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Abstract: This review summarizes the data on the synthesis of coordination compounds containing
two or more different metal ions based on fluorinated β-diketonates. Heterometallic systems are
of high interest in terms of their potential use in catalysis, medicine and diagnostics, as well as
in the development of effective sensor devices and functional materials. Having a rich history in
coordination chemistry, fluorinated β-diketones are well-known ligands generating a wide vari-
ety of heterometallic complexes. In this context, we focused on both the synthetic approaches to
β-dicarbonyl ligands with additional coordination centers and their possible transformations in
complexation reactions. The review describes bi- and polynuclear structures in which β-diketones
are the key building blocks in the formation of a heterometallic framework, including the examples
of both homo- and heteroleptic complexes.

Keywords: fluorinated 1,3-diketones; heterometallic complexes; coordination chemistry; luminescence;
transition metals; lanthanides

1. Introduction

Combining different metals in coordination structures and inorganic matrices is a concept
of high research interest. Its driving force originates not only from the attractive diversity of
molecular structures, but mainly from their exceptional physicochemical properties. Organic
ligands are crucial for the successful formation of heterometallic coordination complexes with
a discrete or polymeric structure [1–7]. The possible applications of these compounds are
widely investigated in catalytic processes [3,5] and in the search for new luminescent and
magnetic materials [4,6], sensors [2,3,7], biologically active agents [1,7], etc.

Being able to form complexes with most of the elements of the periodic table, β-
diketones occupy an important place among organic ligands [8–26]. Moreover, varying
substituents at the β-dicarbonyl fragment is an effective tool for the fine-tuning of the
physicochemical properties of coordination compounds. In particular, the introduction
of one or two fluorinated substituents decreases the intermolecular interactions, thereby
reducing the sublimation temperature of the complexes. Along with their thermal stability,
these compounds are in high demand in the search for precursors for chemical deposi-
tion processes [27]. However, the prevalence of trifluoromethyl β-diketonates compared
with non-fluorinated analogues is due to the increased solubility of their complexes and,
therefore, the better crystallization [27].

Several reviews have reported the use of β-diketonates as precursors for
MOCVD [27,28]. Examples of metal-containing molecular architectures incorporating
β-diketonate motifs are described as luminescent materials [29,30]. The achievements
in the field of supramolecular metal-containing structures based on poly-β-diketonate
ligands are reviewed regularly [9,21,24,25].

Molecules 2022, 27, 7894. https://doi.org/10.3390/molecules27227894 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27227894
https://doi.org/10.3390/molecules27227894
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-8955-6272
https://orcid.org/0000-0003-0637-1606
https://orcid.org/0000-0003-3972-6995
https://doi.org/10.3390/molecules27227894
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27227894?type=check_update&version=2


Molecules 2022, 27, 7894 2 of 43

This review aims to consider the fluorinated β-diketonates and their involvement
in the synthesis of heterometallic structures. Such systematization will reveal the main
advantages of the β-diketonates’ chemistry and demonstrate the features of polynuclear
systems’ formation and their physicochemical properties.

2. Overview of Fluorinated β-Diketones Used as Ligands

The most common fluorinated β-diketones are illustrated in Figure 1. In this series,
hfac is the most used ligand: it represents the acac derivative in which the methyl groups
are replaced by trifluoromethyl substituents. Containing trifluoromethyl and thiophene
substituents, tta is a preferred coligand in the design of luminescent and magnetic com-
plexes. The trifluoromethyl group predominates among the other β-dicarbonyl backbone
substituents in the structures of the known fluorinated β-diketonates involved in the
synthesis of homo- and heteroleptic complexes.
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3. The Synthesis of Fluorinated Ligands, Containing the β-Dicarbonyl Fragment

In this part, we show the approaches to the original fluorinated β-diketones, which
were further used in the synthesis of heterometallic complexes. The Claisen condensation
is known as the main synthetic method for the preparation of fluorinated β-diketones.
The most frequently used condensing agents are NaH [31–35] and MeONa [36–43], while
LiH [44–48], LDA [49] and Na [50] are less demanded. Ethers (DME, Et2O, THF) are
more preferred solvents rather than benzene or alcohols. The synthesis of functionalized
ligands incorporating the β-dicarbonyl fragment and fluorinated groups is shown in
Scheme 1 [51–57]. In this case, the condensation proceeds between the fluorine-containing
esters and methyl ketones bearing an aryl, hetaryl substituent or a functional group.



Molecules 2022, 27, 7894 3 of 43Molecules 2022, 27, x FOR PEER REVIEW 3 of 51 
 

 

 

Scheme 1. The synthesis of fluorinated functionalized β-diketones [51–57]. Reaction conditions: [a] 

LDA, THF, −78 °C, then HClaq; [b] Na, benzene, reflux; [c] NaH, THF, EtOH (cat.), then AcOH; [d] 

CaH2, MeOH, then Cu(OAc)2 followed by the decomposition with Na2EDTAaq. 

