

Review **Heterometallic Molecular Architectures Based on Fluorinated** β**-Diketone Ligands**

Viktor I. Saloutin ¹ , Yulia O. Edilova ¹ [,](https://orcid.org/0000-0001-8955-6272) Yulia S. Kudyakova ¹ [,](https://orcid.org/0000-0003-0637-1606) Yanina V. Burgart ¹ and Denis N. Bazhin 1,2,[*](https://orcid.org/0000-0003-3972-6995)

- ¹ Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
- ² Department of Organic and Biomolecular Chemistry, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg 620002, Russia
- ***** Correspondence: dnbazhin@gmail.com

Abstract: This review summarizes the data on the synthesis of coordination compounds containing two or more different metal ions based on fluorinated β-diketonates. Heterometallic systems are of high interest in terms of their potential use in catalysis, medicine and diagnostics, as well as in the development of effective sensor devices and functional materials. Having a rich history in coordination chemistry, fluorinated β-diketones are well-known ligands generating a wide variety of heterometallic complexes. In this context, we focused on both the synthetic approaches to β-dicarbonyl ligands with additional coordination centers and their possible transformations in complexation reactions. The review describes bi- and polynuclear structures in which β-diketones are the key building blocks in the formation of a heterometallic framework, including the examples of both homo- and heteroleptic complexes.

Keywords: fluorinated 1,3-diketones; heterometallic complexes; coordination chemistry; luminescence; transition metals; lanthanides

1. Introduction

Combining different metals in coordination structures and inorganic matrices is a concept of high research interest. Its driving force originates not only from the attractive diversity of molecular structures, but mainly from their exceptional physicochemical properties. Organic ligands are crucial for the successful formation of heterometallic coordination complexes with a discrete or polymeric structure [\[1](#page-37-0)[–7\]](#page-37-1). The possible applications of these compounds are widely investigated in catalytic processes [\[3](#page-37-2)[,5\]](#page-37-3) and in the search for new luminescent and magnetic materials $[4,6]$ $[4,6]$, sensors $[2,3,7]$ $[2,3,7]$ $[2,3,7]$, biologically active agents $[1,7]$ $[1,7]$, etc.

Being able to form complexes with most of the elements of the periodic table, βdiketones occupy an important place among organic ligands [\[8–](#page-37-7)[26\]](#page-38-0). Moreover, varying substituents at the β-dicarbonyl fragment is an effective tool for the fine-tuning of the physicochemical properties of coordination compounds. In particular, the introduction of one or two fluorinated substituents decreases the intermolecular interactions, thereby reducing the sublimation temperature of the complexes. Along with their thermal stability, these compounds are in high demand in the search for precursors for chemical deposi-tion processes [\[27\]](#page-38-1). However, the prevalence of trifluoromethyl β-diketonates compared with non-fluorinated analogues is due to the increased solubility of their complexes and, therefore, the better crystallization [\[27\]](#page-38-1).

Several reviews have reported the use of β -diketonates as precursors for MOCVD [\[27](#page-38-1)[,28\]](#page-38-2). Examples of metal-containing molecular architectures incorporating β-diketonate motifs are described as luminescent materials [\[29](#page-38-3)[,30\]](#page-38-4). The achievements in the field of supramolecular metal-containing structures based on poly-β-diketonate ligands are reviewed regularly [\[9](#page-37-8)[,21](#page-38-5)[,24,](#page-38-6)[25\]](#page-38-7).

Citation: Saloutin, V.I.; Edilova, Y.O.; Kudyakova, Y.S.; Burgart, Y.V.; Bazhin, D.N. Heterometallic Molecular Architectures Based on Fluorinated β-Diketone Ligands. *Molecules* **2022**, *27*, 7894. [https://](https://doi.org/10.3390/molecules27227894) doi.org/10.3390/molecules27227894

Academic Editor: Chris Douvris

Received: 7 October 2022 Accepted: 11 November 2022 Published: 15 November 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

This review aims to consider the fluorinated β-diketonates and their involvement in the synthesis of heterometallic structures. Such systematization will reveal the main The diversion of the β-diketonates of chemistry and demonstrate the features of polynuclear and the main systems' formation and their physicochemical properties. the synthesis of heterometallic structures. Such systematization will reveal the main ad*values* of the *g*-diketonates' chemistry and demonstrated by and demonstrated polynuclear systems. The polynuclear system of polynuclear systems of polynuclear systems of polynuclear systems of polynuclear systems. The **2. Overview of Fluorinated β-Diketones Used as Ligands**

2. Overview of Fluorinated β-Diketones Used as Ligands

The most common fluorinated β-diketones are illustrated in Figure 1. In this series, hfac is the most used ligand: it represents the acac derivative in which the methyl groups are replaced by trifluoromethyl substituents. Containing trifluoromethyl and thiophene
and this preferred collection in the design of luminosity of luminosity comsubstituents, tta is a preferred coligand in the design of luminescent and magnetic complexes. The trifluoromethyl group predominates among the other β-dicarbonyl backbone plexes. The trifluoromethyl group predominates among the other β-dicarbonyl backbone $\frac{1}{\sqrt{2}}$ substituents in the structures of the known fluorinated β-diketonates involved in the synthesis of homo- and heteroleptic complexes. thesis of homo- and heteroleptic complexes.

Figure 1. Structures of fluorinated β-diketonate ligands. **Figure 1.** Structures of fluorinated β-diketonate ligands.

3. The Synthesis of Fluorinated Ligands, Containing the β**-Dicarbonyl Fragment**

In this part, we show the approaches to the original fluorinated β-diketones, which were further used in the synthesis of heterometallic complexes. The Claisen condensation is known as the main synthetic method for the preparation of fluorinated β-diketones. The most frequently used condensing agents are NaH [\[31–](#page-38-8)[35\]](#page-38-9) and MeONa [\[36](#page-38-10)[–43\]](#page-39-0), while
The most frequently used condensing agents are NaH [31–35] and MeONa [36–43], while LiH [\[44](#page-39-1)[–48\]](#page-39-2), LDA [\[49\]](#page-39-3) and Na [\[50\]](#page-39-4) are less demanded. Ethers (DME, Et₂O, THF) are
were not found adventuration that have expected a Theoretical Constitution in a $\frac{1}{4}$ and $\frac{1}{4}$ are more pre-trice solvents rather than behavior of are encoded. The synthesis of ranchonalized ligands incorporating the β-dicarbonyl fragment and fluorinated groups is shown in Scheme 1 [\[51](#page-39-5)[–57\]](#page-39-6). In this case, the condensation proceeds between the fluorine-containing esters and methyl ketones bearing an aryl, hetaryl substituent or a functional group. more preferred solvents rather than benzene or alcohols. The synthesis of functionalized

Scheme 1. The synthesis of fluorinated functionalized β-[dike](#page-39-6)tones [\[51–](#page-39-5)57]. Reaction conditions: [a] LDA, THF, −78 °C, then HCl_{aq}; [b] Na, benzene, reflux; [c] NaH, THF, EtOH (cat.), then AcOH; [d] CaH₂, MeOH, then Cu(OAc)₂ followed by the decomposition with Na2EDTA_{aq}.

Trifluoromethylated β-diketone (**HL⁹**) with a bulky substituent bearing a methoxy Trifluoromethylated β-diketone (**HL⁹**) with a bulky substituent bearing a methoxy group was obtained as a result of a multi-stage syn[th](#page-3-0)e[sis \(](#page-39-7)Scheme 2) [58]. Alkylation with group was obtained as a result of a multi-stage synthesis (Scheme 2) [58]. Alkylation with dimethyl-substituted propargyl alcohol (**1**) resulted in acetylene (**2**) containing a methoxy dimethyl-substituted propargyl alcohol (**1**) resulted in acetylene (**2**) containing a methoxy group at a tertiary carbon atom. Further trifluoroacetylation of unsaturated ether (**2**) gave group at a tertiary carbon atom. Further trifluoroacetylation of unsaturated ether (**2**) gave alkoxyenone (**3**) that reacted with aniline to form the corresponding enaminoketone (**4**). alkoxyenone (**3**) that reacted with aniline to form the corresponding enaminoketone (**4**). At At the last stage, an asymmetric diketone **HL⁹** was isolated under acid hydrolysis. the last stage, an asymmetric diketone **HL⁹** was isolated under acid hydrolysis.

i: $Me₂SO₄$, KOH_{aq} , Bu₄NI; ii: $CF₃C(O)Cl$, CuCl, benzene; iii: NH_2Ph , dioxane; iv: HCl_{aa} .

Scheme 2. The synthesis of methoxy-substituted CF3-β-diketone. **Scheme 2.** The synthesis of methoxy-substituted CF³ -β-diketone. **Scheme 2.** The synthesis of methoxy-substituted CF3-β-diketone.

Bazhin et al. later developed a more convenient approach to the synthesis of the methoxy-substituted β -diketone analogue [\[59\]](#page-39-8). For this purpose, a commercially available 2,3-butanedione (5) was used, in which one of the carbonyl groups can be easily transformed into an acetal fragment (Scheme [3\)](#page-3-1). Further Claisen condensation of the obtained functional ketone (6) with fluorinated esters gave the acetal-containing lithium β -diketonates LiL [\[60,](#page-39-9)[61\]](#page-39-10). The resulting lithium derivatives are easy to isolate in a pure form; they are stable and can be stored under normal conditions. However, these lithium salts were readily converted into 5-(perfluoroalkyl)furan-3(2H)-ones (7) under weakly acidic conditions and in the presence of the strong Lewis acids (e.g., BF_3 Et₂O) [\[45,](#page-39-11)[46,](#page-39-12)[59\]](#page-39-8). require any bases. Moreover, an efficient method for replacing lithium with another alkali $\mathbf{E}[\mathbf{u}]$ and \mathbf{u} bases. Moreover, an efficient metal ion replacing lithium with another alba ion \mathbf{u} metal ion metal ion by the action of the corresponding fluoride was proposed (Scheme [3\)](#page-3-1) [\[62\]](#page-39-13). On the other hand, the direct coordination of lithium β-diketonates with metal ions did not

i: CH(OMe)₃, PTSA, MeOH, reflux; *ii*: R^FCO₂Et, DME, LiH, r.t.; iii: MF, MeOH, r.t.

Scheme 3. The synthesis of fluorinated acetal-containing β-diketonates [59–62]. **Scheme 3.** The synthesis of fluorinated acetal-containing β -diketonates [[59](#page-39-8)–[62\]](#page-39-13).

To synthesize a C_6F_5 -substituted β-diketone, the reaction between pentafluorobenzoyl chloride (**8**) and vinyl acetate was carried out in the presence of aluminum(III) chloride (Scheme 4) [63,64]. The condensation was accompanied by side products: an asymmetric βdiketone (9) with one perfluorophenyl substituent and a fluorinated chromone (10) derived from intramolecular cyclization. Aluminum(III) β-diketonate Al(**L ¹⁴**)³ easily reacted with divalent transition metal ions (copper, cobalt, nickel) [\[63\]](#page-39-14), thereby avoiding the isolation of divalent transition metal ions (copper, cobalt, nickel) [63], thereby avoiding the isolation of the corresponding bis(pentafluorobenzoyl)methane (**HL14**) unstable in a free form. $\Gamma_{\rm{c}}$ and the first of G Γ , exhatituded 0, dilected by the condition hadrogen was talked by side σ

Scheme 4. Synthesis of C₆F₅-substituted β-diketone.

in the synthesis of organometallic derivatives are limited. In this context, functionalized 1,3-dicarbonyl compounds are the least studied, although they have much potential for the formation of heterometallic complexes. The above analysis showed the structures of fluorinated 1,3-diketones used as ligands

4. Coordination Modes of Fluorinated β-Diketonates

act as bi- and polydentate ligands, depending on the metal ions and coligands used [\[27\]](#page-38-1). T_{t} is the variable of the substitution in the β distances β , the interatomic distance in the extra coordination with metal ions. In this case, the interatomic distance M . . . F is less than the sum of the van der Waals radii of fluorine and metal ions indicating non-covalent interaction between them. The principal coordination modes of fluorinated $β$ -diketonates are shown in Figure [2.](#page-5-0) The variety of coordination structures based on β -diketones arises from their ability to Moreover, the fluorine atoms of the substituent in the β -dicarbonyl framework can par-

Figure 2. Possible coordination modes of fluorinated β-diketones. **Figure 2.** Possible coordination modes of fluorinated β-diketones.

5. Heterometallic Complexes Containing Bridging ß-Diketonate Anions

The co-crystallization of β-diketonates with various metal ions is known as one of the The co-crystallization of β -diketonates with various metal ions is known as one of the available methods for the synthesis of heterometallic compounds with both discrete and polymer coordination structures. For example, Lindoy et al. described the heterometallic complex [Eu-Co] (11) based on 3d and 4f metal β -diketonates: the stoichiometric structure was formed from two β -diketonates containing europium(III) and cobalt(III) in a CDCl₃ $\frac{1}{2}$ solution (Scheme [5\)](#page-5-1) [\[65\]](#page-39-16). In this case, oxygen atoms of non-fluorinated β -diketonate acted as bridging atoms between two metal ions (Figure 3). as bridging atoms between two metal ions (Figur[e 3](#page-5-2)).

 \mathcal{S} [Eu(100)₃C₀(acac)₃] *Molecules* **2022**, *27*, x FOR PEER REVIEW 7 of 51

Scheme 5. Synthesis of the heterometallic complex [Eu-Co] (11).

Figure 3. Molecular structure of **11**. Hydrogen atoms and some methyl groups have been omitted, **Figure 3.** Molecular structure of **11**. Hydrogen atoms and some methyl groups have been omitted, C3F⁷ groups of fod are transparent for clarity. The cif has been retrieved from CCDC. CCDC number C3F⁷ groups of fod are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1100888. is 1100888.

is 110088.

