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Abstract: For ultra-deep desulfurization of diesel fuel, this study applied the ultrasound-assisted
catalytic ozonation process to the dibenzothiophene (DBT) removal process with four Keggin-type
heteropolyacids (HPA) as catalysts and acetonitrile as extractant. Through experimental evaluations,
H3PMo12O40 was found to be the most effective catalyst for the oxidative removal of DBT. Under
favorable operating conditions with a temperature of 0 ◦C, H3PMo12O40 dosage of 2.5 wt.% of
n-octane, and ultrasonic irradiation, DBT can be effectively removed from simulated diesel. Moreover,
the reused catalyst exhibited good catalytic activity in recovery experiments. This desulfurization
process has high potential for ultra-deep desulfurization of diesel.
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1. Introduction

Ultra-deep desulfurization from transportation fuels has become an increasingly
important subject worldwide, due to urgent environmental problems and increasingly
stringent regulations. Conventional catalytic hydrodesulfurization (HDS) is highly efficient
in removing aliphatic and acyclic sulfur compounds, but is limited to reducing refractory
sulfur-containing compounds such as dibenzothiophene (DBT) and its derivatives to ultra-
low levels [1]. Therefore, it is urgent to develop alternative non-HDS methods to achieve
clean fuels with extremely low sulfur concentrations.

One of the most promising alternative methods is oxidative desulfurization (ODS)
combined with the extraction process. Compared with conventional HDS, refractory sulfur
compounds can be removed under mild conditions in ODS [2]. Aqueous H2O2 is the
commonly used oxidant [3]. However, the catalyzed decomposition of hydrogen peroxide
may compete with sulfur-containing compound oxidation in the catalytic oxidative desul-
furization process, which would cause the consumption of a huge amount of hydrogen
peroxide [4].

Ozone, due to its high oxidation potential (2.07 V in acid solution) [5] and environmen-
tally friendly nature, is widely applied in water treatment as well as in other fields [6,7].
Although ozone is a green catalyst with strong oxidizing properties, this catalyst is unsta-
ble [8]. Ozone is poorly soluble in oil products. Its oxidation effect is not satisfactory when
the ozone concentration is too low [9]. Too high a level of ozone concentration is harmful
to the environment and causes a drop in octane number affecting oil quality. Therefore, the
proper ozone concentration should be selected in the ODS system. Heteropoly compound,
an increasingly important class of environmentally friendly catalysts for various organic
reactions [10], has recently attracted considerable attention. Shatalo et al. [11,12] found that
molybdo-vanado-phosphate heteropolyanion catalyzing pulp ozonation in acetone/water
solution was a particularly effective and selective environmentally benign bleaching ap-
proach. Therefore, it is possible that catalytic ozonation by Keggin heteropolyacids may
show potential benefits in desulfurization.
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Recent studies of catalytic desulfurization with Keggin heteropolyacids have fo-
cused on the preparation of loaded catalysts to improve catalytic efficiency. For example,
Craven et al. [13] prepared POM/RPN-SiO2 catalysts by immobilizing POM (PMo, PW,
and SiW) on RPN-SiO2 carriers using the corresponding heteropolyacids as precursors.
The catalytic efficiencies of PMo, PW, and SiW in DBT oxidation were 100%, 70%, and 55%,
respectively, after 3 h of catalytic reaction using 30% H2O2 as the oxidant. Rafiee et al. [14]
incorporated three heteropolyacids, including H3PMo12O40 (PMo), H3PW12O40 (PW), and
H4SiW12O40 (SiW), into HKUST-1 used for the catalytic oxidation of sulfides. The exper-
imental results showed that the catalytic efficiency of POMS for sulfide decreases in the
order of PMo > PW > SiW. Mesoporous LaVO4 for deep desulfurization was prepared by
the hydrothermal method by Hussain et al. [15]. A photocatalytic approach was taken to
remove organic sulfur compounds from diesel and this catalyst had good desulfurization
efficiency under mild reaction conditions. Li et al. [16] selected MIL-101 (Al) and MIL-101
(Fe) for the immobilization of the active ingredient H3PMo6W6O40, and such catalysts had
extremely high catalytic efficiency in the oxidation of DBT. Since then, Li et al. [17] have
synthesized a POM-modified catalyst (POM-MIL-101F@Fibercloth), which has an excellent
degradation rate for DBT under the condition of ethanol as solvent. However, there are few
studies on catalytic ozone desulfurization and ultrasound-assisted desulfurization.