Trifluoromethylated β-diketone (HL9) with a bulky substituent bearing a methoxy 

group was obtained as a result of a multi-stage synthesis (Scheme 2) [58]. Alkylation with 

dimethyl-substituted propargyl alcohol (1) resulted in acetylene (2) containing a methoxy 

group at a tertiary carbon atom. Further trifluoroacetylation of unsaturated ether (2) gave 

alkoxyenone (3) that reacted with aniline to form the corresponding enaminoketone (4). 

At the last stage, an asymmetric diketone HL9 was isolated under acid hydrolysis. 

Scheme 1. The synthesis of fluorinated functionalized β-diketones [51–57]. Reaction conditions:
[a] LDA, THF, −78 ◦C, then HClaq; [b] Na, benzene, reflux; [c] NaH, THF, EtOH (cat.), then AcOH;
[d] CaH2, MeOH, then Cu(OAc)2 followed by the decomposition with Na2EDTAaq.

Trifluoromethylated β-diketone (HL9) with a bulky substituent bearing a methoxy
group was obtained as a result of a multi-stage synthesis (Scheme 2) [58]. Alkylation with
dimethyl-substituted propargyl alcohol (1) resulted in acetylene (2) containing a methoxy
group at a tertiary carbon atom. Further trifluoroacetylation of unsaturated ether (2) gave
alkoxyenone (3) that reacted with aniline to form the corresponding enaminoketone (4). At
the last stage, an asymmetric diketone HL9 was isolated under acid hydrolysis.
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Scheme 2. The synthesis of methoxy-substituted CF3-β-diketone.

Bazhin et al. later developed a more convenient approach to the synthesis of the
methoxy-substituted β-diketone analogue [59]. For this purpose, a commercially avail-
able 2,3-butanedione (5) was used, in which one of the carbonyl groups can be easily
transformed into an acetal fragment (Scheme 3). Further Claisen condensation of the
obtained functional ketone (6) with fluorinated esters gave the acetal-containing lithium
β-diketonates LiL [60,61]. The resulting lithium derivatives are easy to isolate in a pure
form; they are stable and can be stored under normal conditions. However, these lithium
salts were readily converted into 5-(perfluoroalkyl)furan-3(2H)-ones (7) under weakly
acidic conditions and in the presence of the strong Lewis acids (e.g., BF3·Et2O) [45,46,59].
On the other hand, the direct coordination of lithium β-diketonates with metal ions did not
require any bases. Moreover, an efficient method for replacing lithium with another alkali
metal ion by the action of the corresponding fluoride was proposed (Scheme 3) [62].
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To synthesize a C6F5-substituted β-diketone, the reaction between pentafluorobenzoyl
chloride (8) and vinyl acetate was carried out in the presence of aluminum(III) chloride
(Scheme 4) [63,64]. The condensation was accompanied by side products: an asymmetric β-
diketone (9) with one perfluorophenyl substituent and a fluorinated chromone (10) derived
from intramolecular cyclization. Aluminum(III) β-diketonate Al(L14)3 easily reacted with
divalent transition metal ions (copper, cobalt, nickel) [63], thereby avoiding the isolation of
the corresponding bis(pentafluorobenzoyl)methane (HL14) unstable in a free form.
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The above analysis showed the structures of fluorinated 1,3-diketones used as ligands
in the synthesis of organometallic derivatives are limited. In this context, functionalized
1,3-dicarbonyl compounds are the least studied, although they have much potential for the
formation of heterometallic complexes.

4. Coordination Modes of Fluorinated β-Diketonates

The variety of coordination structures based on β-diketones arises from their ability to
act as bi- and polydentate ligands, depending on the metal ions and coligands used [27].
Moreover, the fluorine atoms of the substituent in the β-dicarbonyl framework can par-
ticipate in the extra coordination with metal ions. In this case, the interatomic distance
M . . . F is less than the sum of the van der Waals radii of fluorine and metal ions indicating
non-covalent interaction between them. The principal coordination modes of fluorinated
β-diketonates are shown in Figure 2.



Molecules 2022, 27, 7894 6 of 43
Molecules 2022, 27, x FOR PEER REVIEW 6 of 51 
 

 

 

Figure 2. Possible coordination modes of fluorinated β-diketones. 

5. Heterometallic Complexes Containing Bridging β-Diketonate Anions 

The co-crystallization of β-diketonates with various metal ions is known as one of the 

available methods for the synthesis of heterometallic compounds with both discrete and 

polymer coordination structures. For example, Lindoy et al. described the heterometallic 

complex [Eu-Co] (11) based on 3d and 4f metal β-diketonates: the stoichiometric structure 

was formed from two β-diketonates containing europium(III) and cobalt(III) in a CDCl3 

solution (Scheme 5) [65]. In this case, oxygen atoms of non-fluorinated β-diketonate acted 

as bridging atoms between two metal ions (Figure 3). 

 

Scheme 5. Synthesis of the heterometallic complex [Eu-Co] (11). 

Figure 2. Possible coordination modes of fluorinated β-diketones.