The reaction of the iron(II) chloride and the fluorinated lithium β-diketonate led to a The reaction of the iron(II) chloride and the fluorinated lithium β-diketonate led to a tetranuclear heterometallic complex [Li-Fe(II)] (**12**) (Scheme [6\)](#page-6-0) [\[66\]](#page-40-0). The resulting iron(II) tetranuclear heterometallic complex [Li-Fe(II)] (**12**) (Scheme 6) [66]. The resulting iron(II) bis-β-diketonates were coordinated with two molecules of the initial lithium β-diketonate bis-β-diketonates were coordinated with two molecules of the initial lithium β-diketonate (Figure [4\)](#page-6-1). The coordination environment of metal centers [LiO₅] and [FeO₆] consisted only of the oxygen atoms of β-diketonate anions without involving the fluorine atoms.

$$
2\text{FeCl}_2 + 6\text{Li(ptac)} \longrightarrow \text{[Li}_2\text{Fe}_2(\text{ptac})_6] + 4\text{LiCl}
$$

12

Scheme 6. Synthesis of tetranuclear heterometallic complex [Li-Fe] (**12**). **Scheme 6.** Synthesis of tetranuclear heterometallic complex [Li-Fe] (**12**).

Figure 4. Molecular structure of **12**: (dik = ptac) [66]. Hydrogen atoms have been omitted, CF³ groups of ptac are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1518385. of ptac are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1518385. **Figure 4.** Molecular structure of 12: (dik = ptac) [\[66\]](#page-40-0). Hydrogen atoms have been omitted, CF₃ groups

as binders between two fragments of transition metal β-diketonates [67,68]. The initial reagents for these transformations are transition metals(III) β-diketonates based on acac, fl[uo](#page-7-0)rine-containing sodium β-diketonates and chlorides of divalent 3d metal ions (Scheme 7, Figures [5–](#page-7-1)[7\)](#page-8-0). The replacement of one CF_3 group in the fluorinated ligand with a sterically 5–7). The replacement of one CF³ group in the fluorinated ligand with a sterically bulky *t*-in the complex (Figures [6](#page-7-2) and [7\)](#page-8-0). The assembly of trimetallic complexes **13**, **14** was based on the transition metal ions of different oxidation states. In this case, the metal(III) ion was α coordinated to non-fluorinated β-diketonate, which was not exchanged for hfac during the reaction. In this case, the metal is case, the metal $\frac{1}{2}$ In the synthesis of polynuclear heterometallic complexes **13–17,** alkali metal ions act bulky *t*-butyl group enables the number of metal atoms to be increased from three to five

 $M(acc)_3 + CoCl_2 + 3Na(hfac) \longrightarrow [Co^H(hfac)_3-Na-M^{III}(acac)_3] + 2NaCl$ 13: $M = Co$ Han, H. et al. (2020). 14: $M = Fe$ Han, H. et al. (2020). $M(acac)₃ + M'Cl₂ + 3Na(ptac)$ \longrightarrow $[M^{II}(ptac)₃-Na-M^{III}(acac)₃-Na-M^{II}(ptac)₃] + 4NaCl$ 15: $M = M' = Mn$ Han, H. et al. (2020). **2022**, **2022**

1 *I* \cdot *N* \cdot *N* \cdot *N* \cdot *P* \cdot *C D z i z 2020j.*

Figure 6. Molecular structure of 16 [\[68\]](#page-40-2). Hydrogen atoms have been omitted, CF_3 groups of hfac are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1998878. transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1998878.

transparent for clarity. The cif has been retrieved from C as been retrieved from C

Figure 7. Molecular structure of 17 [\[68\]](#page-40-2). Hydrogen atoms have been omitted, CF_3 groups of hfac are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1998879. transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1998879.

The co-crystallization of two 3d β-diketonates with metals in different oxidation states The co-crystallization of two 3d β-diketonates with metals in different oxidation resulted in $[Fe^{III}(acac)_3][Mn^{II}(hfac)_2]$ (**18**) and $[Ni^{II}(hfac)_2][Fe^{III}(acac)_3][Ni^{II}(hfac)_2]$ (**19**) (Scheme [8\)](#page-8-1) [\[69\]](#page-40-3). Similarly to heterometallic complexes **13**–**17**, fluorinated β-diketonate (Scheme 8) [69]. Similarly to heterometallic complexes **13**–**17**, fluorinated β-diketonate was coordinated to a metal ion with the lowest oxidation number. In the structures of **18**, **19** the oxygens of non-fluorinated β-diketonate were bridging atoms, which filled the **19** the oxygens of non-fluorinated β-diketonate were bridging atoms, which filled the co-coordination sphere of Mn(II) or Ni(II) ions coordinating the hfac (Figures [8](#page-8-2) and [9\)](#page-9-0). Authors have postulated that the transition metal(II) center participating in bridging interactions have postulated that the transition metal(II) center participating in bridging interactions with oxygen atoms of neighboring unit(s) should be highly Lewis acidic because of the chatter, generate of helphoenig analysis of health congrup series when coefficients of the metal(III) counterpart should have sterically uncongested ligands with electron-donating substituents provoking diketonate oxygen atoms' involvement in bridging interactions with the M(II) center. was contributed to a metal in the coordinate complexes to *17, information p-anchorate*

$$
\text{Fe}(acac)_3 + \text{Mn}(\text{hfac})_2 \longrightarrow \{ [\text{Fe}^{\text{III}}(acac)_3] [\text{Mn}^{\text{II}}(\text{hfac})_2] \}
$$

$$
\text{Fe}(acac)_3 + 2\text{Fe(hfac)}_2 \longrightarrow \{[\text{Ni}^{\text{II}}(\text{hfac})_3][\text{Fe}^{\text{III}}(acac)_3][\text{Ni}^{\text{II}}(\text{hfac})_2]\}
$$
\n
$$
\text{19}
$$

Scheme 8. Synthesis of polynuclear M(II)/Fe(III) β-diketonates. **Scheme 8.** Synthesis of polynuclear M(II)/Fe(III) β-diketonates. **Scheme 8.** Synthesis of polynuclear M(II)/Fe(III) β-diketonates.

Figure 8. Molecular structure of 18 [\[69\]](#page-40-3). Hydrogen atoms have been omitted, CF_3 groups of hfac are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1040552.

Figure 9. Molecular structure of 19 [\[69\]](#page-40-3). Hydrogen atoms have been omitted, CF₃ groups of hfac are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1040553.

The solid-state reaction of precursors containing metals of different oxidation states led to heteroleptic [Bi(III)-M(II)] (20-22) complexes, where M(II) was a 3d transition metal ion (Scheme [9\)](#page-9-1) [\[70\]](#page-40-4). In this case, the bridging oxygen atoms between metal centers were from the hfac ligands of the anionic tris-diketonate fragment (Figure [10\)](#page-9-2). The solid-state reaction of precursors containing metals of lon (benefit, b) ^[Did]. In this case, are bridging oxygen atoms between metal

$$
\begin{array}{rcl}\n\text{Bi(hfac)}_3 + \text{M(thd)}_2 & \longrightarrow & \{ \text{[Bi}^{\text{III}}(\text{thd})_2 \}^+ [\text{M}^{\text{II}}(\text{hfac})_3]^-\} \\
& & 20: \text{M} = \text{Mn [70];} \\
& 21: \text{M} = \text{Co [70];} \\
& 22: \text{M} = \text{Ni [70].}\n\end{array}
$$

Scheme 9. Synthesis of heteroleptic [Bi(III)-M(II)] complexes (20–22).

Figure 10. Molecular structure of **21** [\[70\]](#page-40-4). Hydrogen atoms have been omitted, CF³ groups of hfac are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1475305.

Dikarev et al. described the first example of the heterometallic [Na-Cu] complex (**22**) resulting from two different fluorinated β-diketonates [\[64\]](#page-39-15). The reaction of unsolvated [Cu(L¹⁴)] and Na(hfac) gave a heterometallic β-diketonate [Na₂Cu₂(pfbm)₄(hfac)₂] (22)

(Scheme [10\)](#page-10-0). The discrete structure of the solvent-free [Na-Cu] environment consisted of a dimeric $[Na_2(hfac)_2]$ unit surrounded by two Cu(pfbm)₂ fragments (Figure [11\)](#page-10-1). β diketonates adopted the chelating-bridging mode between Cu and Na by coordinating through one oxygen atom in the case of F-aryl-containing ligands and two oxygen atoms in the case of hfac anions. The overall distorted square antiprismatic coordination environment for Na was formed by the five primary Na-O interactions (av. 2.41 Å) and three secondary Na–F contacts (av. 2.60 Å).

 $\overline{}$ resulting fluorinated $\overline{}$ fluorinated $\overline{}$. The reaction of unsolvated by unsolvate

resulting from two different fluorinated \hat{R} different fluorinates \hat{R} . The reaction of unsolvated \hat{R}

Scheme 10. Synthesis of heterometallic [Na-Cu] complex (**22**). **Scheme 10.** Synthesis of heterometallic [Na-Cu] complex (**22**). **Scheme 10.** Synthesis of heterometallic [Na-Cu] complex (**22**).

Figure 11. Molecular structure of 22 [\[64\]](#page-39-15). Hydrogen atoms have been omitted, CF_3 groups of hfac are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1850164.

The method is not during the formation of polymphone trucking $[71, 72]$. The set with metal in ϵ is during the formation of polynomial in ϵ and ϵ is the co-crystalli-co-crystalli-co-crystalli-co-crystalli-co-crystalli-co-crystalli-co-crystalli-co-crystalli-co-crystalli-co-crystalli-co-crystal α \overline{R} - \overline{R} - \overline{R} (Figure 12). The the is the unique structure hecause it contains a steri- $\frac{1}{2}$, b unthesis of discrete beterometallic complexes. If this does not bannen, then coordination $[Pb-Cu]$ polymers are formed in the absence of methoxy substituents at the β-dicarbonyl re Cu] polymers are formed in the absence of methoxy substituents at the β-dicarbonyl
fragment [73-74] In polymeric fluorinated [Pb-Cu] structures 23–26, the square planar chelate Cu(dik)₂ built up an octahedral coordination environment due to the bridging The methoxy substituent in thd, L^9 , L^{10} , participated in the additional coordina-tion with metal ions during the formation of polynuclear structures [\[71](#page-40-5)[–73\]](#page-40-6). The cozation of two different β-diketonates led to the discrete heterometallic complexes, e.g., crystallization of two different β-diketonates led to the discrete heterometallic complexes, e.g., [Pb-M] (23–26) (Figure [12\)](#page-11-0). The thd is the unique structure because it contains a steri-
 cally bulky group close to the β-dicarbonyl fragment that is a necessary condition for the synsynthesis of discrete heterometallic complexes. If this does not happen, then coordination $[{\bf P}_k, {\bf C}_k]$ ment [73,74]. In polymeric fluorinated [Pb-Cu] structures **23**–**26,** the square planar chelate fragment [\[73,](#page-40-6)[74\]](#page-40-7). In polymeric fluorinated [Pb-Cu] structures **23**–**26,** the square planar oxygen atoms of the ligands from $Pb(hfac)_2$ moieties.

Figure 12. Molecular structures of 23–26 [71–7[4\].](#page-40-7) Hydrogen atoms have been omitted, CF_3 groups are transparent for clarity. The cifs have been retrieved from CCDC. are transparent for clarity. The cifs have been retrieved from CCDC.

6. Lanthanide(III) *tetrakis***-β-Diketonates 6. Lanthanide(III)** *tetrakis***-**β**-Diketonates**

In general, the reaction of β-diketones with lanthanide(III) salts leads to the substitution of halide, carboxylate and nitrate anions of metals with a β-diketonate anion. The coordination of transition trivalent 4f-metals with two or three β-diketonate anions provided the discrete neutral complexes [M(dik)₃(coligand)₂] (Scheme [11\)](#page-11-1) [\[25](#page-38-7)[,29](#page-38-3)[,32](#page-38-11)[,33](#page-38-12)[,39](#page-38-13)[,75–](#page-40-8)[77\]](#page-40-9). However, the 77]. However, the metal ion was additionally coordinated to the solvent molecules or bimetal ion was additionally coordinated to the solvent molecules or bidentate ligands having
discussed in the next step, the next step, the solvent molecules or bidentate ligands having the donor heteroatoms (oxygen, nitrogen). At the next step, the metal(III) *tetrakis*- β -diketonates containing the anionic part of $[M(dik)₃]⁻$ or $[M(dik)₄]⁻$, were formed as a result of the βdiketonate anion addition to the central metal atom in neutral *tris*-β-diketonates.

 M^+ - alkali metal ion

*Bi*heterometallic *tetrakis*-β-diketonates can form both the discrete or polymer struc-*Bi*heterometallic *tetrakis*-β-diketonates can form both the discrete or polymer structures depending on the nature of the substituents in β-diketonate and coligands [\[78–](#page-40-10)[85\]](#page-40-11). In the In the polymer chains **27**–**30**, alkali metal ions, including sodium, potassium and cesium, polymer chains **27**–**30**, alkali metal ions, including sodium, potassium and cesium, acted as

linkers between two adjacent *tetrakis*-β-diketonate fragments (Figure [13\)](#page-12-0) [\[78–](#page-40-10)[81\]](#page-40-12). In this case, both the oxygen and fluorine atoms of the β -diketonate were coordinated to alkali metals. A polyether molecule can be used as a polydentate coligand to fill the coordination environment of the alkali metal ion (**28**) [\[80\]](#page-40-13). The complexes Na[Ln(hfac)4] (**27**) were found to be highly volatile and stable in the gas phase while preserving the heterometallic fragment. The decay of heterometallic [Ln-Na] complexes (**27**) under argon atmosphere yielded the phase-pure NaLnF⁴ [\[78\]](#page-40-10). Varying the decay temperature, the formation of one of the NaLnF₄ allotropes can be controlled [\[78\]](#page-40-10). Another approach was to use two precursors [Na(hfac)(tetraglyme)] and [Ln(hfac)₃(diglyme)] together in sol-gel synthesis of the hexagonal phase of β-NaYF₄: Yb³⁺, Er³⁺ at an elevated temperature [\[84\]](#page-40-14).

30: dik = hfac, Ln = Dy (CCDC 954107), Er (CCDC 954109).

Figure 13. Molecular structures of Ln(III) *tetrakis*-diketonates 27–30 [\[78–](#page-40-10)[81\]](#page-40-12). Hydrogen atoms and some CF_3 groups have been omitted for clarity. The cifs has been retrieved from CCDC.

Diketone **HL⁷** with a pyrazole substituent formed the crystal packing of the heterometallic [Eu-Cs] complex (**31**) due to the coordination of nitrogen atoms of the hetero-cyclic system with cesium ions (Figure [14\)](#page-13-0) [\[82\]](#page-40-15). The coordination environment of cesium(I) ions is saturated by nitrogen atoms of pyrazole, fluorine atoms of CF₃ groups and bridging oxygen atoms of diketonate anions. The contact length of Cs \dots F is ~3.21–3.44 Å, which is comparable with the bond length of Cs \ldots N equal to ~3.17–3.20 Å.