Based on the previous study of some metal salts of Keggin-type heteropolyacids as
oxidative desulfurization catalysts by our group [18], four different types of Keggin-type
heteropolyacids (HPA) were used as catalysts, and acetonitrile was used as an extractant
for DBT removal. Main factors affecting the desulfurization process, including temperature,
catalyst dosage, initial sulfur content, and ultrasonic irradiation, were investigated, and
DBT was found to be removed effectively by this system under optimized conditions.
Moreover, the recovered catalyst exhibited good catalytic activity.

2. Experimental Section
2.1. Materials

All reagents and solvents were available commercially and used without further
purification, unless indicated otherwise. DBT (C12H8S, 99%) was purchased from Sigma-
Aldrich. BT (C8H6S, 98%) and 4,6-DMDBT (C14H12S, 97%) were purchased from J & K
Chemical Ltd. (Beijing, China). AR-grade phosphomolybdic acid (H3PMo12O40·xH2O),
phosphotungstic acid (H3PW12O40·xH2O), and silicotungstic acid (H4SiW12O40·xH2O)
were purchased from the National Drug and Chemical Group Co., Ltd. (Tianjin, China).
The solution of DBT in n-octane was used as simulated diesel, in which the sulfur content
was set by fixing the dosage of DBT. Ozone was produced from pure oxygen using an
ozone generator.

2.2. Catalyst Preparation

H3PW12O40·xH2O, H3PMo12O40·xH2O and H4SiW12O40·xH2O were pretreated
according to literature [19,20] to obtain H3PW12O40·6H2O, H3PMo12O40·13H2O,
and H4SiW12O40·6H2O.

H4GeW12O40 was prepared according to the method given by Wu [21]. Germanium
powder (2.625 g) was suspended in 15 mL of NaOH solution (6.25 mol/L). An aqueous
H2O2 solution (~10 mol/L) was dropped slowly into the above mixture, stirring until
complete metal dissolution. The obtained solution was moved into a water bath at 80 ◦C to
decompose the hyperoxide until no further O2 evolution, then diluted into 100 mL, thus a
germanate stock solution was obtained.

125 mL of the aqueous solution of Na2WO4 (1.25 mol/L) was mixed with 35 mL
of germanate stock solution and the mixture was warmed up to 80 ◦C. The pH of the
mixture solution was adjusted to 0.5 using concentrated aqueous HNO3. After the reaction
proceeded for 1 h at 80 ◦C, the solution was cooled to room temperature. The cooled
solution was extracted with ether in a sulfuric acid medium. The extractant was dissolved
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with a little water and then the ether was removed by flowing dry air. The remaining
solution was kept in a vacuum desiccator until crystallization. The yield was about 30 g.

2.3. Catalyst Characterization

The properties of H4GeW12O40 prepared were characterized by FT-IR, TG-DSC, XPS,
XRD and BET. Fourier transform infrared (FT-IR) spectra were recorded on a 5DXC IR
spectrometer in the wave number interval between 4000 and 400 cm−1 with a 2 cm−1

resolution, and samples were measured with KBr pellets. TG-DSC was performed on an
SDT Q600 Universal V4.1D TA instrument operating under a nitrogen flow of 20 mL/min,
at a 10 ◦C/min heating rate up to 700 ◦C and using 25–50 mg sample. X-ray diffraction
(XRD) patterns were collected by a PAN alytical X-pert 3 instrument using a CuKα-ray
source (λ = 0.154 nm, 40 mA × 40 kV) with a scanning speed of 15◦ min−1. The elemental
composition was tested by an ESCALAB 250Xi X-ray energy spectrometer. The specific
surface area and porosity of the materials were measured by Micromeritics ASAP 2460.

2.4. Experimental Method

A schematic diagram of the ozonation system is shown in Figure 1. A three-necked
250 mL round-bottomed flask was used as an ozonation reactor for the desulfurization
experiments. The middle neck connected with a gas disperser through which ozone was
introduced into the reaction solution at a constant rate. One of the two side necks connected
with a water-cooled reflux condenser to prevent reaction solution loss and to serve as a gas
outlet, and the residual ozone in the outlet gas was adsorbed by KI solution. The other
was closed with a glass stopper. After 60 mL of simulated diesel and 60 mL of acetonitrile
were added to the flask, the catalyst was added to the above mixture, and then ozone was
bubbled up into the mixture. Sonication was performed with a KQ-100 KDB ultrasonic
generator (100 W, 20 kHz, Kunshan Ultrasonic Instrument Co., Ltd., Suzhou, China). The
flask was immersed into the ultrasonic batch, inside which a temperature control system
was placed to keep a certain temperature, and a low temperature was achieved by adding
ice to the ultrasonic batch. During the reactions, the upper n-octane phase of the reaction
mixture was periodically withdrawn and determined for sulfur content using a Model WK-
2E microcoulometric integrated analyzer (Jiangsu Jiang Fen Electroanalytical Instrument
Co., Ltd., Taizhou, China).
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Figure 1. Diagram of the experimental setup. (1) oxygen cylinder; (2) mass flow controller; (3) ozone 
generator; (4) ozone monitor; (5) three-way valve; (6) KI traps (7) ozone reactor; (8) ultrasonic genera-
tor; (9) temperature control system; (10) gas outlet ; (11) sampling. 