5. Heterometallic Complexes Containing Bridging β-Diketonate Anions

The co-crystallization of β-diketonates with various metal ions is known as one of the
available methods for the synthesis of heterometallic compounds with both discrete and
polymer coordination structures. For example, Lindoy et al. described the heterometallic
complex [Eu-Co] (11) based on 3d and 4f metal β-diketonates: the stoichiometric structure
was formed from two β-diketonates containing europium(III) and cobalt(III) in a CDCl3
solution (Scheme 5) [65]. In this case, oxygen atoms of non-fluorinated β-diketonate acted
as bridging atoms between two metal ions (Figure 3).
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C3F7 groups of fod are transparent for clarity. The cif has been retrieved from CCDC. CCDC number
is 1100888.
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The reaction of the iron(II) chloride and the fluorinated lithium β-diketonate led to a
tetranuclear heterometallic complex [Li-Fe(II)] (12) (Scheme 6) [66]. The resulting iron(II)
bis-β-diketonates were coordinated with two molecules of the initial lithium β-diketonate
(Figure 4). The coordination environment of metal centers [LiO5] and [FeO6] consisted only
of the oxygen atoms of β-diketonate anions without involving the fluorine atoms.
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Figure 4. Molecular structure of 12: (dik = ptac) [66]. Hydrogen atoms have been omitted, CF3 groups
of ptac are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1518385.

In the synthesis of polynuclear heterometallic complexes 13–17, alkali metal ions act
as binders between two fragments of transition metal β-diketonates [67,68]. The initial
reagents for these transformations are transition metals(III) β-diketonates based on acac,
fluorine-containing sodium β-diketonates and chlorides of divalent 3d metal ions (Scheme 7,
Figures 5–7). The replacement of one CF3 group in the fluorinated ligand with a sterically
bulky t-butyl group enables the number of metal atoms to be increased from three to five
in the complex (Figures 6 and 7). The assembly of trimetallic complexes 13, 14 was based
on the transition metal ions of different oxidation states. In this case, the metal(III) ion was
coordinated to non-fluorinated β-diketonate, which was not exchanged for hfac during
the reaction.
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The co-crystallization of two 3d β-diketonates with metals in different oxidation states
resulted in [FeIII(acac)3][MnII(hfac)2] (18) and [NiII(hfac)2][FeIII(acac)3][NiII(hfac)2] (19)
(Scheme 8) [69]. Similarly to heterometallic complexes 13–17, fluorinated β-diketonate
was coordinated to a metal ion with the lowest oxidation number. In the structures of
18, 19 the oxygens of non-fluorinated β-diketonate were bridging atoms, which filled the
coordination sphere of Mn(II) or Ni(II) ions coordinating the hfac (Figures 8 and 9). Authors
have postulated that the transition metal(II) center participating in bridging interactions
with oxygen atoms of neighboring unit(s) should be highly Lewis acidic because of the
chelation by diketonates with electron-withdrawing groups. In contrast, the transition
metal(III) counterpart should have sterically uncongested ligands with electron-donating
substituents provoking diketonate oxygen atoms’ involvement in bridging interactions
with the M(II) center.
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The solid-state reaction of precursors containing metals of different oxidation states
led to heteroleptic [Bi(III)-M(II)] (20–22) complexes, where M(II) was a 3d transition metal
ion (Scheme 9) [70]. In this case, the bridging oxygen atoms between metal centers were
from the hfac ligands of the anionic tris-diketonate fragment (Figure 10).
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Figure 10. Molecular structure of 21 [70]. Hydrogen atoms have been omitted, CF3 groups of hfac are
transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1475305.

Dikarev et al. described the first example of the heterometallic [Na-Cu] complex (22)
resulting from two different fluorinated β-diketonates [64]. The reaction of unsolvated
[Cu(L14)] and Na(hfac) gave a heterometallic β-diketonate [Na2Cu2(pfbm)4(hfac)2] (22)
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(Scheme 10). The discrete structure of the solvent-free [Na-Cu] environment consisted
of a dimeric [Na2(hfac)2] unit surrounded by two Cu(pfbm)2 fragments (Figure 11). β-
diketonates adopted the chelating-bridging mode between Cu and Na by coordinating
through one oxygen atom in the case of F-aryl-containing ligands and two oxygen atoms
in the case of hfac anions. The overall distorted square antiprismatic coordination envi-
ronment for Na was formed by the five primary Na–O interactions (av. 2.41 Å) and three
secondary Na–F contacts (av. 2.60 Å).
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Figure 11. Molecular structure of 22 [64]. Hydrogen atoms have been omitted, CF3 groups of hfac are
transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1850164.