Figure 14. Structure X-ray structure of one-dimensional chain in 31 [82][. Hy](#page-40-15)drogen atoms have been omitted, some diketonate ligands and CF_3 groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 922987.

 T_{tot} complexation of neglecting in the presence of solid in the pr The complexation of ntfa with europium(III) chloride in the presence of sodium alkali in methanol gave the discrete [Eu-Na] *tetrakis*-β-diketonate (32) containing an acetyl naphthalene (Scheme 12) [[83\].](#page-13-1) [The](#page-40-16) aromatic ketone in the complex 32 indicates a side retro-Claisen reaction involving ntfa. Therefore, coligand contribution led to the change from polymer to discrete *tetrakis*-β-diketonates (Figure 1[5\).](#page-14-0) Heterometallic complex 32 had good luminescent properties, exhibiting a phosphorescence time equal to 0.595 ms with a quantum yield of 47.5%. Photophysical parameters were measured under excitation at a wavelength of 370 nm in CH_2Cl_2 solution [\[83\]](#page-40-16).

Scheme 12. Synthesis of *tetrakis*-β-diketonate [Eu-Na] (**32**).

Figure 15. Molecular structure of **32** [83]. Hydrogen atoms have been omitted, some ligands groups **Figure 15.** Molecular structure of **32** [\[83\]](#page-40-16). Hydrogen atoms have been omitted, some ligands groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 2071833. are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 2071833.

of alkali metal ions, thereby acting as coligand in heterometallic complex 33 (Figure [16\)](#page-14-1) [\[85\]](#page-40-11). Tetrakis- β -diketonate [Eu-Na] (33) based on tta exhibited the high phosphorescence quantum yield of 71% and the afterglow time of 0.84 ms upon excitation at a wavelength of 365 nm. Succinimide can replace one of the water molecules from the coordination environment

are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 2013280. are transparent for clarity. The cif has been retrieved from \mathcal{L}

The functionalized lithium β-diketonate **LiL¹⁰** reacted with lanthanide(III) ions to form heterometallic compounds of various structures (Scheme [13\)](#page-15-0) [\[62](#page-39-13)[,86–](#page-40-17)[89\]](#page-40-18). An extra functional group in the ligand saturated the metal ion coordination sphere with no additional coligands. Such homoleptic $\text{[Ln}_2\text{L}_6\text{]}$ complexes (34) were obtained in the case of Ln(III) ions Ln(III) ions with the largest radius. However, the reaction of lithium diketonate **LiL¹⁰** with with the largest radius. However, the reaction of lithium diketonate LiL^{10} with most of the **Figure 16.** Molecular structure of 33 [\[85\]](#page-40-11). Hydrogen atoms have been omitted, some ligand groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 2013280. The functionalized lithium β-di The functionalized lithium β-diketonate **LiL¹⁰** reacted with lanthanide(III) ions to

4f metals led to the discrete β-diketonates **36**–**38** of three types depending on the solvent used (Scheme [13\)](#page-15-0). The first type included "classical" *tetrakis*-β-diketonates **35**, in which four β-diketonate anions were coordinated to lanthanide(III) ion. The methoxy groups of the ligands participate in the additional coordination with the lithium ion, thereby providing the discrete structure of **35** (Figure [17\)](#page-15-1). The [Ln-Li] *tetrakis*-β-diketonates **35** were formed in acetonitrile media and the solvent molecule was also included in the crystal packing. Heterometallic complexes **35** were the first examples of lanthanide-lithium β-diketonates, which have been obtained and characterized by different spectral and crystallographic methods.

Scheme 13. Synthesis of lanthanide(III) complexes based on lithium β -diketonate (LiL¹⁰).

Figure 17. Molecular structure of **35** [87]. Hydrogen atoms, MeCN molecules have been omitted, **Figure 17.** Molecular structure of **35** [\[87\]](#page-40-19). Hydrogen atoms, MeCN molecules have been omitted, CF³ groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC numbers are 1973632 1973632 (Ln = Eu), 1973633 (Ln = Tb). (Ln = Eu), 1973633 (Ln = Tb).

Figure 17. Molecular structure of **35** [87]. Hydrogen atoms, MeCN molecules have been omitted, LiL¹⁰ (Scheme [13\)](#page-15-0). The solvent choice (methanol or ethanol) influenced the coligands at the lithium ion in heterometallic complexes 36 (where $Ln = Tb$, Dy, Eu) (Figure [18\)](#page-16-0). crystal packings. Complexes 36 (where $Ln = Tb$, Dy, Eu) exhibited mechanoluminescent
means tiss and ans of them. $[Dr, I, I]$ was found to be a single melocule meanst with an properties, and one of them, [Dy-Li], was found to be a single-molecule magnet with an energy barrier equal to 53 K diketonate **LiL¹⁰** (Scheme 13). The solvent choice (methanol or ethanol) influenced the co-The second and the third types of complexes included the compounds **36**, **37**, in The second and the third types of complexes included the compounds **36**, **37**, in which which the L_n(III) *tris*-β-diketonated to the initial little was complexed to the initial lithium **β-diffusion** β-d the Ln(III) *tris*-β-diketonate fragment was coordinated to the initial lithium β-diketonate However, the main distinctive characteristic of these close structures was their different energy barrier equal to 53 K.

 $\frac{1}{2}$ **Figure 18. Figure 18.** $\frac{1}{2}$ (*Digital* $\frac{1}{2}$ **Digital** $\frac{1}{2}$ **Compared** atoms $\frac{1}{2}$ **CODC** CF_3 groups are transparent for clarity. The cif has been retrieved from CCDC. **Figure 18.** Molecular structures of **36** and **37** (**dik** = **L ¹⁰**) [\[86](#page-40-17)[,88\]](#page-40-20). Hydrogen atoms have been omitted,

praseodynium(III) nitrate (Scheme [14\)](#page-16-1) [\[86\]](#page-40-17). Its structure contained a ten-coordinated dymium(III) nitrate (Scheme 14) [86]. Its structure contained a ten-coordinated praseodymium(III) ion and two lithium ions in the coordination with four β-diketonate anions praseodymium(III) ion and two lithium ions in the coordination with four β-diketonate anions (Figure [19\)](#page-16-2). One of the ligands from the *tris*-β-diketonate fragment was bound with the lithium atom of the initial molecule LiL¹⁰. The coordination environment $arctan$ are minimized on the minimizing model and r . The economical environment around the praseodymium(III) ion was saturated by nitrate and three β -diketonate anions, one methoxy group and the bridging oxygen atom of the LiL^{10} β -dicarbonyl fragment. In addition, an unusual structure of complex 38 included the second lithium ion, which was coordinated to methoxy groups and oxygen atoms from the β -diketonate The exception was the trimetallic complex **38** formed by **LiL¹⁰** reaction with fragment (Figure [19\)](#page-16-2).

$$
\text{TbCl}_3 \cdot 6\text{H}_2\text{O} + \text{LiL}^{11} \xrightarrow{\text{MeOH}} [(\text{TbL}^{11}_3)(\text{LiL}^{11})(\text{MeOH})] \times 39
$$

Scheme 14. Synthesis of discrete [Tb-Li] diketonate 39.

Figure 19. Molecular structure of 38 [86]. Hydrogen atoms have been omitted, CF₃ groups and one $\frac{1}{2}$ ligand molecule are transparent for clarity. The cif has been retrieved from CCDC. CCDC Figure 19. Molecular structure of 38 [\[86\]](#page-40-17). Hydrogen atoms have been omitted, CF₃ groups and one ligand molecule are transparent for clarity. The cif has been retrieved from CCDC. CCDC numbers in 2001400. is 2031103.

Increasing the length of the fluoroalkyl substituent from CF_3 to C_2F_5 in acetal-containing β-diketonates **LiL¹¹** did not change the composition and structure of the resulting heterometallic β-diketonate **39** (Scheme [14,](#page-16-1) Figure [20\)](#page-17-0) [\[89\]](#page-40-18). However, the phosphorescence lifetime decreased for the obtained [Tb-Li] diketonate **39** compared with the trifluoromethyl analog.

lifetime decreased for the obtained [Tb-Li] diketonate **39** compared with the trifluorome-

Figure 20. Molecular structure of 39 [\[89\]](#page-40-18). Hydrogen atoms have been omitted, C_2F_5 groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC numbers is 2011088.

terbium(III) chloride to afford the [Tb-M] $(M = Na, K, Cs)$ complexes $40-42$ (Scheme [15\)](#page-17-1) [\[62\]](#page-39-13). In all cases, the lanthanide(III) *tetrakis*- β -diketonates 40–42 were formed. Complex [Tb-Na] 40 had a discrete structure, while [Tb-K] 41 and [Tb-Cs] 42 were coordination polymers $\frac{1}{2}$ had a discrete structure, which $\frac{1}{2}$ and $\frac{1}{2}$ were contributed by $\frac{1}{2}$ were The acetal-containing β-diketonates of other alkali metals (Na, K, Cs) reacted with The acetal-containing β-diketonates of other alkali metals (Na, K, Cs) reacted with (Figure 21).

$$
NaL^{10} + TbX_3 \cdot 6H_2O \xrightarrow{MeOH} [(NaTbL^{10}q)(MeOH)(H_2O)]
$$

\n40
\n
$$
KL^{10} + TbX_3 \cdot 6H_2O \xrightarrow{MeOH} [(KTbL^{10}q)(H_2O)]_n
$$

\n41
\n
$$
CsL^{10} + TbX_3 \cdot 6H_2O \xrightarrow{MeOH} [CsTbL^{10}q]_n
$$

\n42
\n42

Scheme Scheme 15. 15. Synthesis of terbium(III) *tetrakis*-β-diketonates **40**–**42**. Synthesis of terbium(III) *tetrakis*-β-diketonates **40**–**42**.

Figure 21. Molecular structures of 40-42 [\[62\]](#page-39-13). Hydrogen atoms have been omitted, some CF₃ groups are transparent for clarity. The cif has been retrieved from CCDC. are transparent for clarity. The cif has been retrieved from CCDC. $\frac{1}{2}$ retrieved for clarited for $\frac{1}{2}$ $\frac{1}{2}$. The contractions from C

7. Heteronuclear Complexes with Isolated Metal Centers 7. Heteronuclear Complexes with Isolated Metal Centers 7. Heteronuclear Complexes with Isolated Metal Centers

This part describes complexes in which metal centers are not connected by bridging oxygen atoms of both β-diketonates and other coligands. oxygen atoms of both β-diketonates and other coligands. oxygen atoms of both β-diketonates and other coligands.

The co-crystallization of equimolar amounts of $Dy(III)$ and $Cu(II)$ β -diketonates af-forded the heterometallic complex 43 in a good yield (Scheme 1[6\) \[9](#page-41-0)0]. Coligands' exchange around metal ions did not occur in this case (Figure [22\)](#page-19-0). The Cu ... Dy had the smallest distance between metal centers in the crystal lattice equal to 5.874 Å. Unlike the original [Dy(hfac)₃•2H₂O] complex, a synthesized [Dy-Cu] system (43) consisting of mixed β -diketonate ligands exhibited the properties of a molecular magnet with an energy barrier value equal to 55.3 K [90]. value equal to 55.3 K [90]. value equal to 55.3 K [\[90\]](#page-41-0).

$$
Dy(hfac)32H2O + Cu(acac)2 \xrightarrow{CHCl3/MeOH} [Dy(hfac)3Cu(acac)2(H2O)2]
$$

Scheme 16. Synthesis of [Dy-Cu] β-diketonate **43**.

Figure 22. A crystal packing fragment of **43** [90]. Hydrogen atoms have been omitted, some ligand **Figure 22.** A crystal packing fragment of **43** [\[90\]](#page-41-0). Hydrogen atoms have been omitted, some ligand groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1938913. groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1938913.

The solid-state redox reaction between tin(II) and 3d metal β -diketonates proceeded with the ligand exchange around the metal centers to give the heterometallic compounds **444–466** (Scheme 17) **17** (Scheme 17) **17** (Scheme 17) **17** (Scheme 17) **17** (Scheme homoleptic of two homoleptic of two homoleptic or $\frac{1}{2}$ 44–46 (Scheme [17\)](#page-19-1) [\[91\]](#page-41-1). The obtained bimetallic complexes consisted of two homoleptic *tris*-β-diketonate fragments forming an ion pair (Figure [23\)](#page-19-2). *tris*-β-diketonate fragments forming an ion pair (Figure 23). **44**–**46** (Scheme 17) [91]. The obtained bimetallic complexes consisted of two homoleptic

$$
2M(thd)3 + 2Sn(hfac)2 \longrightarrow \{[SnIV(thd)3]+[MII(hfac)3]+\}M = Mn (44), Fe (45), Co (46)Barry, M.C. et al. (2018)
$$

Scheme 17. Synthesis of discrete [Sn(IV)-M(II)] complexes (**Scheme 17.** Synthesis of discrete [Sn(IV)-M(II)] complexes **44–46** (**44–46**).) [\[91\]](#page-41-1).

Figure 23. Molecular structure of **45** [91]. [Hy](#page-41-1)drogen atoms have been omitted, CF₃ groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC numbers is 1811494.

Copper(II) β-diketonate reacted with tin(II) alkoxide to give the six-nuclear [Sn-Cu] complex (47) (Scheme [18\)](#page-20-0) [\[92\]](#page-41-2). Similarly to bimetallic [Sn-M] complexes 44-46, an ion pair was formed as a result of the redox reaction. Copper(II) $tris$ - β -diketonate represented the anionic part, while the oxygen atoms of tin(II) alkoxides were coordinated to copper(I) ions in the cationic part (Figure [24\)](#page-20-1).

$$
\text{Cu(hfac)}_2 + \text{Sn(OBu}^t)_2 \longrightarrow \{ [\text{Cu}^1_3\text{Sn}_2(\text{OBu}^t)_6]^+ [\text{Cu}^{\text{II}}(\text{hfac})_3] \}
$$

parent for clarity. The cif has been retrieved from CCDC. CCDC numbers is 1811494.

parent for clarity. The cif has been retrieved from CCDC. CCDC numbers is 1811494.

