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated force field Topology Builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037. [Google Scholar] [CrossRef]
- Stroet, M.; Caron, B.; Visscher, K.; Geerke, D.; Malde, A.K.; Mark, A.E. Automated Topology Builder version 3.0: Prediction of solvation free enthalpies in water and hexane. J. Chem. Theory Comput. 2018, 14, 5834–5845. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01.2016; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Rocha, M.A.A.; Lima, C.F.R.A.C.; Gomes, L.R.; Schroder, B.; Coutinho, J.A.P.; Marrucho, I.M.; Esperanca, J.M.S.S.; Rebelo, L.P.N.; Shimizu, K.; Canongia Lopes, J.N.; et al. High-Accuracy Vapor Pressure Data of the Extended [CnC1im][Ntf2] Ionic Liquid Series: Trend Changes and Structural Shifts. J. Phys. Chem. B 2011, 115, 10919–10926. [Google Scholar] [CrossRef] [PubMed]
- Zaitsau, D.H.; Yermalayeu, A.V.; Emel’yanenko, V.N.; Butler, S.; Schubert, T.; Verevkin, S.P. Thermodynamics of Imidazolium-Based Ionic Liquids Containing PF6 Anions. J. Phys. Chem. B 2016, 120, 7949–7957. [Google Scholar] [CrossRef] [PubMed]
- Frenkel, M. Thermodynamics of Organic Compounds in the Gas State; TRC Data Series; Thermodynamics Research Center: College Station, TX, USA, 1994; Volume 395.
- Serra, P.B.P.; Ribeiro, F.M.S.; Rocha, M.A.A.; Fulem, M.; Růžička, K.; Coutinho, J.A.P.; Santos, L.M.N.B.F. Solid-liquid equilibrium and heat capacity trend in the alkylimidazolium PF6 series. J. Mol. Liq. 2017, 248, 678–687. [Google Scholar] [CrossRef]
k | ||||||||
---|---|---|---|---|---|---|---|---|
kJ/mol | kJ/mol | J/(mol K) | kJ/mol | J/(mol K) | J/(mol K) | |||
A | 3 | 7 | 5.4 | −0.65 | −30.3 | 9.9 | 302.1 | 64.5 |
20 | 4.1 | −0.51 | −23.1 | 9.7 | 295.4 | 64.5 | ||
B | 23 | 7 | 10.1 | −0.9 | −55.1 | 33.4 | 669.7 | 257.8 |
8 | 9.1 | −0.53 | −48.0 | 33.0 | 662.7 | 257.8 | ||
C | 18 | 6 | 13.4 | −1.2 | −73.1 | 26.2 | 591.1 | 200.2 |
8 | 10.9 | −2.3 | −66.1 | 27.3 | 584.1 | 200.2 | ||
D | 4 | 4 | 8.2 | −1.0 | −46.5 | 11.0 | 334.3 | 70.7 |
8 | 6.0 | −1.1 | −35.0 | 11.1 | 322.8 | 70.7 | ||
E | 17 | 4 | 12.6 | −6.2 | −93.7 | 33.8 | 654.7 | 233.1 |
F | 7 | 7 | 7.1 | −0.4 | −37.4 | 14.7 | 393.7 | 104.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amadei, A.; Ciccioli, A.; Filippi, A.; Fraschetti, C.; Aschi, M. Theoretical-Computational Modeling of Gas-State Thermodynamics in Flexible Molecular Systems: Ionic Liquids in the Gas Phase as a Case Study. Molecules 2022, 27, 7863. https://doi.org/10.3390/molecules27227863
Amadei A, Ciccioli A, Filippi A, Fraschetti C, Aschi M. Theoretical-Computational Modeling of Gas-State Thermodynamics in Flexible Molecular Systems: Ionic Liquids in the Gas Phase as a Case Study. Molecules. 2022; 27(22):7863. https://doi.org/10.3390/molecules27227863
Chicago/Turabian StyleAmadei, Andrea, Andrea Ciccioli, Antonello Filippi, Caterina Fraschetti, and Massimiliano Aschi. 2022. "Theoretical-Computational Modeling of Gas-State Thermodynamics in Flexible Molecular Systems: Ionic Liquids in the Gas Phase as a Case Study" Molecules 27, no. 22: 7863. https://doi.org/10.3390/molecules27227863
APA StyleAmadei, A., Ciccioli, A., Filippi, A., Fraschetti, C., & Aschi, M. (2022). Theoretical-Computational Modeling of Gas-State Thermodynamics in Flexible Molecular Systems: Ionic Liquids in the Gas Phase as a Case Study. Molecules, 27(22), 7863. https://doi.org/10.3390/molecules27227863