3. Discussion 
3.1. Characterizations of the Catalysts 

Characteristic vibration bands of Keggin structure appear in the region of 700 cm−1 to 
1100 cm−1 [22]. As shown in Figure 2a, the IR spectrum of H4GeW12O40 shows strong vibration 
bands at 983, 892, 817, and 767 cm−1, which correspond respectively to the asymmetric vibra-
tions W-Od (terminal O bonded to W), W-Ob (edge-sharing O connecting W), Ge-Oa (internal 
O atom connecting Ge and W), and W-Oc (corner-sharing O connecting W3O13 units) [23]. 

Figure 1. Diagram of the experimental setup. (1) oxygen cylinder; (2) mass flow controller;
(3) ozone generator; (4) ozone monitor; (5) three-way valve; (6) KI traps (7) ozone reactor; (8) ultrasonic
generator; (9) temperature control system; (10) gas outlet; (11) sampling.

3. Discussion
3.1. Characterizations of the Catalysts

Characteristic vibration bands of Keggin structure appear in the region of 700 cm−1

to 1100 cm−1 [22]. As shown in Figure 2a, the IR spectrum of H4GeW12O40 shows strong
vibration bands at 983, 892, 817, and 767 cm−1, which correspond respectively to the
asymmetric vibrations W-Od (terminal O bonded to W), W-Ob (edge-sharing O connecting
W), Ge-Oa (internal O atom connecting Ge and W), and W-Oc (corner-sharing O connecting
W3O13 units) [23]. Hence, the desired 12-tungstogermanic acid with Keggin structure can
be confirmed according to the presence of these adsorption peaks.
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The thermal behavior of the hydrated H4GeW12O40 was investigated by TG-DSC, and
the results are shown in Figure 2b. There were three steps of weight loss in the TG curve.
Before 70 ◦C and between 70–202 ◦C, the mass losses were both 3.45%, which demonstrated
that six molecules of zeolite water and six molecules of protonized water were lost [19,24].
The DSC curve showed two corresponding endothermal peaks at 65 and 167 ◦C due to
the release of zeolite water and protonized water, respectively. Above 202 ◦C, the slow
weight loss of 1.06% in the TG curve can be attributed to the departure of two molecules of
structural water, and an exothermal peak centered at 474 ◦C in the DSC curve was due to
the decomposition of H4GeW12O40, consistent with the result studied by Wang et al. [20].
Thus, the formula of tungstogermanic heteropoly acids synthesized in this paper was
H4GeW12O40·12H2O.

The XRD pattern of H4GeW12O40 is shown in Figure 3. The curves showed strong
characteristic diffraction peaks in the ranges of 15–23◦, 26–33◦ and 36–39◦, indicating
that H4GeW12O40 has a Keggin-type structure, which is consistent with reports in the
literature [25]. This indicates the successful synthesis of H4GeW12O40.
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The morphology of the synthesized material was studied using SEM images
(Figure 5a,b). Irregularly shaped structures can be found on the H4GeW12O40 compound,
and the size of the structures varies between 50 and 300 nm. The surface was found to
contain a large number of small coarse particles at high magnification, which is also con-
sistent with the surface morphological features described in the literature [27]. To further
analyze the surface morphology, TEM images of c are shown in Figure 5c,d. Similar to the
SEM results, Figure 5c shows the overall morphology of the catalyst similar to the SEM
results. In Figure 5d, the morphology of the surface particles can be observed at higher
magnification. Further BET tests were performed on the synthesized catalysts, and the
surface area, pore volume, and pore size of H4GeW12O40 are shown in Table 1.
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Table 1. BET measurements of the as-synthesized Catalyst.