Scheme 18. Synthesis of bimetallic [Sn-Cu] complex **47. Scheme 18.** Synthesis of bimetallic [Sn-Cu] complex **47**.. **Scheme 18.** Synthesis of bimetallic [Sn-Cu] complex **47.**

are transparent for clarity. The cif has been retrieved from CCDC. CCDC numbers is 1056284. **Figure 24.** Molecular structure of **47** [92]. Hydrogen atoms have been omitted, some ligand groups **Figure 24.** Molecular structure of **47** [\[92\]](#page-41-2). Hydrogen atoms have been omitted, some ligand groups

8. Binuclear Complexes Based on β**-Diketones with an Additional Chelating Cavity**

The fluorinated β -diketonates with 2,2'-bipyridinyl or phenanthrolinyl substituents (HL², HL³) were used in the two-step synthesis of bimetallic [Ir-Eu] complexes 48, 49 (Scheme [19\)](#page-21-0) [\[52](#page-39-17)[,53](#page-39-18)[,93](#page-41-3)[,94\]](#page-41-4). At the first stage, only the 2,2'-bipyridinyl fragment of the ligand coordinated the Ir(III) ion. Furthermore, three β-diketonate anions **48**, **49** with sterically congested iridium(III) fragments were involved in the coordination with lanthanide(III) ions. The resulting compounds **50**, **51** demonstrate the rare examples of seven-coordinated Ln(III) ions with the [LnO₆Cl] coordination environment (Figure [25\)](#page-21-1). The structural differences of coordination centers promoted the assembly of heteroleptic $Ln(III)$ - $Ir(III)$ (Ln = Eu, Nd, Yb, Er, Gd) complexes [\[52,](#page-39-17)[53](#page-39-18)[,93,](#page-41-3)[94\]](#page-41-4). As a result, heterometallic [Ir-Eu] compounds **50**, **51** with bpy fragments demonstrated the higher values of phosphorescence lifetimes (up to 440 μ s) compared with phen analogs. Replacing the CF₃ group with C₂F₅ substituent slightly shifted the triplet state in [Ir-Eu] complexes towards the higher side [\[52\]](#page-39-17). Therefore, the C_2F_5 -diketonate modified by bpy moiety represents an example of the efficient europium(III) sensitization through the excitation transferring from the Ir(III) to Eu(III) center $[52]$.

Scheme 19. Synthesis of bimetallic [Ir-Eu] complexes 48, 49.

Figure 25. Molecular structure of **50** [52]. [Hydr](#page-39-17)ogen atoms have been omitted, some ligand groups **Figure 25.** Molecular structure of **50** [52]. Hydrogen atoms have been omitted, some ligand groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 730200. are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 730200.

9. Metallocene-Containing Heterometallic β-Diketonates 9. Metallocene-Containing Heterometallic β**-Diketonates**

Metallocene derivatives are convenient molecules for the synthesis of heterometallic Metallocene derivatives are convenient molecules for the synthesis of heterometallic compounds with predictable composition and structure. One of the approaches is based compounds with predictable composition and structure. One of the approaches is based on the co-crystallization of the modified ferrocene with transition metal β-diketonates. For example, 1,2-di(4-pyridylthio)ferrocene in reaction with $C_1(hf_{2c})$ gave 1D coordination with $C_2(hf_{2c})$ example, 1,2-di(4-pyridylthio)ferrocene in reaction with Cu(hfac)₂ gave 1D coordination polymer [Cu-Fe] (**51**) (Figure [26\)](#page-22-0) [\[95\]](#page-41-5).

Figure 26. A fragment of polymeric structure of **51** [95]. Hydrogen atoms have been omitted, some **Figure 26.** A fragment of polymeric structure of **51** [\[95\]](#page-41-5). Hydrogen atoms have been omitted, some ligand groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number 1556476. is 1556476.

Unsubstituted metallocenes can also form the polynuclear structures. Cobalt (I) cy-Unsubstituted metallocenes can also form the polynuclear structures. Cobalt (I) cyclopentadienyl (Cp2Co), acting as a cation in heterometallic Ln(III) *tetrakis*-β-diketonates, clopentadienyl (Cp2Co), acting as a cation in heterometallic Ln(III) *tetrakis*-β-diketonates, afforded a complex **53** with uncoordinated counterions (Figure 27) [96]. The formation of afforded a complex **53** with uncoordinated counterions (Figure [27\)](#page-22-1) [\[96\]](#page-41-6). The formation of a a similar compound as a by-product was a by-product was observed during the reaction between a binusimilar compound as a by-product was observed during the reaction between a binuclear
details and $\frac{1}{2}$ in $\frac{1}{$ lanthanide complex [Ln₂(hfac)₆(bptz)] (**52**) (where bptz–3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) and Cp₂Co (Scheme [20\)](#page-23-0).

Figure 27. Molecular structure of **53** [96]. Hydrogen atoms have been omitted, some ligands groups **Figure 27.** Molecular structure of **53** [\[96\]](#page-41-6). Hydrogen atoms have been omitted, some ligands groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1811780. are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1811780.

are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1811780.

 $Dy_2(hfac)_6(hptz)$

Scheme 20. Reaction of Dy_2 (hfac)₆(bptz) with Cp_2Co .

The β-diketones **HL¹⁵** reacted with Ln(III) chloride in the presence of triethylamine In methanol at room temperature to yield the clusters **54** containing four 4f metal ions decorated with ferrocene rings (Scheme [21\)](#page-23-1) [\[97\]](#page-41-7). The organic base promoted the deprotonation of methanol and water molecules followed by the formation of a tetranuclear lanthanide(III) framework due to methanolate and hydroxide anions, which act as *O-*bridging ligands (Figure [28\)](#page-23-2). non of methanol and water molecules followed by the formation of a tetranuclear

Scheme 21. Reaction of β-diketones **HL**¹⁵ with Ln(III) chloride [\[98\]](#page-41-8).

Figure 28. Molecular structure of **54** [\[97\]](#page-41-7). Hydrogen atoms have been omitted, C_2F_5 groups are parent for clarity. The cif has been retrieved from CCDC. CCDC number is 984498. transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 984498.

The reaction of diketone HL^{16} with aluminum(III) sulfate in methanol in the presence of aqueous ammonia resulted in the aluminum *tris*-β-diketonate 55 in 32% yield (Scheme [22\)](#page-24-0) (Figure [29\)](#page-24-1) [\[99\]](#page-41-9). The cytotoxicity of complex **55** against the human HeLa neoplastic cells was investigated: it was about 5 times less cytotoxic than the neutral diketone and approximately 50 times less toxic compared with a reference drug cisplatin.

parent for clarity. The cif has been retrieved from CCDC. CCDC number is 984498.

Scheme Scheme 22. 22. Synthesis of *tris*-β-diketonate [Al-Fe] **55.** Synthesis of *tris*-β-diketonate [Al-Fe] **55**.

Figure 29. Molecular structure of 55 [\[99\]](#page-41-9). Hydrogen atoms have been omitted, CF₃ groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 877638.

The heterometallic [Cu-Fe] complex 56 was isolated in a good yield (45%) from the reaction of HL¹⁶ with [CuCl(PPh₃)] in the presence of potassium *tert*-butylate in ether at room temperature (Scheme 23) [\[98\]](#page-41-8). Complex 56 showed the irreversible oxidation of Cu(I) centers to Cu(II) under anaerobic electrochemical conditions accompanied by the loss of PPh₃ coligands and the formation of *bis*-diketonate $\left[Cu(L^{16})_2 \right]$.

The synthesis of [Rh-Fe] complexes **59** included several stages with the step-by-step **Scheme 23.** Synthesis of heterometallic [Cu-Fe] complex **56. Scheme 23.** Synthesis of heterometallic [Cu-Fe] complex **56**.

The synthesis of [Rh-Fe] complexes 59 included several stages with the step-by-step
replacement of collinear de at the Bh(I) ion (Sebense 24) [100]. Comparing the 50 hours have replacement of coligands at the Rh(I) ion (Scheme [24\)](#page-25-0) [\[100\]](#page-41-10). Compounds 59 have been chown to provide the formation of $Rb(1)$ active centers on the surfaces for before \mathbf{r} replacement of colligands at the Rh(I) ion (Scheme 24) $\frac{1}{2}$ [100]. Compounds 59° have been $\frac{1}{2}$ have bee shown to provide the formation of Rh(I) active centers on the surfaces for heterogeneous shown to provide the formation of Rh(I) active centers on the surfaces for heterogeneous catalysis. Silanol groups grafted on a solid matrix primarily replaced the β-diketonate anions in [Rh-Fe] complexes.

Scheme 24. Synthesis of heterometallic [Rh-Fe] complex **59. Scheme 24.** Synthesis of heterometallic [Rh-Fe] complex **59**.

The oxidative addition of methyl iodide to the [Rh-Fe] compound **59** proceeded un-mild conditions to afford the Rh(III) complex **60** in 90% yield (Scheme [25,](#page-25-1) Figure [30\)](#page-25-2) [\[101\]](#page-41-11). Based on spectral data, the authors postulate that methyl-containing complex 60 and its according to the contract of the contract of the methyle containing complex of the negative exist in equilibrium with each other. However, since the ¹⁹F NMR spectra have not been registered, the transformations of the β -dicarbonyl framework accompanied by the isomers' formation can proceed as well. The oxidative addition of methyl iodide to the [Rh-Fe] compound **59** proceeded under The oxidative addition of methyl iodide to the [Rh-Fe] compound **59** proceeded unl he oxidative addition of methyl iodide to the [Kh-Fe] compound 59 proceeded under
the state of heterometric contract and the second in 1990 of Figure 30, Light spectra have not been registered, the \mathbf{F}

Scheme 25. Transformation of heterometallic [Rh-Fe] complex 59.

Figure 30. Molecular structure of **60** [\[101\]](#page-41-11). Hydrogen atoms have been omitted, CF₃ group is transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 646438.

Sodium carbonate reacted with [CpIr(hfac)Cl] (61) in methanol under normal conditions to give an unusual heterotrimetallic complex (62) (Scheme [26\)](#page-26-0) [\[102\]](#page-41-12). This transformation resulted in a hydroxycluster $[CpIr(III)]$ coordinating the fluorinated sodium β-diketonate and free hfac (Figure 31). diketonate and free h[fac](#page-26-1) (Figure 31). tions to give an unit of given to give an unit of the set of the set of the complex of the complex ϵ and ϵ a

Scheme 26. Synthesis of heterometallic [Ir-Na] complex **62. Scheme 26.** Synthesis of heterometallic [Ir-Na] complex **62**. **Scheme 26.** Synthesis of heterometallic [Ir-Na] complex **62.**

Figure 31. Molecular structure of 62 [1[02\]. H](#page-41-12)ydrogen atoms have been omitted for clarity. The cif has has been retrieved from CCDC. CCDC number is 1996249. has been retrieved from CCDC. CCDC number is 1996249. been retrieved from CCDC. CCDC number is 1996249.

10. Heteroleptic Complexes Involving β-Diketonates and Polytopic Coligands The trifluoromethyle **HL**
1¹ with distribution θ μ-different was used as θ is the substitution was used as a as a set of the substitution was used as a set of the substitution of the substitution of the substituti **10. Heteroleptic Complexes Involving β-Diketonates and Polytopic Coligands 10. Heteroleptic Complexes Involving** β**-Diketonates and Polytopic Coligands**

The trifluoromethyl β -diketone HL^1 with dithienylethene substituent was used as a ligand in the synthesis of heterometallic [Yb-Ru] complex 63 exhibiting the redox/optical control [of](#page-27-0) emission (Figure 32) [\[51\]](#page-39-5). The bimetallic complex 63 was formed due to the coordination of the tris- β -diketonate Yb(L^1)₃ fragment with the functionalized 2,2'-bipyridine containing a ruthenium(III) ion.

The Schiff base with two different coordination modes formed the heterometallic 3d-4f binuclear complexes **65** (Scheme [27\)](#page-27-1) [\[103,](#page-41-13)[104\]](#page-41-14). The lanthanide(III) ions had an [LnO8] environment, whereas 3d metals ions preferably coordinated with the less "hard" nitrogen centers (Figure [33\)](#page-28-0). The complexes with a combination of anisotropic Co(II) or Ni(II) ions with Tb(III) exhibited slow magnetic relaxation at low temperatures and, therefore, represented promising structures for single-molecular magnets' design [\[103\]](#page-41-13). On the other hand, the heterometallic complexes containing Zn(II) and Tb(III) or Eu(III) ions showed luminescent properties [\[104\]](#page-41-14). In this case, the replacement of the bridging acetate anion by 1-pyrenbutanoic acid (complex **66**, Figure [33\)](#page-28-0) reduced the phosphorescence lifetime.

Figure 32. Molecular structure of 63 [\[51\]](#page-39-5). Hydrogen atoms have been omitted, some ligand groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1959918. are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1959918.

Scheme 27. Synthesis of heterometallic 3d-4f binuclear complexes **65–66. Scheme 27.** Synthesis of heterometallic 3d-4f binuclear complexes **65–66**.

Figure 33. Molecular structure of 65, 66 (dik = hfac) [1[03,10](#page-41-13)[4\]. H](#page-41-14)ydrogen atoms have been omitted, some ligand groups are transparent for clarity. The cif has been retrieved from CCDC. some ligand groups are transparent for clarity. The cif has been retrieved from CCDC.

> The co-crystallization of copper(II) β-diketonate with palladium(II) bis-enaminoketonate led to the heterobimetallic [Cu-Pd] complex **67** [\[105\]](#page-41-15). The bridging oxygen atoms of bisenaminoketone between palladium(II) and copper(II) ions formed a discrete binuclear framework of the complex **67** (Figure [34\)](#page-28-1). framework of the complex **67** (Figure 34).

Figure 34. Molecular structure of **67** [105]. [The](#page-41-15) cif has been retrieved from CCDC. CCDC number is **Figure 34.** Molecular structure of **67** [105]. The cif has been retrieved from CCDC. CCDC number 1961116. is 1961116.