The methoxy substituent in thd, L9, L10, participated in the additional coordina-
tion with metal ions during the formation of polynuclear structures [71–73]. The co-
crystallization of two different β-diketonates led to the discrete heterometallic complexes,
e.g., [Pb-M] (23–26) (Figure 12). The thd is the unique structure because it contains a steri-
cally bulky group close to the β-dicarbonyl fragment that is a necessary condition for the
synthesis of discrete heterometallic complexes. If this does not happen, then coordination
[Pb-Cu] polymers are formed in the absence of methoxy substituents at the β-dicarbonyl
fragment [73,74]. In polymeric fluorinated [Pb-Cu] structures 23–26, the square planar
chelate Cu(dik)2 built up an octahedral coordination environment due to the bridging
oxygen atoms of the ligands from Pb(hfac)2 moieties.
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6. Lanthanide(III) tetrakis-β-Diketonates

In general, the reaction of β-diketones with lanthanide(III) salts leads to the substitution
of halide, carboxylate and nitrate anions of metals with a β-diketonate anion. The coordination
of transition trivalent 4f-metals with two or three β-diketonate anions provided the discrete
neutral complexes [M(dik)3(coligand)2] (Scheme 11) [25,29,32,33,39,75–77]. However, the
metal ion was additionally coordinated to the solvent molecules or bidentate ligands having
the donor heteroatoms (oxygen, nitrogen). At the next step, the metal(III) tetrakis-β-diketonates
containing the anionic part of [M(dik)3]− or [M(dik)4]−,were formed as a result of the β-
diketonate anion addition to the central metal atom in neutral tris-β-diketonates.
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Biheterometallic tetrakis-β-diketonates can form both the discrete or polymer structures
depending on the nature of the substituents in β-diketonate and coligands [78–85]. In the
polymer chains 27–30, alkali metal ions, including sodium, potassium and cesium, acted as
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linkers between two adjacent tetrakis-β-diketonate fragments (Figure 13) [78–81]. In this
case, both the oxygen and fluorine atoms of the β-diketonate were coordinated to alkali
metals. A polyether molecule can be used as a polydentate coligand to fill the coordination
environment of the alkali metal ion (28) [80]. The complexes Na[Ln(hfac)4] (27) were
found to be highly volatile and stable in the gas phase while preserving the heterometallic
fragment. The decay of heterometallic [Ln-Na] complexes (27) under argon atmosphere
yielded the phase-pure NaLnF4 [78]. Varying the decay temperature, the formation of
one of the NaLnF4 allotropes can be controlled [78]. Another approach was to use two
precursors [Na(hfac)(tetraglyme)] and [Ln(hfac)3(diglyme)] together in sol–gel synthesis of
the hexagonal phase of β-NaYF4:Yb3+,Er3+ at an elevated temperature [84].
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Diketone HL7 with a pyrazole substituent formed the crystal packing of the het-
erometallic [Eu-Cs] complex (31) due to the coordination of nitrogen atoms of the hetero-
cyclic system with cesium ions (Figure 14) [82]. The coordination environment of cesium(I)
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ions is saturated by nitrogen atoms of pyrazole, fluorine atoms of CF3 groups and bridging
oxygen atoms of diketonate anions. The contact length of Cs . . . F is ~3.21–3.44 Å, which is
comparable with the bond length of Cs . . . N equal to ~3.17–3.20 Å.
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Figure 14. Structure X-ray structure of one-dimensional chain in 31 [82]. Hydrogen atoms have
been omitted, some diketonate ligands and CF3 groups are transparent for clarity. The cif has been
retrieved from CCDC. CCDC number is 922987.

The complexation of ntfa with europium(III) chloride in the presence of sodium
alkali in methanol gave the discrete [Eu-Na] tetrakis-β-diketonate (32) containing an acetyl
naphthalene (Scheme 12) [83]. The aromatic ketone in the complex 32 indicates a side
retro-Claisen reaction involving ntfa. Therefore, coligand contribution led to the change
from polymer to discrete tetrakis-β-diketonates (Figure 15). Heterometallic complex 32 had
good luminescent properties, exhibiting a phosphorescence time equal to 0.595 ms with a
quantum yield of 47.5%. Photophysical parameters were measured under excitation at a
wavelength of 370 nm in CH2Cl2 solution [83].
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Figure 15. Molecular structure of 32 [83]. Hydrogen atoms have been omitted, some ligands groups
are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 2071833.

Succinimide can replace one of the water molecules from the coordination environment
of alkali metal ions, thereby acting as coligand in heterometallic complex 33 (Figure 16) [85].
Tetrakis-β-diketonate [Eu-Na] (33) based on tta exhibited the high phosphorescence quantum
yield of 71% and the afterglow time of 0.84 ms upon excitation at a wavelength of 365 nm.
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The functionalized lithium β-diketonate LiL10 reacted with lanthanide(III) ions to
form heterometallic compounds of various structures (Scheme 13) [62,86–89]. An extra func-
tional group in the ligand saturated the metal ion coordination sphere with no additional
coligands. Such homoleptic [Ln2L6] complexes (34) were obtained in the case of Ln(III) ions
with the largest radius. However, the reaction of lithium diketonate LiL10 with most of the
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4f metals led to the discrete β-diketonates 36–38 of three types depending on the solvent
used (Scheme 13). The first type included “classical” tetrakis-β-diketonates 35, in which
four β-diketonate anions were coordinated to lanthanide(III) ion. The methoxy groups of
the ligands participate in the additional coordination with the lithium ion, thereby providing
the discrete structure of 35 (Figure 17). The [Ln-Li] tetrakis-β-diketonates 35 were formed in
acetonitrile media and the solvent molecule was also included in the crystal packing. Het-
erometallic complexes 35 were the first examples of lanthanide-lithium β-diketonates, which
have been obtained and characterized by different spectral and crystallographic methods.
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Figure 17. Molecular structure of 35 [87]. Hydrogen atoms, MeCN molecules have been omitted, CF3

groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC numbers are 1973632
(Ln = Eu), 1973633 (Ln = Tb).