Catalyst Surface Area [m2/ g] Surface Area BJHAds [m2/ g] Surface Area BJHDes [m2/g] Pore Size BJHAds [nm]

H4GeW12O40 2.21 2.57 2.09 4.9
Catalyst Pore size BJHDes [nm] Pore volume BJHAds [cm3/g] Pore volume BJHDes [cm3/g]

H4GeW12O40 6.5 0.032 0.031

3.2. Catalytic Performance Evaluation

The catalytic activity of the Keggin-type HPAs on the oxidation removal of DBT was
evaluated according to the experiments carried out at 35 ◦C for 60 min accompanied with
ultrasound irradiation, using the above-mentioned experiment system with an initial sulfur
concentration of 500 ppm, ozone dosage of 0.1 g/h, and a catalyst amount of 2.5 wt.% of
n-octane. The results are shown in Table 1.

It can be observed from Table 2 that Keggin-type HPAs were effective in catalyzing
ozone oxidation of DBT in simulated diesel. H3PMo12O40 exhibited the best catalytic
performance with a desulfurization efficiency of 93.3%, and the other W-containing HPAs
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were inferior to it. The catalytic performance of the HPAs with Mo as polyatom was
superior to those with W as polyatom. This result may be related to the oxidative ability of
HPAs in that the oxidation capacity of Mo-containing heteropolyanions is higher than that
of W-containing heteropolyanions [28,29].

Table 2. Catalytic effects of HPAs on the oxidation of DBT.

Catalyst Efficiency (%)

H3PW12O40 89.3
H3PMo12O40 93.3
H4SiW12O40 85.7
H4GeW12O40 86.4

none 73.9

Among the catalyst HPAs with W as polyatom, the catalytic activity of H3PW12O40 was
the highest, reaching 89.3% of removal efficiency in 60 min. The removal of DBT catalyzed
by H4GeW12O40 and SiW12O40

4− was 86.4% and 85.7%, respectively. The catalytic activities
of these catalysts increased in the order of H4SiW12O40 < H4GeW12O40 < H3PW12O40,
which agreed fairly well with the order of the oxidation potential of the polyanions,
SiW12O40

4− < GeW12O40
4− < PW12O40 [3–7,10,11,19–23]. These results suggested that

oxidative desulfurization was mainly affected by the oxidizing ability of HPAs.
Based on the results, it can be concluded that oxidizing ability of HPAs played a signif-

icant role in the ultrasound-assisted catalytic ozone oxidation process for desulfurization,
and H3PMo12O40 (HPMo) was chosen for additional experiments on the effects of several
operational factors.

3.3. Influence of Reaction Conditions
3.3.1. Effect of Temperature

Temperature has a significant effect on DBT removal. From the results shown in
Figure 6, it was evident that desulfurization efficiency decreased with the increase in tem-
perature. At lower temperatures, such as at 0 ◦C, the desulfurization efficiency was 98.1%
for a 60 min reaction, while with the temperature increased to 65 ◦C, the desulfurization
efficiency decreased to 90.7%. The increase in temperature can influence the catalytic
ozonation process in two ways: (1) the concentration of ozone in solution is reduced;
(2) the diffusion rate of the reacting substances is enhanced. The efficiency decrease in DBT
removal from 0 to 65 ◦C may demonstrate that (1) is predominant. Therefore, 0 ◦C can be
recommended as the ideal temperature in this paper.
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3.3.2. Effect of Catalyst Dosage

Catalyst dosage also plays an important role in the oxidation of DBT. The results are
presented in Figure 7. Under otherwise identical conditions, without catalyst, 71.5% of the
DBT was removed from the n-octane phase in 60 min by the joint action of extraction and
direct ozonation with ultrasonic irradiation. The efficiencies of DBT removal in the presence
of HPMo increased remarkably from 88.4% to 98.1% with increasing weight percent of
HPMo over the whole solution from 1.0 wt.% to 2.5 wt.%, and then leveled off from
2.5 wt.% to 3.0 wt.%. From the results, a suitable catalyst amount can be identified as
2.5 wt.% of the n-octane.
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3.3.3. Effect of Initial Sulfur Concentration

Another significant factor for sulfur removal is the initial sulfur concentration, which
was investigated using different concentrations (100, 300, 500, and 800 ppm). The results
are shown in Figure 8. An increase in the initial sulfur concentration led to a remarkable
decrease in the removal of DBT. When the initial sulfur concentration was 100 ppm, the
conversion of DBT was up to 100% in 60 min, then as initial sulfur concentration increased
to 300 ppm, 500 ppm, and further to 800 ppm, the desulfurization efficiency was found to
decrease from 99.6% to 98.1%, and further to 85.9%, corresponding to 1.2 ppm, 10.0 ppm,
and 112.8 ppm, respectively. This phenomenon indicated that DBT removal depends on
its initial concentration, which may be caused by the decrease in catalytic active sites. As
the initial concentration of DBT increased, more DBT molecules were absorbed into the
catalyst. Thus, an increase in the amount of substrates accommodating the catalyst inhibits
the action of the catalyst with O3. Therefore, the desulfurization efficiency decreased.