Due to deprotonation of the hydroxy group, 8-hydroxyquinoline acted as a bridging Due to deprotonation of the hydroxy group, 8-hydroxyquinoline acted as a bridging ligand in the reaction with transition metal β -diketonates resulting in the homobi ligand in the reaction with transition metal β -diketonates resulting in the homobimetallic complexes (Scheme [28\)](#page-29-0) [\[106](#page-41-16)[–108\]](#page-41-17). However, in the presence of a chromium(III) ion a complexes (Scheme 28) [106–108]. However, in the presence of a chromium(III) ion a trimetallic complex **68** was formed, in which a bridging phenolate anion connected the trimetallic complex **68** was formed, in which a bridging phenolate anion connected the different metal ions (Figure 35) [108]. different metal ions (Figure [35](#page-29-1)) [\[108](#page-41-17)].

Scheme 28. Synthesis of heterometallic [Ln-Cr] complexes 68.

Figure 35. Molecular structure of 68 [\[108\]](#page-41-17). CF₃ groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 812496. retrieved from CCDC. CCDC number is 812496.

Heterometallic polymer complexes **69**–**71** including Eu(III) *tris*-β-diketonate frag-were synthesized based on the bidentate *O,N*-ligand–4-pyridyldiphenylphosphinoxide ments were synthesized based on the bidentate *O,N*-ligand–4-pyridyldiphe-(Scheme [29\)](#page-30-0) [\[109\]](#page-41-18). Polymer chains of **69**–**71** were formed through the coordination of phosphinoxide oxygen atom with Eu(hfac)₃, whereas the nitrogen atom of the pyridine core $\frac{1}{2}$ bound the Pd(II), Zn(II) or Al(III) centers. Among the synthesized luminescent bimetallic μ of the pyridine complex $\left[\text{Eu}\right]$, μ 11.70 or historic the synthesized the synthesize polymers, complex [Eu-Al] **70** exhibited the highest value of the phosphorescence quantum viold oqual to 72% p_{max} Heterometallic polymer complexes **69**–**71** including Eu(III) *tris*-β-diketonate fragments yield equal to 72%.

Scheme 29. Synthesis of polymers, containing Eu(III) and 3d metal ions. **Scheme 29.** Synthesis of polymers, containing Eu(III) and 3d metal ions.

nitronyl nitroxyls gave the heterometallic complexes 72–75 [\[110](#page-41-19)[–112\]](#page-41-20). The coordination of 3d β -diketonate with the nitroxyl radical was accompanied by the Ln(III) tris- β -diketonate transformation into the corresponding Ln(III) *tetrakis*-β-[diket](#page-41-19)[ona](#page-41-20)te anion (Figure [36\)](#page-30-1) [110–112]. The simultaneous addition of 3d and 4f β-diketonate hydrates to the reaction with

75: dik = hfac (CCDC 1872837).

groups are transparent for clarity. The cif has been retrieved from CCDC [\[110–](#page-41-19)[112\]](#page-41-20). **Figure 36.** The examples of 3d/4f complexes containing Ln(III) *tetrakis*-β-diketonate fragments. CF³

In most cases, the co-crystallization of 3d and 4f β-diketonates proceeded in the presence of the aza-heteroaryl-substituted nitronyl nitroxyls to provide the additional coordination centers with metal ions (Figure [37\)](#page-31-0) [\[113–](#page-42-0)[119\]](#page-42-1). The Ln(III) center predominantly formed an [LnO₈] environment due to both the β-diketonate anions and nitroxyl oxygen

atoms. In turn, 3d metal *bis*-diketonates were coordinated by either two nitrogen atoms of the heterocyclic substituents in a ligand or a nitroxyl oxygen atom and aza-heterocycle.

Figure 37. (**a**)The examples of 3d/4f complexes containing Ln(III) *tris*-β-diketonate fragments. CF³ groups are transparent for completive community. The examples of 3d/_{4f} μ the examples of 3d/4f μ groups are transparent for clarity. The cif has been retrieved from CCDC. (**b**) The examples of 3d/4f complexes containing Ln(III) *tris*-β-diketonate fragments. CF₃ groups are transparent for clarity. The **11. Heterometallic Complex Synthesis Based on hfac Transformations** cif has been retrieved from CCDC [\[113–](#page-42-0)[119\]](#page-42-1).**Figure 37.** (a)The examples of 3d/4f complexes containing Ln(III) *tris*-β-diketonate fragments. CF₃ groups are transparent for clarity. The cif has been retrieved from CCDC. (b) The examples of 3d/4f complexes contai

11. Heterometallic Complex Synthesis Based on hfac Transformations

In general, the synthesis of mono- and polynuclear β-diketonates is realized under basic conditions to facilitate the coordination with metal ions via deprotonation of the initial βdicarbonyl compounds. Along with this, in some cases the base action provokes the β-diketone participation in the hydration process, retro-Claisen reaction or template transformations to form the metal complexes including tfa or ttpt as coligands [\[81,](#page-40-12)[102,](#page-41-12)[120–](#page-42-2)[130\]](#page-42-3).

A strong base used in the formation of a β-diketonate anion caused the destruction or transformation of the initial β-diketone. In work $[126]$, the deprotonation with sodium hydroxide resulted in two possible routes of the retro-Claisen reaction (Scheme [30\)](#page-32-0). Surprisingly, in the presence of two different carboxylates, a tetranuclear [Eu-Na] complex (**84**) was formed, including the β-diketonate anions and *tris*(3,5-dimethyl-1-pyrazolyl)methane (tpm) (Figure [38\)](#page-32-1). The main phosphorescence characteristics were determined for the complex **84**: the observed lifetime was 0.68 ms with a quantum yield of 39% and quantum efficiency equal to 58% [\[126\]](#page-42-4).

Scheme 30. Synthesis and proposed mechanism of heterometallic [Eu-Na] complex (84) formation.

Figure 38. Molecular structure of **84** [\[126\]](#page-42-4). Some ligand groups are transparent for clarity. The cif has has been retrieved from CCDC. CCDC number is 1008766. has been retrieved from CCDC. CCDC number is 1008766. been retrieved from CCDC. CCDC number is 1008766.

The synthesis of heterometallic [Ni-Ln] complexes (**83**–**87**) included the two steps: Schiff base interaction with nickel(II) nitrate followed by the $Ln(hfac)$ addition (Scheme [31\)](#page-33-0) [\[127\]](#page-42-5). In that case, one fluorinated β -diketonate molecule from Ln(hfac)₃ underwent a retro-Claisen reaction to give the [Ni-Ln] complexes (<mark>85–89</mark>) with the trifluoroacetate anion as coligand (Figure [39\)](#page-33-1).

Scheme 31. Synthesis of heterometallic [Ln-Ni] complexes **85**–**89. Scheme 31.** Synthesis of heterometallic [Ln-Ni] complexes **85**–**89** [\[129\]](#page-42-6).

Figure 39. Molecular structure of 87 [\[127\]](#page-42-5). CF₃ groups are transparent for clarity. The cif has been addition, three hydroxyl oxygen atoms of two tpt and phen molecules formed the retrieved from CCDC. CCDC number is 1556429. retrieved from CCDC. CCDC number is 1556429.

crystallization with fluorinated β-diketonate [\[129\]](#page-42-6). In particular, the tetranuclear bimetallic complex **91** was obtained by the reaction of Cd(pymt)₂(phen)₂ (**90**) with Cu(hfac)₂ in acetonitrile (Scheme [32\)](#page-34-0) [\[129\]](#page-42-6). The heterometallic structure 91 was formed based on the ttpt derived from hfac. Cadmium(II) both coordinated the diketonate anion and built a heterometallic framework of 91 due to the bridging oxygen atoms of ttpt (Figure [40\)](#page-34-1). In addition, three hydroxyl oxygen atoms of two tpt and phen molecules formed the [CuO₃N₂] coordination environment of copper(II) ions. The nitrogen base, as an initial part of the complex, can further participate in the co-

Molecules **2022**, *27*, x FOR PEER REVIEW 42 of 51

Figure 40. The crystal structures of $\left[Cu_2(\text{phen})_2(\text{ttpt})_2 \text{Cd}_2(\text{hfac})_2 \right]$ (91) [\[129\]](#page-42-6). CF₃ groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 616292. ent for clarity. The cif has been retrieved from CCDC. CCDC number is 616292.

After the decomplexation of heteronuclear [Cu-Cd] complex 91, all hydroxyl groups of tris-CF₃-tetrahydropyran-2,4,6-triol were in the *cis*-configuration based on XRD data [\[129\]](#page-42-6). a condensation of trifluoroacetone enol with fluorinated copper diketonate (Scheme 33). Obviously, the triol formation led to the assembly of the tetranuclear [Cu-Cd] core, while the The proposed mechanism of pyran formation involves a retro-Claisen reaction followed by oxygen atoms of the hydroxyl groups in ligand acted as bridging atoms between metal ions. The other bases, including DMF, diethylformamide, formamide and sodium hydroxide, can also be used in the template reaction affording the ttpt. The proposed mechanism of pyran formation involves a retro-Claisen reaction followed by The proposed mechanism of pyran formation involves a retro-Claisen reaction followed by oxygen atoms of the hydroxyl groups in ligand acted as bridging atoms between metal ions.
The calculation have the hydroxyl groups in ligand acted as bridging atoms between metal ions.

The Hhfac cleavage accompanied by the trifluoroacetate formation proceeds easily under the action of tertiary amines at room temperature [\[131\]](#page-42-7). The reaction between Ln(hfac)₃ and 1,3-bis(dimethylamino)-2-propanol (bdmap) leads to heteronuclear [Pr-Cu] complexes **93**, **94** (Scheme [34\)](#page-35-1). If copper(II) methoxide is reacted with $Pr(hfac)$ ₃ instead of the corresponding acetate, trifluoroacetate and trifluoromethylated dioxane-diol (CF_3 -diol) are formed as coligands (Figure [41\)](#page-36-0). The CF_3 -diol is formed due to the condensation reaction of trifluoroacetone with β-diketonate from $Pr(hfac)$ ₃ (Scheme [35\)](#page-35-2). To prove the mechanism of heterometallic [Pr-Cu] complex (**93**) formation, the authors carried out the reaction of the copper(II) methoxide and Pr(hfac)₃ with trifluoroacetic acid and proposed trifluoroacetone in the presence of bdmapH (Scheme [34\)](#page-35-1).

Scheme 33. The proposed mechanism of pyran formation from Cu(hfac)₂.

 r_{v} $\text{C}\hat{\mathbf{u}}^{\text{II}}$ r_{VUVVV}

THF, r.t. $Pr(hfac)_{3}$ + Hbdmap + Htfa + Cu(OMe)₂ + CF₃C(O)Me - $[Pr-Cu]$ $\frac{1}{2}$ c, $\frac{1}{2}$ C $\frac{1}{3}$

Scheme 34. Synthesis of polynuclear Pr(III) complexes via Hhfac transformations.

Scheme 35. Proposed mechanism for trifluoromethylated dioxane-diol formation. **Scheme 35.** Proposed mechanism for trifluoromethylated dioxane-diol formation.

Figure 41. Crystal structure of $[Pr(hfac)_2(CF_3-diol)Cu(Hbdmap)_2(tfa)]$ (93) [\[131\]](#page-42-7). CF₃ groups are transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1232922. transparent for clarity. The cif has been retrieved from CCDC. CCDC number is 1232922.

12. Conclusions

of procedured trifluorometallic structures. The specific chemical properties of the initial
the synthesis of heterometallic structures. The specific chemical properties of the initial **12. Conclusions** β-diketones should be considered when planning conditions for the synthesis of coordination compounds. In particular, the action of bases causes the β-diketones' destruction to form heteroleptic complexes. In this context, the directed synthesis of β-diketones containing additional coordination centers is a more attractive design strategy for the containing up to five different metal ions. Moreover, fluoring metal ions. Moreover, fluoring and $\frac{1}{2}$ -heterometallic complexes [\[51](#page-39-5)[–53,](#page-39-18)[93,](#page-41-3)[94,](#page-41-4)[132\]](#page-42-8). This area is promising for obtaining not only discrete structures but also 2D/3D organometallic polymers, which are of applied interest in the development of magnetic, fluorescent, catalytic or sensor devices. Therefore, using polydentate fluorinated β-diketonates allows the heterometallic composition of structurally $\frac{1}{\sqrt{1-\frac{1$ diverse coordination compounds to be varied, which, in turn, may give rise to advanced materials with interesting physicochemical properties. The described analysis of the literature demonstrates the wide scope of fluorinated $β$ -diketones in the synthesis of heterometallic compounds. In most cases, the available diketones with trifluoromethyl and perfluoropropyl substituents (hfac, fod) form polynuclear systems containing up to five different metal ions. Moreover, fluorinated β-diketones as coligands can be used in the design of the heterometallic architectures in combination with other organic polydentate molecules. However, the potential of coordination compounds containing two or more different metal ions has not been fully realized in terms of practice. This is mainly because of the limited number of transition metals used in

Author Contributions: Conceptualization, D.N.B., Y.S.K. and Y.V.B.; writing—original draft preparation, D.N.B., Y.O.E. and Y.S.K.; writing—review and editing, Y.O.E., Y.S.K., D.N.B. and Y.V.B.; visualization, Y.O.E.; supervision, V.I.S.; project administration, D.N.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was carried out in the framework of the basic theme of the Russian Academy of Sciences (state registration № AAAA-A19-119011290117-6).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