The second and the third types of complexes included the compounds 36, 37, in which
the Ln(III) tris-β-diketonate fragment was coordinated to the initial lithium β-diketonate
LiL10 (Scheme 13). The solvent choice (methanol or ethanol) influenced the coligands
at the lithium ion in heterometallic complexes 36 (where Ln = Tb, Dy, Eu) (Figure 18).
However, the main distinctive characteristic of these close structures was their different
crystal packings. Complexes 36 (where Ln = Tb, Dy, Eu) exhibited mechanoluminescent
properties, and one of them, [Dy-Li], was found to be a single-molecule magnet with an
energy barrier equal to 53 K.
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Figure 18. Molecular structures of 36 and 37 (dik = L10) [86,88]. Hydrogen atoms have been omitted,
CF3 groups are transparent for clarity. The cif has been retrieved from CCDC.

The exception was the trimetallic complex 38 formed by LiL10 reaction with
praseodymium(III) nitrate (Scheme 14) [86]. Its structure contained a ten-coordinated
praseodymium(III) ion and two lithium ions in the coordination with four β-diketonate
anions (Figure 19). One of the ligands from the tris-β-diketonate fragment was bound
with the lithium atom of the initial molecule LiL10. The coordination environment
around the praseodymium(III) ion was saturated by nitrate and three β-diketonate
anions, one methoxy group and the bridging oxygen atom of the LiL10 β-dicarbonyl
fragment. In addition, an unusual structure of complex 38 included the second lithium
ion, which was coordinated to methoxy groups and oxygen atoms from the β-diketonate
fragment (Figure 19).
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Increasing the length of the fluoroalkyl substituent from CF3 to C2F5 in acetal-containing
β-diketonates LiL11 did not change the composition and structure of the resulting heterometal-
lic β-diketonate 39 (Scheme 14, Figure 20) [89]. However, the phosphorescence lifetime de-
creased for the obtained [Tb-Li] diketonate 39 compared with the trifluoromethyl analog.
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Figure 20. Molecular structure of 39 [89]. Hydrogen atoms have been omitted, C2F5 groups are
transparent for clarity. The cif has been retrieved from CCDC. CCDC numbers is 2011088.

The acetal-containing β-diketonates of other alkali metals (Na, K, Cs) reacted with
terbium(III) chloride to afford the [Tb-M] (M = Na, K, Cs) complexes 40–42 (Scheme 15) [62].
In all cases, the lanthanide(III) tetrakis-β-diketonates 40–42 were formed. Complex [Tb-Na]
40 had a discrete structure, while [Tb-K] 41 and [Tb-Cs] 42 were coordination polymers
(Figure 21).
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7. Heteronuclear Complexes with Isolated Metal Centers

This part describes complexes in which metal centers are not connected by bridging
oxygen atoms of both β-diketonates and other coligands.

The co-crystallization of equimolar amounts of Dy(III) and Cu(II) β-diketonates af-
forded the heterometallic complex 43 in a good yield (Scheme 16) [90]. Coligands’ exchange
around metal ions did not occur in this case (Figure 22). The Cu . . . Dy had the smallest
distance between metal centers in the crystal lattice equal to 5.874 Å. Unlike the origi-
nal [Dy(hfac)3•2H2O] complex, a synthesized [Dy-Cu] system (43) consisting of mixed
β-diketonate ligands exhibited the properties of a molecular magnet with an energy barrier
value equal to 55.3 K [90].
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The solid-state redox reaction between tin(II) and 3d metal β-diketonates proceeded 

with the ligand exchange around the metal centers to give the heterometallic compounds 
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Figure 22. A crystal packing fragment of 43 [90]. Hydrogen atoms have been omitted, some ligand
groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1938913.

The solid-state redox reaction between tin(II) and 3d metal β-diketonates proceeded
with the ligand exchange around the metal centers to give the heterometallic compounds
44–46 (Scheme 17) [91]. The obtained bimetallic complexes consisted of two homoleptic
tris-β-diketonate fragments forming an ion pair (Figure 23).
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Copper(II) β-diketonate reacted with tin(II) alkoxide to give the six-nuclear [Sn-Cu]
complex (47) (Scheme 18) [92]. Similarly to bimetallic [Sn-M] complexes 44–46, an ion pair
was formed as a result of the redox reaction. Copper(II) tris-β-diketonate represented the
anionic part, while the oxygen atoms of tin(II) alkoxides were coordinated to copper(I) ions
in the cationic part (Figure 24).
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8. Binuclear Complexes Based on β-Diketones with an Additional Chelating Cavity