3.3.4. Effect of Ultrasonic Irradiation

Ultrasonic irradiation can significantly enhance the reaction efficiency in chemical
synthesis [30], since cavitation can be produced when mechanical vibrations are transmitted
into the liquid as ultrasonic waves. In order to evaluate the effect of ultrasonic waves on
the removal of DBT, a procedure applying the same previously optimized conditions was
conducted, with a temperature of 0 ◦C, catalyst dosage of 2.5 wt.% of n-octane, and initial
sulfur concentration of 500 ppm. However, mechanical stirring was employed instead of
ultrasonic irradiation. The results are shown in Figure 9.
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initial sulfur concentration, 500 ppm; catalyst dosage, 2.5 wt.% of n-octane; ozone dosage, 0.1 g/h;
reaction time, 60 min.

The removal of DBT in catalytic ozonation with mechanical stirring was 94.5% for
60 min reaction. When ultrasonic irradiation was applied in catalytic ozonation, the removal
of DBT increased to 98.1%. The efficiency of DBT removal with ultrasonic irradiation at
different intervals evaluated were all higher than those with mechanical stirring. These
results indicated that ultrasound enhances the mass transfer of ozone from the gas phase
to the reaction solution and accelerates the whole desulfurization process. In this way, a
better desulfurization effect is achieved.

3.3.5. Effect of Sulfide Species

To investigate the removal effect of HPMo on different sulfides, simulated diesel fuel
with 500 ppm sulfur content of DBT, 4,6-DMDBT, and BT were configured to investigate the
selectivity of the ODS system for different sulfides. As shown in Figure 10, the removal effi-
ciencies of the sulfur compounds in the HPMo catalyst system were DBT > 4,6-DMDBT > BT.
The reactivity of the thiophene sulfides was positively correlated with the electron cloud
density of the sulfur atoms, which were 5.758, 5.760, and 5.739 for DBT, 4,6-DMDBT, and
BT, respectively [31]. The low electron cloud density of the sulfur atoms of BT made it the
most difficult of the three sulfides to remove, followed by 4,6-DMDBT, which was more
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difficult to remove than DBT, probably due to the greater steric effects of 4,6-DMDBT on
the molecular methyl group.
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3.3.6. Catalyst Reuse

The catalytic effect of the used catalyst was explored and the recovering process was
performed according to the method reported by Zhang et al. [32]. After completion of
the reaction, the reaction mixture was kept still for 20 min. Then, the acetonitrile phase
including the catalyst was separated and distilled to recover acetonitrile by cooling at the
top of the distillation column. Water was added to the residue in the evaporator, and
then, adding diethyl ether to the above mixture, HPMo was extracted into the diethyl
ether phase. HPMo was recovered by further evaporation of diethyl ether. Evaluated
through five recovery-reusing runs, the recovered HPMo catalyst was found to demonstrate
excellent catalytic performance (Figure 11). The reused catalysts achieved 97%, 96.3%,
96.1%, 95.8%, and 94.9% DBT conversions in the first, second, third, fourth and fifth ODS
cycles, respectively.
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4. Conclusions

Ultrasound-assisted catalytic ozone oxidation process exhibited high efficiency for
the removal of DBT from simulated diesel. The catalytic performance of Keggin-type
HPAs was mainly related to the oxidizing ability of HPAs and followed the order of
H3PMo12O40 > H3PW12O40 > H4SiW12O40 > H4GeW12O40 in the desulfurization process.
Factors affecting the ODS process were investigated, including temperature, catalyst dosage,
initial sulfur content, and ultrasound irradiation, whereby the favorable operating con-
ditions were recommended as reaction temperature, 0 ◦C; catalyst dosage, 2.5 wt.% of
n-octane; and ultrasound irradiation. DBT removal depended on its initial concentration,
and increasing initial sulfur concentration led to a decrease in desulfurization efficiency.
Furthermore, the used catalyst was recoverable and demonstrated excellent catalytic per-
formance. As a whole, the ultrasound-assisted catalytic ozone oxidation process has a good
application prospect to obtain ultra-low sulfur diesel.
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