References

- 1. Jain, A. Multifunctional, heterometallic ruthenium-platinum complexes with medicinal applications. *Coord. Chem. Rev.* **2019**, *401*, 213067. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2019.213067)
- 2. Liu, J.; Xue, J.; Yang, G.-P.; Dang, L.-L.; Ma, L.-F.; Li, D.-S.; Wang, Y.-Y. Recent advances of functional heterometallic-organic framework (HMOF) materials: Design strategies and applications. *Coord. Chem. Rev.* **2022**, *463*, 214521. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2022.214521)
- 3. Liu, Y.-J.; Fang, W.-H.; Zhang, L.; Zhang, J. Recent advances in heterometallic polyoxotitanium clusters. *Coord. Chem. Rev.* **2020**, *404*, 213099. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2019.213099)
- 4. Wang, J.; Feng, M.; Akhtar, M.N.; Tong, M.-L. Recent advance in heterometallic nanomagnets based on TM_xLn_4 cubane subunits. *Coord. Chem. Rev.* **2019**, *387*, 129–153. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2019.02.008)
- 5. Nesterov, D.S.; Nesterova, O.V.; Pombeiro, A.J.L. Homo- and heterometallic polynuclear transition metal catalysts for alkane C-H bonds oxidative functionalization: Recent advances. *Coord. Chem. Rev.* **2018**, *355*, 199–222. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2017.08.009)
- 6. Dey, A.; Bag, P.; Kalita, P.; Chandrasekhar, V. Heterometallic CuII–LnIII complexes: Single molecule magnets and magnetic refrigerants. *Coord. Chem. Rev.* **2021**, *432*, 213707. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2020.213707)
- 7. Gil-Rubio, J.; Vicente, J. The coordination and supramolecular chemistry of gold metalloligands. *Chem. Eur. J.* **2018**, *24*, 32–46. [\[CrossRef\]](http://doi.org/10.1002/chem.201703574)
- 8. Nehra, K.; Dalal, A.; Hooda, A.; Bhagwan, S.; Saini, R.K.; Mari, B.; Kumar, S.; Singh, D. Lanthanides β-diketonate complexes as energy-efficient emissive materials: A review. *J. Mol. Struct.* **2022**, *1249*, 131531. [\[CrossRef\]](http://doi.org/10.1016/j.molstruc.2021.131531)
- 9. Clegg, J.K.; Li, F.; Lindoy, L.F. Oligo-β-diketones as versatile ligands for use in metallo-supramolecular chemistry: Recent progress and perspectives. *Coord. Chem. Rev.* **2022**, *455*, 214355. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2021.214355)
- 10. Condorelli, G.G.; Malandrino, G.; Fragalà, I.L. Engineering of molecular architectures of β-diketonate precursors toward new advanced materials. *Coord. Chem. Rev.* **2007**, *251*, 1931–1950. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2007.04.016)
- 11. Gromilov, S.A.; Baidina, I.A. Regularities of Crystal Structures of Cu(II) β-Diketonates. *J. Struct. Chem.* **2004**, *45*, 1031–1081. [\[CrossRef\]](http://doi.org/10.1007/s10947-005-0096-4)
- 12. Steinborn, D. The unique chemistry of platina-β-diketones. *Dalton Trans.* **2005**, *16*, 2664. [\[CrossRef\]](http://doi.org/10.1039/b506277m) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/16075102)
- 13. Zolotareva, N.V.; Semenov, V.V. β-Diketones and their derivatives in sol–gel processes. *Russ. Chem. Rev.* **2013**, *82*, 964–987. [\[CrossRef\]](http://doi.org/10.1070/RC2013v082n10ABEH004364)
- 14. Tanaka, K.; Chujo, Y. Recent progress of optical functional nanomaterials based on organoboron complexes with β-diketonate, ketoiminate and diiminate. *NPG Asia Mater.* **2015**, *7*, e223. [\[CrossRef\]](http://doi.org/10.1038/am.2015.118)
- 15. Malandrino, G.; Pellegrino, A.L.; Lucchini, G.; Speghini, A. Energy conversion systems: Molecular architecture engineering of metal precursors and their applications to vapor phase and solution routes. *J. Mater. Res.* **2020**, *35*, 2950–2966. [\[CrossRef\]](http://doi.org/10.1557/jmr.2020.253)
- 16. Fromm, K.M.; Gueneau, E.D. Structures of alkali and alkaline earth metal clusters with oxygen donor ligands. *Polyhedron* **2004**, *23*, 1479–1504. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2004.04.014)
- 17. Kaizaki, S. Coordination effects of nitroxide radicals in transition metal and lanthanide complexes. *Coord. Chem. Rev.* **2006**, *250*, 1804–1818. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2006.02.029)
- 18. Minkin, V.I.; Starikova, A.A. Molecular design of the valence tautomeric mixed-ligand adducts of CoII diketonates with redoxactive ligands. *Mendeleev Commun.* **2015**, *25*, 83–92. [\[CrossRef\]](http://doi.org/10.1016/j.mencom.2015.03.002)
- 19. Malandrino, G.; Fragalà, I.L. Lanthanide "second-generation" precursors for MOCVD applications: Effects of the metal ionic radius and polyether length on coordination spheres and mass-transport properties. *Coord. Chem. Rev.* **2006**, *250*, 1605–1620. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2006.03.017)
- 20. Vigato, P.A.; Peruzzo, V.; Tamburini, S. The evolution of β-diketone or β-diketophenol ligands and related complexes. *Coord. Chem. Rev.* **2009**, *253*, 1099–1201. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2008.07.013)
- 21. Aromí, G.; Gamez, P.; Reedijk, J. Poly beta-diketones: Prime ligands to generate supramolecular metalloclusters. *Coord. Chem. Rev.* **2008**, *252*, 964–989. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2007.07.008)
- 22. Pettinari, R.; Marchetti, F.; Di Nicola, C.; Pettinari, C. Half-sandwich metal complexes with β-diketone-like ligands and their anticancer activity. *Eur. J. Inorg. Chem.* **2018**, *2018*, 3521–3536. [\[CrossRef\]](http://doi.org/10.1002/ejic.201800400)
- 23. Kljun, J.; Turel, I. β-Diketones as scaffolds for anticancer drug design—From organic building blocks to natural products and metallodrug components. *Eur. J. Inorg. Chem.* **2017**, *2017*, 1655–1666. [\[CrossRef\]](http://doi.org/10.1002/ejic.201601314)
- 24. Brock, A.J.; Clegg, J.K.; Li, F.; Lindoy, L.F. Recent developments in the metallo-supramolecular chemistry of oligo-β-diketonato ligands. *Coord. Chem. Rev.* **2018**, *375*, 106–133. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2017.11.007)
- 25. Clegg, J.K.; Li, F.; Lindoy, L.F. Di-, tri- and oligometallic platforms: Versatile components for use in metallo-supramolecular chemistry. *Coord. Chem. Rev.* **2013**, *257*, 2536–2550. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2013.01.006)
- 26. Hansen, P.E. Structural studies of β-diketones and their implications on biological effects. *Pharmaceuticals* **2021**, *14*, 1189. [\[CrossRef\]](http://doi.org/10.3390/ph14111189)
- 27. Mishra, S.; Daniele, S. Metal–organic derivatives with fluorinated ligands as precursors for inorganic nanomaterials. *Chem. Rev.* **2015**, *115*, 8379–8448. [\[CrossRef\]](http://doi.org/10.1021/cr400637c)
- 28. Devi, A. 'Old Chemistries' for new applications: Perspectives for development of precursors for MOCVD and ALD applications. *Coord. Chem. Rev.* **2013**, *257*, 3332–3384. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2013.07.025)
- 29. Bünzli, J.-C.G. On the design of highly luminescent lanthanide complexes. *Coord. Chem. Rev.* **2015**, *293–294*, 19–47. [\[CrossRef\]](http://doi.org/10.1016/j.ccr.2014.10.013)
- 30. Binnemans, K. Lanthanide-based luminescent hybrid materials. *Chem. Rev.* **2009**, *109*, 4283–4374. [\[CrossRef\]](http://doi.org/10.1021/cr8003983)
- 31. Lin, L.-R.; Wang, X.; Wei, G.-N.; Tang, H.-H.; Zhang, H.; Ma, L.-H. Azobenzene-derived tris-β-diketonate lanthanide complexes: Reversible trans-to-cis photoisomerization in solution and solid state. *Dalton Trans.* **2016**, *45*, 14954–14964. [\[CrossRef\]](http://doi.org/10.1039/C6DT01310D) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/27549432)
- 32. Li, J.; Li, H.; Yan, P.; Chen, P.; Hou, G.; Li, G. Synthesis, Crystal Structure, and Luminescent Properties of 2-(2,2,2-Trifluoroethyl)-1 indone Lanthanide Complexes. *Inorg. Chem.* **2012**, *51*, 5050–5057. [\[CrossRef\]](http://doi.org/10.1021/ic202473b) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/22519622)
- 33. Ambili Raj, D.B.; Francis, B.; Reddy, M.L.P.; Butorac, R.R.; Lynch, V.M.; Cowley, A.H. Highly luminescent poly(methyl methacrylate)-incorporated europium complex supported by a carbazole-based fluorinated β-diketonate ligand and a 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene oxide co-ligand. *Inorg. Chem.* **2010**, *49*, 9055–9063. [\[CrossRef\]](http://doi.org/10.1021/ic1015324)
- 34. Francis, B.; Heering, C.; Freire, R.O.; Reddy, M.L.P.; Janiak, C. Achieving visible light excitation in carbazole based Eu3+–βdiketonate complexes via molecular engineering. *RSC Adv.* **2015**, *5*, 90720. [\[CrossRef\]](http://doi.org/10.1039/C5RA18819A)
- 35. Taydakov, I.V.; Kreshchenova, Y.M.; Dolotova, E.P. A convenient and practical synthesis of β-diketones bearing linear perfluorinated alkyl groups and a 2-thienyl moiety. *Beilstein J. Org. Chem.* **2018**, *14*, 3106–3111. [\[CrossRef\]](http://doi.org/10.3762/bjoc.14.290) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/30643588)
- 36. Gao, X.; Li, H.; Chen, P.; Sun, W.; Yan, P. A series of triple-stranded lanthanide(III) helicates: Syntheses, structures and single molecular magnets. *Polyhedron* **2017**, *126*, 1–7. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2017.01.011)
- 37. Gao, X.; Li, L.; Sun, W.; Chen, P. Crystallization and single molecule magnetic behavior of quadruple-stranded helicates: Tuning the anisotropic axes. *Dalton Trans.* **2020**, *49*, 2843–2849. [\[CrossRef\]](http://doi.org/10.1039/C9DT04483C)
- 38. Shi, J.; Hou, Y.; Chu, W.; Shi, X.; Gu, H.; Wang, B.; Sun, Z. Crystal structure and highly luminescent properties studies of bis-β-diketonate lanthanide complexes. *Inorg. Chem.* **2013**, *52*, 5013–5022. [\[CrossRef\]](http://doi.org/10.1021/ic302726z)
- 39. Tan, Y.B.; Yamada, M.; Katao, S.; Nishikawa, Y.; Asanoma, F.; Yuasa, J.; Kawai, T. Self-assembled tetranuclear Eu^{III} complexes with D² - and C2h symmetrical square scaffold. *Inorg. Chem.* **2020**, *59*, 12867–12875. [\[CrossRef\]](http://doi.org/10.1021/acs.inorgchem.0c01933)
- 40. Chen, P.; Li, H.; Sun, W.; Tang, J.; Zhang, L.; Yan, P. Crystallization of triple- and quadruple-stranded dinuclear bis-β-diketonate-Dy(III) helicates: Single molecule magnetic behavior. *CrystEngComm* **2015**, *17*, 7227–7232. [\[CrossRef\]](http://doi.org/10.1039/C5CE01067E)
- 41. Ma, H.; Zhou, Y.; Gao, T.; Li, H.; Yan, P. The role of ancillary ligand on regulating photoluminescence properties of Eu(III) helicates. *Inorg. Chim. Acta* **2021**, *525*, 120495. [\[CrossRef\]](http://doi.org/10.1016/j.ica.2021.120495)
- 42. Yao, Z.; Zhou, Y.; Gao, T.; Yan, P.; Li, H. Ancillary ligand modulated stereoselective selfassembly of triple-stranded Eu(III) helicate featuring circularly polarized luminescence. *RSC Adv.* **2021**, *11*, 10524–10531. [\[CrossRef\]](http://doi.org/10.1039/D1RA01583D) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/35423583)
- 43. Li, H.-F.; Yan, P.-F.; Chen, P.; Wang, Y.; Xu, H.; Li, G.-M. Highly luminescent bis-diketone lanthanide complexes with triplestranded dinuclear structure. *Dalton Trans.* **2012**, *41*, 900–907. [\[CrossRef\]](http://doi.org/10.1039/C1DT11496D) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/22086223)
- 44. Khamidullina, L.A.; Puzyrev, I.S.; Glukhareva, T.V.; Shatunova, S.A.; Slepukhin, P.A.; Dorovatovskii, P.V.; Zubavichus, Y.V.; Khrustalev, V.N.; Fan, Z.; Kalinina, T.A.; et al. Synthesis, characterization, DFT calculations, and biological activity of copper(II) complexes with 1,1,1-trifluoro-4-(2-methoxyphenyl)butan-2,4-dione. *J. Mol. Struct.* **2019**, *1176*, 515–528. [\[CrossRef\]](http://doi.org/10.1016/j.molstruc.2018.08.112)