The fluorinated β-diketonates with 2,2′-bipyridinyl or phenanthrolinyl substituents
(HL2, HL3) were used in the two-step synthesis of bimetallic [Ir-Eu] complexes 48, 49
(Scheme 19) [52,53,93,94]. At the first stage, only the 2,2′-bipyridinyl fragment of the ligand
coordinated the Ir(III) ion. Furthermore, three β-diketonate anions 48, 49 with sterically
congested iridium(III) fragments were involved in the coordination with lanthanide(III)
ions. The resulting compounds 50, 51 demonstrate the rare examples of seven-coordinated
Ln(III) ions with the [LnO6Cl] coordination environment (Figure 25). The structural differ-
ences of coordination centers promoted the assembly of heteroleptic Ln(III)-Ir(III) (Ln = Eu,
Nd, Yb, Er, Gd) complexes [52,53,93,94]. As a result, heterometallic [Ir-Eu] compounds
50, 51 with bpy fragments demonstrated the higher values of phosphorescence lifetimes
(up to 440 µs) compared with phen analogs. Replacing the CF3 group with C2F5 sub-
stituent slightly shifted the triplet state in [Ir-Eu] complexes towards the higher side [52].
Therefore, the C2F5-diketonate modified by bpy moiety represents an example of the ef-
ficient europium(III) sensitization through the excitation transferring from the Ir(III) to
Eu(III) center [52].
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9. Metallocene-Containing Heterometallic β-Diketonates

Metallocene derivatives are convenient molecules for the synthesis of heterometallic
compounds with predictable composition and structure. One of the approaches is based on
the co-crystallization of the modified ferrocene with transition metal β-diketonates. For
example, 1,2-di(4-pyridylthio)ferrocene in reaction with Cu(hfac)2 gave 1D coordination
polymer [Cu-Fe] (51) (Figure 26) [95].
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is 1556476.

Unsubstituted metallocenes can also form the polynuclear structures. Cobalt (I) cy-
clopentadienyl (Cp2Co), acting as a cation in heterometallic Ln(III) tetrakis-β-diketonates,
afforded a complex 53 with uncoordinated counterions (Figure 27) [96]. The formation of a
similar compound as a by-product was observed during the reaction between a binuclear
lanthanide complex [Ln2(hfac)6(bptz)] (52) (where bptz–3,6-bis(2-pyridyl)-1,2,4,5-tetrazine)
and Cp2Co (Scheme 20).
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The β-diketones HL15 reacted with Ln(III) chloride in the presence of triethylamine
in methanol at room temperature to yield the clusters 54 containing four 4f metal ions
decorated with ferrocene rings (Scheme 21) [97]. The organic base promoted the deproto-
nation of methanol and water molecules followed by the formation of a tetranuclear lan-
thanide(III) framework due to methanolate and hydroxide anions, which act as O-bridging
ligands (Figure 28).
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The reaction of diketone HL16 with aluminum(III) sulfate in methanol in the pres-
ence of aqueous ammonia resulted in the aluminum tris-β-diketonate 55 in 32% yield
(Scheme 22) (Figure 29) [99]. The cytotoxicity of complex 55 against the human HeLa neo-
plastic cells was investigated: it was about 5 times less cytotoxic than the neutral diketone
and approximately 50 times less toxic compared with a reference drug cisplatin.
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Figure 29. Molecular structure of 55 [99]. Hydrogen atoms have been omitted, CF3 groups are
transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 877638.

The heterometallic [Cu-Fe] complex 56 was isolated in a good yield (45%) from the
reaction of HL16 with [CuCl(PPh3)] in the presence of potassium tert-butylate in ether at
room temperature (Scheme 23) [98]. Complex 56 showed the irreversible oxidation of Cu(I)
centers to Cu(II) under anaerobic electrochemical conditions accompanied by the loss of
PPh3 coligands and the formation of bis-diketonate [Cu(L16)2].
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The synthesis of [Rh-Fe] complexes 59 included several stages with the step-by-step
replacement of coligands at the Rh(I) ion (Scheme 24) [100]. Compounds 59 have been
shown to provide the formation of Rh(I) active centers on the surfaces for heterogeneous
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catalysis. Silanol groups grafted on a solid matrix primarily replaced the β-diketonate
anions in [Rh-Fe] complexes.
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Scheme 24. Synthesis of heterometallic [Rh-Fe] complex 59.

The oxidative addition of methyl iodide to the [Rh-Fe] compound 59 proceeded under
mild conditions to afford the Rh(III) complex 60 in 90% yield (Scheme 25, Figure 30) [101].
Based on spectral data, the authors postulate that methyl-containing complex 60 and its
acyl derivative exist in equilibrium with each other. However, since the 19F NMR spectra
have not been registered, the transformations of the β-dicarbonyl framework accompanied
by the isomers’ formation can proceed as well.
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Sodium carbonate reacted with [CpIr(hfac)Cl] (61) in methanol under normal con-
ditions to give an unusual heterotrimetallic complex (62) (Scheme 26) [102]. This trans-
formation resulted in a hydroxycluster [CpIr(III)] coordinating the fluorinated sodium
β-diketonate and free hfac (Figure 31).
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10. Heteroleptic Complexes Involving β-Diketonates and Polytopic Coligands

The trifluoromethyl β-diketone HL1 with dithienylethene substituent was used as a
ligand in the synthesis of heterometallic [Yb-Ru] complex 63 exhibiting the redox/optical
control of emission (Figure 32) [51]. The bimetallic complex 63 was formed due to the coor-
dination of the tris-β-diketonate Yb(L1)3 fragment with the functionalized 2,2′-bipyridine
containing a ruthenium(III) ion.