- 45. Saloutin, V.I.; Burgart, Y.V.; Edilova, Y.O.; Slepukhin, P.A.; Kudyakova, Y.S.; Bazhin, D.N. Synthesis and structure of homoleptic copper complexes based on fluorinated functionalized 1,3-diketones. *Russ. Chem. Bull.* **2021**, *70*, 839–846. [\[CrossRef\]](http://doi.org/10.1007/s11172-021-3157-8)
- 46. Bazhin, D.N.; Kudyakova, Y.S.; Burgart, Y.V.; Saloutin, V.I. Intramolecular cyclization of lithium 4,4-dimethoxy-1- (perfluoroalkyl)pentane-1,3-dionates on treatment with boron trifluoride diethyl etherate. *Russ. Chem. Bull.* **2018**, *68*, 497–499. [\[CrossRef\]](http://doi.org/10.1007/s11172-018-2099-2)
- 47. Kudyakova, Y.S.; Onoprienko, A.Y.; Edilova, Y.O.; Burgart, Y.V.; Saloutin, V.I.; Bazhin, D.N. Effect of the nature of a fluorinated substituent on the synthesis of functionalized 1,3-diketones. *Russ. Chem. Bull.* **2021**, *70*, 745–752. [\[CrossRef\]](http://doi.org/10.1007/s11172-021-3145-z)
- 48. Slepukhin, P.A.; Boltacheva, N.S.; Filyakova, V.I.; Charushin, V.N. Synthesis and structure of lithium 3-trifluoromethyl-1,3 diketonates containing pyridyl substituents. *Russ. Chem. Bull.* **2019**, *68*, 1213–1218. [\[CrossRef\]](http://doi.org/10.1007/s11172-019-2543-y)
- 49. Rigamonti, L.; Piccioli, M.; Nava, A.; Malavolti, L.; Cortigiani, B.; Sessoli, R.; Cornia, A. Structure, magnetic properties and thermal sublimation of fluorinated Fe⁴ single-molecule magnets. *Polyhedron* **2017**, *128*, 9–17. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2017.02.036)
- 50. Yu, T.; Cao, Y.; Su, W.; Zhang, C.; Zhao, Y.; Fan, D.; Huang, M.; Yue, K.; Cheng, S.Z.D. Synthesis, structure, photo- and electroluminescence of an iridium(III) complex with a novel carbazole functionalized β-diketone ligand. *RSC Adv.* **2014**, *4*, 554–562. [\[CrossRef\]](http://doi.org/10.1039/C3RA44432E)
- 51. Sabea, H.; Norel, L.; Galangau, O.; Hijazi, H.; Métivier, R.; Roisnel, T.; Maury, O.; Bucher, C.; Riobé, F.; Rigaut, S. Dual light and redox control of NIR luminescence with complementary photochromic and organometallic antennae. *J. Am. Chem. Soc.* **2019**, *141*, 20026–20030. [\[CrossRef\]](http://doi.org/10.1021/jacs.9b11318) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/31820955)
- 52. Yu, G.; Xing, Y.; Chen, F.; Han, R.; Wang, J.; Bian, Z.; Fu, L.; Liu, Z.; Ai, X.; Zhang, J.; et al. Energy-transfer mechanisms in Ir^{III}–Eu^{III} bimetallic complexes. *ChemPlusChem* 2013, 78, 852–859. [\[CrossRef\]](http://doi.org/10.1002/cplu.201300107) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/31986672)
- 53. Chen, F.-F.; Bian, Z.-Q.; Liu, Z.-W.; Nie, D.-B.; Chen, Z.-Q.; Huang, C.-H. Highly efficient sensitized red emission from europium (III) in Ir-Eu bimetallic complexes by 3MLCT energy transfer. *Inorg. Chem.* **2008**, *47*, 2507–2513. [\[CrossRef\]](http://doi.org/10.1021/ic701817n) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/18311891)
- 54. Kemp, K.C.; Fourie, E.; Conradie, J.; Swarts, J.C. Ruthenocene-containing-diketones: Synthesis, pKa' values, keto–enol isomerization kinetics, and electrochemical aspects. *Organometallics* **2008**, *27*, 353–362. [\[CrossRef\]](http://doi.org/10.1021/om700609z)
- 55. Erasmus, E.; Swarts, J.C. Intramolecular communication and electrochemical observation of the 17-electron ruthenocenium cation in fluorinated ruthenocene-containing β-diketones; polymorphism of C10H²¹ and C10F²¹ derivatives. *New J. Chem.* **2013**, *37*, 2862–2873. [\[CrossRef\]](http://doi.org/10.1039/c3nj00354j)
- 56. Taydakov, I.V.; Krasnoselsky, S.S. Modified method for the synthesis of isomeric *N*-substituted (1*H*-pyrazolyl)-propane-1,3-diones. *Chem. Heterocycl. Comp.* **2011**, *47*, 695. [\[CrossRef\]](http://doi.org/10.1007/s10593-011-0821-1)
- 57. Chizhov, D.L.; Belyaev, D.V.; Yachevskii, D.S.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Efficient and scalable synthesis of 3-(polyfluoroacyl)pyruvaldehydes dimethyl acetals: A novel functionalized fluorinated building-block. *J. Fluor. Chem.* **2017**, *199*, 39–45. [\[CrossRef\]](http://doi.org/10.1016/j.jfluchem.2017.04.009)
- 58. Soldatov, D.V.; Ripmeester, J.A.; Shergina, S.I.; Sokolov, I.E.; Zanina, A.S.; Gromilov, S.A.; Dyadin, Y.A. α- and β-Bis(1,1,1 trifluoro-5,5-dimethyl-5-methoxyacetylacetonato)copper(II): Transforming the dense polymorph into a versatile new microporous framework. *J. Am. Chem. Soc.* **1999**, *121*, 4179–4188. [\[CrossRef\]](http://doi.org/10.1021/ja981443u)
- 59. Bazhin, D.N.; Chizhov, D.L.; Röschenthaler, G.-V.; Kudyakova, Y.S.; Burgart, Y.V.; Slepukhin, P.A.; Saloutin, V.I.; Charushin, V.N. A concise approach to CF³ -containing furan-3-ones, (bis)pyrazoles from novel fluorinated building blocks based on 2,3-butanedione. *Tetrahedron Lett.* **2014**, *55*, 5714–5717. [\[CrossRef\]](http://doi.org/10.1016/j.tetlet.2014.08.046)
- 60. Kudyakova, Y.S.; Onoprienko, A.Y.; Slepukhin, P.A.; Burgart, Y.V.; Saloutin, V.I.; Bazhin, D.N. Fluorine-containing furan-3(2H) ones in reactions with binucleophiles: CF³ vs C2F⁵ . *Chem. Heterocycl. Comp.* **2019**, *55*, 517–522. [\[CrossRef\]](http://doi.org/10.1007/s10593-019-02488-4)
- 61. Edilova, Y.O.; Kudyakova, Y.S.; Kiskin, M.A.; Burgart, Y.V.; Saloutin, V.I.; Bazhin, D.N. Expanding 1,2,4-triketone toolbox for use as fluorinated building blocks in the synthesis of pyrazoles, pyridazinones and β-diketohydrazones. *J. Fluor. Chem.* **2022**, *253*, 109932. [\[CrossRef\]](http://doi.org/10.1016/j.jfluchem.2021.109932)
- 62. Kudyakova, Y.S.; Slepukhin, P.A.; Valova, M.S.; Burgart, Y.V.; Saloutin, V.I.; Bazhin, D.N. The impact of the alkali metal ion on the crystal structure and (mechano)luminescence of terbium(III) tetrakis(β-diketonates). *Eur. J. Inorg. Chem.* **2020**, *2020*, 523. [\[CrossRef\]](http://doi.org/10.1002/ejic.201901202)
- 63. Hori, A.; Shinohe, A.; Takatani, S.; Miyamoto, T.K. Synthesis and crystal structures of fluorinated β-diketonate metal (Al³⁺, Co²⁺, Ni2+, and Cu2+) complexes. *Bull. Chem. Soc. Jpn.* **2009**, *82*, 96–98. [\[CrossRef\]](http://doi.org/10.1246/bcsj.82.96)
- 64. Crowder, J.M.; Han, H.; Wei, Z.; Dikarev, E.V.; Petrukhina, M.A. Unsolvated homo- and heterometallic highly fluorinated β-diketonate complexes of copper(II). *Polyhedron* **2019**, *157*, 33–38. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2018.09.048)
- 65. Lindoy, L.F.; Lip, H.C.; Louie, H.W.; Drew, M.G.B.; Hudson, M.J. Interaction of lanthanide shift reagents with co-ordination complexes; direct observation of nuclear magnetic resonance signals for free and complexed tris(pentane-2,4-dionato)cobalt(III) at ambient temperature, and X-ray crystal and molecular structure of the 1:1 adduct formed. *Chem. Commun.* **1977**, *21*, 778–780. [\[CrossRef\]](http://doi.org/10.1039/C39770000778)
- 66. Han, H.; Wei, Z.; Barry, M.C.; Filatov, A.S.; Dikarev, E.V. Heterometallic molecular precursors for a lithium–iron oxide material: Synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition. *Dalton Trans.* **2017**, *46*, 5644–5649. [\[CrossRef\]](http://doi.org/10.1039/C6DT04602A)
- 67. Han, H.; Carozza, J.C.; Colliton, A.P.; Zhang, Y.; Wei, Z.; Filatov, A.S.; Chen, Y.-S.; Alkan, M.; Rogachev, A.Y.; Dikarev, E.V. Heterotrimetallic mixed-valent molecular precursors containing Periodic table neighbors: Assignment of metal positions and oxidation states. *Angew. Chem. Int. Ed.* **2020**, *59*, 9624–9630. [\[CrossRef\]](http://doi.org/10.1002/anie.202001083)
- 68. Han, H.; Carozza, J.C.; Zhou, Z.; Zhang, Y.; Wei, Z.; Abakumov, A.M.; Filatov, A.S.; Chen, Y.-S.; Santa Lucia, D.J.; Berry, J.F.; et al. Heterotrimetallic Precursor with 2:2:1 Metal Ratio Requiring at Least a Pentanuclear Molecular Assembly. *J. Am. Chem. Soc.* **2020**, *142*, 12767–12776. [\[CrossRef\]](http://doi.org/10.1021/jacs.0c05139)
- 69. Lieberman, C.M.; Filatov, A.S.; Wei, Z.; Rogachev, A.Y.; Abakumov, A.M.; Dikarev, E.V. Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors. *Chem. Sci.* **2015**, *6*, 2835–2842. [\[CrossRef\]](http://doi.org/10.1039/C4SC04002C)
- 70. Lieberman, C.M.; Wei, Z.; Filatov, A.S.; Dikarev, E.V. Mixed-Ligand Approach to Changing the Metal Ratio in Bismuth–Transition Metal Heterometallic Precursors. *Inorg. Chem.* **2016**, *55*, 3946–3951. [\[CrossRef\]](http://doi.org/10.1021/acs.inorgchem.6b00209)
- 71. Krisyuk, V.V.; Urkasym Kyzy, S.; Rybalova, T.V.; Korolkov, I.V.; Sysoev, S.V.; Koretskaya, T.P.; Kuchumov, B.M.; Turgambaeva, A.E. Volatile trinuclear heterometallic beta-diketonates: Structure and thermal properties related to the chemical vapor deposition of composite thin films. *Polyhedron* **2020**, *191*, 114806. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2020.114806)
- 72. Krisyuk, V.V.; Tkachev, S.V.; Baidina, I.A.; Korolkov, I.V.; Turgambaeva, A.E.; Igumenov, I.K. Volatile Pd–Pb and Cu–Pb heterometallic complexes: Structure, properties, and trans-to-cis isomerization under cocrystallization of Pd and Cu β-diketonates with Pb hexafluoroacetylacetonate. *J. Coord. Chem.* **2015**, *68*, 1890–1902. [\[CrossRef\]](http://doi.org/10.1080/00958972.2015.1035653)
- 73. Krisyuk, V.V.; Urkasym Kyzy, S.; Rybalova, T.V.; Baidina, I.A.; Korolkov, I.V.; Chizhov, D.L.; Bazhin, D.N.; Kudyakova, Y.S. Isomerization as a tool to design volatile heterometallic complexes with methoxy-substituted β-diketonates. *J. Coord. Chem.* **2018**, *71*, 2194–2208. [\[CrossRef\]](http://doi.org/10.1080/00958972.2018.1479746)
- 74. Krisyuk, V.V.; Baidina, I.A.; Basova, T.V.; Bulusheva, L.G.; Igumenov, I.K. Self-Assembly of Coordination Polymers from Volatile PdII and PbII β-Diketonate Derivatives through Metallophilic Interactions. *Eur. J. Inorg. Chem.* **2013**, *2013*, 5738–5745. [\[CrossRef\]](http://doi.org/10.1002/ejic.201300876)
- 75. Hirai, Y.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Luminescent Europium(III) Coordination Zippers Linked with Thiophene-Based Bridges. *Angew. Chem. Int. Ed.* **2016**, *55*, 12059–12062. [\[CrossRef\]](http://doi.org/10.1002/anie.201606371)
- 76. Francis, B.; Nolasco, M.M.; Brandão, P.; Ferreira, R.A.S.; Carvalho, R.S.; Cremona, M.; Carlos, L.D. Efficient Visible-Light-Excitable Eu3+ Complexes for Red Organic Light-Emitting Diodes. *Eur. J. Inorg. Chem.* **2020**, *2020*, 1260–1270. [\[CrossRef\]](http://doi.org/10.1002/ejic.202000027)
- 77. Fu, C.-Y.; Chen, L.; Wang, X.; Lin, L.-R. Synthesis of Bis-β-Diketonate Lanthanide Complexes with an Azobenzene Bridge and Studies of Their Reversible Photo/Thermal Isomerization Properties. *ACS Omega* **2019**, *4*, 15530–15538. [\[CrossRef\]](http://doi.org/10.1021/acsomega.9b01817)
- 78. Barry, M.C.; Wei, Z.; He, T.; Filatov, A.S.; Dikarev, E.V. Volatile Single-Source Precursors for the Low-Temperature Preparation of Sodium-Rare Earth Metal Fluorides. *J. Am. Chem. Soc.* **2016**, *138*, 8883–8887. [\[CrossRef\]](http://doi.org/10.1021/jacs.6b04194)
- 79. Mara, D.; Artizzu, F.; Laforce, B.; Vincze, L.; Van Hecke, K.; Van Deun, R.; Kaczmarek, A.M. Novel tetrakis lanthanide β-diketonate complexes: Structural study, luminescence properties and temperature sensing. *J. Lumin.* **2019**, *213*, 343–355. [\[CrossRef\]](http://doi.org/10.1016/j.jlumin.2019.05.035)
- 80. Battiato, S.; Rossi, P.; Paoli, P.; Malandrino, G. Heterobimetallic sodium rare-earth complexes: "Third-generation" MOCVD precursors for the deposition of NaREF⁴ (RE = Y, Gd) films. *Inorg. Chem.* **2018**, *57*, 15035–15039. [\[CrossRef\]](http://doi.org/10.1021/acs.inorgchem.8b02267)