The Schiff base with two different coordination modes formed the heterometallic 3d-4f
binuclear complexes 65 (Scheme 27) [103,104]. The lanthanide(III) ions had an [LnO8]
environment, whereas 3d metals ions preferably coordinated with the less “hard” nitrogen
centers (Figure 33). The complexes with a combination of anisotropic Co(II) or Ni(II)
ions with Tb(III) exhibited slow magnetic relaxation at low temperatures and, therefore,
represented promising structures for single-molecular magnets’ design [103]. On the other
hand, the heterometallic complexes containing Zn(II) and Tb(III) or Eu(III) ions showed
luminescent properties [104]. In this case, the replacement of the bridging acetate anion by
1-pyrenbutanoic acid (complex 66, Figure 33) reduced the phosphorescence lifetime.
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The co-crystallization of copper(II) β-diketonate with palladium(II) bis-enaminoketonate
led to the heterobimetallic [Cu-Pd] complex 67 [105]. The bridging oxygen atoms of bis-
enaminoketone between palladium(II) and copper(II) ions formed a discrete binuclear frame-
work of the complex 67 (Figure 34).
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Due to deprotonation of the hydroxy group, 8-hydroxyquinoline acted as a bridging
ligand in the reaction with transition metal β-diketonates resulting in the homobimetallic
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complexes (Scheme 28) [106–108]. However, in the presence of a chromium(III) ion a
trimetallic complex 68 was formed, in which a bridging phenolate anion connected the
different metal ions (Figure 35) [108].
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Heterometallic polymer complexes 69–71 including Eu(III) tris-β-diketonate fragments
were synthesized based on the bidentate O,N-ligand–4-pyridyldiphenylphosphinoxide
(Scheme 29) [109]. Polymer chains of 69–71 were formed through the coordination of
phosphinoxide oxygen atom with Eu(hfac)3, whereas the nitrogen atom of the pyridine core
bound the Pd(II), Zn(II) or Al(III) centers. Among the synthesized luminescent bimetallic
polymers, complex [Eu-Al] 70 exhibited the highest value of the phosphorescence quantum
yield equal to 72%.
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Scheme 29. Synthesis of polymers, containing Eu(III) and 3d metal ions.

The simultaneous addition of 3d and 4f β-diketonate hydrates to the reaction with
nitronyl nitroxyls gave the heterometallic complexes 72–75 [110–112]. The coordination of
3d β-diketonate with the nitroxyl radical was accompanied by the Ln(III) tris-β-diketonate
transformation into the corresponding Ln(III) tetrakis-β-diketonate anion (Figure 36) [110–112].
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In most cases, the co-crystallization of 3d and 4f β-diketonates proceeded in the
presence of the aza-heteroaryl-substituted nitronyl nitroxyls to provide the additional
coordination centers with metal ions (Figure 37) [113–119]. The Ln(III) center predominantly
formed an [LnO8] environment due to both the β-diketonate anions and nitroxyl oxygen
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atoms. In turn, 3d metal bis-diketonates were coordinated by either two nitrogen atoms of
the heterocyclic substituents in a ligand or a nitroxyl oxygen atom and aza-heterocycle.
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11. Heterometallic Complex Synthesis Based on hfac Transformations

In general, the synthesis of mono- and polynuclear β-diketonates is realized under basic
conditions to facilitate the coordination with metal ions via deprotonation of the initial β-
dicarbonyl compounds. Along with this, in some cases the base action provokes theβ-diketone
participation in the hydration process, retro-Claisen reaction or template transformations to
form the metal complexes including tfa or ttpt as coligands [81,102,120–130].

A strong base used in the formation of a β-diketonate anion caused the destruction
or transformation of the initial β-diketone. In work [126], the deprotonation with sodium
hydroxide resulted in two possible routes of the retro-Claisen reaction (Scheme 30). Sur-
prisingly, in the presence of two different carboxylates, a tetranuclear [Eu-Na] complex (84)
was formed, including the β-diketonate anions and tris(3,5-dimethyl-1-pyrazolyl)methane
(tpm) (Figure 38). The main phosphorescence characteristics were determined for the
complex 84: the observed lifetime was 0.68 ms with a quantum yield of 39% and quantum
efficiency equal to 58% [126].
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The synthesis of heterometallic [Ni-Ln] complexes (83–87) included the two steps:
Schiff base interaction with nickel(II) nitrate followed by the Ln(hfac)3 addition
(Scheme 31) [127]. In that case, one fluorinated β-diketonate molecule from Ln(hfac)3
underwent a retro-Claisen reaction to give the [Ni-Ln] complexes (85–89) with the trifluo-
roacetate anion as coligand (Figure 39).
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Figure 39. Molecular structure of 87 [127]. CF3 groups are transparent for clarity. The cif has been
retrieved from CCDC. CCDC number is 1556429.

The nitrogen base, as an initial part of the complex, can further participate in the co-
crystallization with fluorinated β-diketonate [129]. In particular, the tetranuclear bimetallic
complex 91 was obtained by the reaction of Cd(pymt)2(phen)2 (90) with Cu(hfac)2 in
acetonitrile (Scheme 32) [129]. The heterometallic structure 91 was formed based on the
ttpt derived from hfac. Cadmium(II) both coordinated the diketonate anion and built a
heterometallic framework of 91 due to the bridging oxygen atoms of ttpt (Figure 40). In
addition, three hydroxyl oxygen atoms of two tpt and phen molecules formed the [CuO3N2]
coordination environment of copper(II) ions.
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Figure 40. The crystal structures of [Cu2(phen)2(ttpt)2Cd2(hfac)2] (91) [129]. CF3 groups are transpar-
ent for clarity. The cif has been retrieved from CCDC. CCDC number is 616292.

After the decomplexation of heteronuclear [Cu-Cd] complex 91, all hydroxyl groups of
tris-CF3-tetrahydropyran-2,4,6-triol were in the cis-configuration based on XRD data [129].
The proposed mechanism of pyran formation involves a retro-Claisen reaction followed by
a condensation of trifluoroacetone enol with fluorinated copper diketonate (Scheme 33).
Obviously, the triol formation led to the assembly of the tetranuclear [Cu-Cd] core, while the
oxygen atoms of the hydroxyl groups in ligand acted as bridging atoms between metal ions.
The other bases, including DMF, diethylformamide, formamide and sodium hydroxide,
can also be used in the template reaction affording the ttpt.

The Hhfac cleavage accompanied by the trifluoroacetate formation proceeds easily
under the action of tertiary amines at room temperature [131]. The reaction between
Ln(hfac)3 and 1,3-bis(dimethylamino)-2-propanol (bdmap) leads to heteronuclear [Pr-Cu]
complexes 93, 94 (Scheme 34). If copper(II) methoxide is reacted with Pr(hfac)3 instead of
the corresponding acetate, trifluoroacetate and trifluoromethylated dioxane-diol (CF3-diol)
are formed as coligands (Figure 41). The CF3-diol is formed due to the condensation
reaction of trifluoroacetone with β-diketonate from Pr(hfac)3 (Scheme 35). To prove the
mechanism of heterometallic [Pr-Cu] complex (93) formation, the authors carried out the
reaction of the copper(II) methoxide and Pr(hfac)3 with trifluoroacetic acid and proposed
trifluoroacetone in the presence of bdmapH (Scheme 34).
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12. Conclusions

The described analysis of the literature demonstrates the wide scope of fluorinated
β-diketones in the synthesis of heterometallic compounds. In most cases, the available
diketones with trifluoromethyl and perfluoropropyl substituents (hfac, fod) form polynu-
clear systems containing up to five different metal ions. Moreover, fluorinated β-diketones
as coligands can be used in the design of the heterometallic architectures in combination
with other organic polydentate molecules. However, the potential of coordination com-
pounds containing two or more different metal ions has not been fully realized in terms
of practice. This is mainly because of the limited number of transition metals used in
the synthesis of heterometallic structures. The specific chemical properties of the initial
β-diketones should be considered when planning conditions for the synthesis of coordi-
nation compounds. In particular, the action of bases causes the β-diketones’ destruction
to form heteroleptic complexes. In this context, the directed synthesis of β-diketones
containing additional coordination centers is a more attractive design strategy for the
heterometallic complexes [51–53,93,94,132]. This area is promising for obtaining not only
discrete structures but also 2D/3D organometallic polymers, which are of applied interest
in the development of magnetic, fluorescent, catalytic or sensor devices. Therefore, using
polydentate fluorinated β-diketonates allows the heterometallic composition of structurally
diverse coordination compounds to be varied, which, in turn, may give rise to advanced
materials with interesting physicochemical properties.
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Abbreviations

MOCVD metal organic chemical vapor deposition;
hfac 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate;
tfa trifluoroacetate;
tfac 1,1,1-trifluoro-2,4-pentanedionate;
ptac 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate;
fod 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate;
tta thenoyltrifluoroacetylacetonate;
fta furanoyltrifluoroacetylacetonate;
bta benzoyltrifluoroacetone;
ntfa 4,4,4-trifluoro-1-(2-naphtyl)-1,3-butanedionate;
Na2EDTA ethylenediaminetetraacetic acid disodium salt;
PTSA p-toluenesulfonic acid;
dik β-diketonate;
acac acetylacetonate;
thd 2,2,6,6-tetramethyl-3,5-heptanedionate;
pfbm bis(pentafluorobenzoyl)methane;
Cp cyclopentadienyl;
Fc ferrocene;
DME 1,2-dimethoxyethane;
DMF dimethylformamide;
Et ethyl;
LDA lithium di(isopropyl)amide;
Me methyl;
THF tetrahydrofuran;
ttpt tris-CF3-tetrahydropyran-2,4,6-triol;
bptz 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine;
phen 1,10-phenantroline;
bdmap 1,3-bis(dimethylamino)-2-propanol.
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