- 81. Zeng, D.; Ren, M.; Bao, S.-S.; Zheng, L.-M. Tuning the Coordination Geometries and Magnetic Dynamics of [Ln(hfac)_β]-through Alkali Metal Counterions. *Inorg. Chem.* **2014**, *53*, 795–801. [\[CrossRef\]](http://doi.org/10.1021/ic402111v)
- 82. Taidakov, I.V.; Krasnosel'skii, S.S.; Lobanov, A.N.; Vitukhnovskii, A.G.; Starikova, Z.A. Cesium Tetrakis(1(1,5-Dimethyl-1H-Pyrazol-4-yl)-4,4,4-Trifluorobutane-1,3-diono)europiate(III): Synthesis, Crystal Structure, and Luminescence Properties. *Russ. J. Coord. Chem.* **2013**, *39*, 680–684. [\[CrossRef\]](http://doi.org/10.1134/S107032841309008X)
- 83. Dinh, T.-H.; Nguyen, H.-H.; Nguyen, M.-H. A structural and spectroscopic study on heterometallic sodium(I)-europium(III) β-diketonate complexes. *Inorg. Chem. Comm.* **2021**, *130*, 108674. [\[CrossRef\]](http://doi.org/10.1016/j.inoche.2021.108674)
- 84. Catalano, M.R.; Pellegrino, A.L.; Rossi, P.; Paoli, P.; Cortelletti, P.; Pedroni, M.; Speghini, A.; Malandrino, G. Upconverting Er3+,Yb3+ activated β-NaYF⁴ thin films: A solution route using a novel sodium β-diketonate polyether adduct. *New J. Chem.* **2017**, *41*, 4771–4775. [\[CrossRef\]](http://doi.org/10.1039/C7NJ00236J)
- 85. Jimenez, G.L.; Rosales-Hoz, M.J.; Leyva, M.A.; Reyes-Rodriguez, J.L.; Galindo-Garcia, U.; Falcony, C. Structural analysis of an europium-sodium complex containing 2-thenoyltrifluoroacetone and succinimide as ligands, a highly photoluminescent material. *J. Mol. Struct.* **2021**, *1228*, 129778. [\[CrossRef\]](http://doi.org/10.1016/j.molstruc.2020.129778)
- 86. Kudyakova, Y.S.; Slepukhin, P.A.; Ganebnykh, I.N.; Burgart, Y.V.; Saloutin, V.I.; Bazhin, D.N. Lithium β-Diketonate in the Synthesis of Homo- and Heteronuclear Complexes of Rare-Earth Metals. *Russ. J. Coord. Chem.* **2021**, *47*, 280–295. [\[CrossRef\]](http://doi.org/10.1134/S1070328421040059)
- 87. Kudyakova, Y.S.; Slepukhin, P.A.; Valova, M.S.; Burgart, Y.V.; Saloutin, V.I.; Bazhin, D.N. Functionalized Trifluoromethyl-Containing A Rare Example of Discrete Lanthanide–Lithium Tetrakis-β-Diketonates: Synthesis, Structures, and Luminescence Properties. *Russ. J. Coord. Chem.* **2020**, *46*, 545–552. [\[CrossRef\]](http://doi.org/10.1134/S1070328420070027)
- 88. Bazhin, D.N.; Kudyakova, Y.S.; Bogomyakov, A.S.; Slepukhin, P.A.; Kim, G.A.; Burgart, Y.V.; Saloutin, V.I. Dinuclear lanthanide– lithium complexes based on fluorinated β-diketonate with acetal group: Magnetism and effect of crystal packing on mechanoluminescence. *Inorg. Chem. Front.* **2019**, *6*, 40–49. [\[CrossRef\]](http://doi.org/10.1039/C8QI00772A)
- 89. Kudyakova, Y.S.; Slepukhin, P.A.; Valova, M.S.; Burgart, Y.V.; Saloutin, V.I.; Bazhin, D.N. Role of alkyl substituents in the structure and luminescence properties of discrete terbium(III)-lithium(I) β-diketonates. *J. Mol. Struct.* **2021**, *1226*, 129331. [\[CrossRef\]](http://doi.org/10.1016/j.molstruc.2020.129331)
- 90. Lia, X.-L.; Lia, J.; Wanga, A.; Liub, C.-M.; Cuia, M.; Zhang, Y.-Q. Observation of field-induced single-ion magnet behavior in a mononuclear Dy^{III} complex by co-crystallization of a square-planar Cu^{II} complex. *Inorg. Chim. Acta* 2020, 510, 119718. [\[CrossRef\]](http://doi.org/10.1016/j.ica.2020.119718)
- 91. Barry, M.C.; Lieberman, C.M.; Wei, Z.; Clérac, R.; Filatov, A.S.; Dikarev, E.V. Expanding the Structural Motif Landscape of Heterometallic β Diketonates: Congruently Melting Ionic Solids. *Inorg. Chem.* **2018**, *57*, 2308–2313. [\[CrossRef\]](http://doi.org/10.1021/acs.inorgchem.7b03166)
- 92. Lieberman, C.M.; Vreshch, V.D.; Filatov, A.S.; Dikarev, E.V. Synthesis and characterization of {[Cu^I₃Sn₂(OBu*t*)₆]⁺[Cu^{II}(hfac)3]}[−] A heterometallic cluster with unique triangular copper(I) core. *Inorg. Chim. Acta* **2015**, *424*, 156–161. [\[CrossRef\]](http://doi.org/10.1016/j.ica.2014.08.045)
- 93. Li, D.; Chen, F.-F.; Bian, Z.-Q.; Liu, Z.-W.; Zhao, Y.-L.; Huang, C.-H. Sensitized near-infrared emission of Yb^{III} from an Ir^{III}–Yb^{III} bimetallic complex. *Polyhedron* **2009**, *28*, 897–902. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2008.12.043)
- 94. Chen, F.-F.; Bian, Z.-Q.; Lou, B.; Ma, E.; Liu, Z.-W.; Nie, D.-B.; Chen, Z.-Q.; Bian, J.; Chen, Z.-N.; Huang, C.-H. Sensitised near-infrared emission from lanthanides using an iridium complex as a ligand in heteronuclear Ir2Ln arrays. *Dalton Trans.* **2008**, *41*, 5577–5583. [\[CrossRef\]](http://doi.org/10.1039/b810016k)
- 95. Horikoshi, R.; Tominaga, T.; Mochida, T. Mixed-Metal Coordination Polymers and Molecular Squares Based on a Ferrocene-Containing Multidentate Ligand 1,2-Di(4-pyridylthio)ferrocene. *Cryst. Growth Des.* **2018**, *18*, 5089–5098. [\[CrossRef\]](http://doi.org/10.1021/acs.cgd.8b00538)
- 96. Dolinar, B.S.; Alexandropoulos, D.I.; Vignesh, K.R.; James, T.A.; Dunbar, K.R. Lanthanide Triangles Supported by Radical Bridging Ligands. *J. Am. Chem. Soc.* **2018**, *140*, 908–911. [\[CrossRef\]](http://doi.org/10.1021/jacs.7b12495)
- 97. Kishore, P.V.V.N.; Rasamsetty, A.; Sañudo, E.C.; Baskar, V. Redox shield enfolding a magnetic core. *Polyhedron* **2015**, *102*, 361–365. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2015.10.017)
- 98. Jakob, A.; Joubert, C.C.; Rüffer, T.; Swarts, J.C.; Lang, H. Chemical and electrochemical oxidation studies on new copper(I) ferrocenyl-functionalised β-diketonates. *Inorg. Chim. Acta* **2014**, *411*, 48–55. [\[CrossRef\]](http://doi.org/10.1016/j.ica.2013.11.019)
- 99. Gericke, H.J.; Muller, A.J.; Swarts, J.C. Electrochemical Illumination of Intramolecular Communication in Ferrocene-Containing tris-β-Diketonato Aluminum(III) Complexes; Cytotoxicity of Al(FcCOCHCOCF³)3 . *Inorg. Chem.* **2012**, *51*, 1552–1561. [\[CrossRef\]](http://doi.org/10.1021/ic201849u) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/22272584)
- 100. Maseme, M.R.; Buitendach, B.E.; Erasmus, E.; Swarts, J.C. The chemistry of spin-coated rhodium-ferrocenyl complexes supported on silanol-capped silicon wafers. *Polyhedron* **2021**, *204*, 115277. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2021.115277)
- 101. Conradie, J.; Lamprecht, G.J.; Roodt, A.; Swarts, J.C. Kinetic study of the oxidative addition reaction between methyl iodide and [Rh(FcCOCHCOCF³)(CO)(PPh³)]: Structure of [Rh(FcCOCHCOCF³)(CO)(PPh³)(CH³)(I)]. *Polyhedron* **2007**, *26*, 5075–5087. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2007.07.004)
- 102. DuChane, C.M.; Merola, J.S. Hexafluoroacetylacetonate (hfac) as ligand for pentamethylcyclopentadienyl (Cp∗) rhodium and iridium complexes: Some surprising results, including an Ir₃Na₁O₄ cubane structure. *J. Organomet. Chem.* **2020**, 929, 121552. [\[CrossRef\]](http://doi.org/10.1016/j.jorganchem.2020.121552)
- 103. Towatari, M.; Nishi, K.; Fujinami, T.; Matsumoto, N.; Sunatsuki, Y.; Kojima, M.; Mochida, N.; Ishida, T.; Re, N.; Mrozinski, J. Syntheses, Structures, and Magnetic Properties of Acetato- and Diphenolato-Bridged 3d–4f Binuclear Complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)₂] (M = Zn^{II}, Cu^{II}, Ni^{II}, Co^{II}; Ln = La^{III}, Gd^{III}, Tb^{III}, Dy^{III}; 3-MeOsaltn = N,N'-Bis(3methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = Acetato; hfac = Hexafluoroacetylacetonato; x = 0 or 1). *Inorg. Chem.* **2013**, *52*, 6160–6178. [\[CrossRef\]](http://doi.org/10.1021/ic400594u)
- 104. Apostol, A.A.; Mihalache, I.; Mocanu, T.; Tutunaru, O.; Pachiu, C.; Gavrila, R.; Maxim, C.; Andruh, M. Luminescent [Zn^{II}Ln^{III}] complexes anchored on graphene: Synthesis and crystal structures of [Zn^{II}Eu^{III}] and [Zn^{II}Tb^{III}] complexes decorated with pyrene groups. *Appl. Organomet. Chem.* **2020**, *35*, e6126. [\[CrossRef\]](http://doi.org/10.1002/aoc.6126)
- 105. Vikulova, E.S.; Nikolaeva, N.S.; Krasnov, P.O.; Sukhikh, A.A.; Smolentsev, A.I.; Kovaleva, E.A.; Morozova, N.B.; Basova, T.V. Synthesis, structural, vibrational and DFT investigation of new binuclear molecular Pd-Cu and Cu-Cu complexes formed by Schiff base and hexafluoroacetylacetonate building blocks. *J. Mol. Struct.* **2020**, *1216*, 128341. [\[CrossRef\]](http://doi.org/10.1016/j.molstruc.2020.128341)
- 106. Xu, H.; Li, J.; Shi, L.; Chen, Z. Sensitized luminescence in dinuclear lanthanide(III) complexes of bridging 8-hydroxyquinoline derivatives with different electronic properties. *Dalton Trans.* **2011**, *40*, 5549–5556. [\[CrossRef\]](http://doi.org/10.1039/c0dt01663b)
- 107. Wang, W.-M.; Liu, S.-Y.; Xu, M.; Bai, L.; Wang, H.-Q.; Wen, X.; Zhao, X.-Y.; Qiao, H.; Wu, Z.-L. Structures and magnetic properties of phenoxo-O-bridged dinuclear lanthanide(III) compounds: Single molecule magnet behavior and magnetic refrigeration. *Polyhedron* **2018**, *145*, 114–119. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2018.01.037)
- 108. Xu, H.-B.; Li, J.; Zhang, L.-Y.; Huang, X.; Li, B.; Chen, Z.-N. Structures and Photophysical Properties of Homo- and Heteronuclear Lanthanide(III) Complexes with Bridging 2-Methyl-8-hydroxyquinoline (HMq) in the m-Phenol Mode. *Cryst. Growth. Des.* **2010**, *10*, 4101–4108. [\[CrossRef\]](http://doi.org/10.1021/cg100778w)
- 109. Yamamoto, M.; Nakanishi, T.; Kitagawa, Y.; Seki, T.; Ito, H.; Fushimi, K.; Hasegawa, Y. Synthesis and Photophysical Properties of Eu(III) Complexes with Phosphine Oxide Ligands including Metal Ions. *Bull. Chem. Soc. Jpn.* **2018**, *91*, 6–11. [\[CrossRef\]](http://doi.org/10.1246/bcsj.20170241)
- 110. Shi, J.Y.; Ma, Z.L.; Tian, L. A new mononuclear terbium and copper cocrystalline nitronyl nitroxide complex: Synthesis, structure and magnetic properties. *J. Mol. Struct.* **2021**, *1224*, 129012. [\[CrossRef\]](http://doi.org/10.1016/j.molstruc.2020.129012)
- 111. Patrascu, A.A.; Briganti, M.; Soriano, S.; Calancea, S.; Allao Cassaro, R.A.; Totti, F.; Vaz, M.G.F.; Andruh, M. SMM Behavior Tuned by an Exchange Coupling LEGO Approach for Chimeric Compounds: First 2p-3d-4f Heterotrispin Complexes with Different Metal Ions Bridged by One Aminoxyl Group. *Inorg. Chem.* **2019**, *58*, 13090–13101. [\[CrossRef\]](http://doi.org/10.1021/acs.inorgchem.9b01998) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/31536344)
- 112. Souza, M.S.; Briganti, M.; Reis, S.G.; Stinghen, D.; Bortolot, C.S.; Cassaro, R.A.A.; Guedes, G.P.; Silva, F.C.; Ferreira, V.F.; Novak, M.A.; et al. Magnetic Cationic Copper(II) Chains and a Mononuclear Cobalt(II) Complex Containing [Ln(hfac)₄]⁻ Blocks as Counterions. *Inorg. Chem.* **2019**, *58*, 1976–1987. [\[CrossRef\]](http://doi.org/10.1021/acs.inorgchem.8b02929) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/30644737)
- 113. Li, H.; Jing, P.; Lu, J.; Xi, L.; Wang, Q.; Ding, L.; Wang, W.-M.; Song, Z. Multifunctional properties of {Cu^{II}2Ln^{III}2} systems involving nitrogen-rich nitronyl nitroxide: Single-molecule magnet behavior, luminescence, magnetocaloric effects and heat capacity. *Dalton Trans.* **2021**, *50*, 2854–2863. [\[CrossRef\]](http://doi.org/10.1039/D0DT04344C) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/33538274)
- 114. Jing, P.; Xi, L.; Lu, J.; Han, J.; Huang, X.; Jin, C.; Xie, J.; Li, L. Regulating Spin Dynamics of Nitronyl Nitroxide Biradical Lanthanide Complexes through Introducing Different Transition Metals. *Chem. Asian J.* **2021**, *16*, 793–800. [\[CrossRef\]](http://doi.org/10.1002/asia.202100062) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/33590716)
- 115. Yang, M.; Liang, X.; Zhang, Y.; Ouyang, Z.; Dong, W. A family of 3d-4f Cu-Ln ladder-like complexes: Synthesis, structures and magnetic properties. *Polyhedron* **2020**, *180*, 114435. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2020.114435)
- 116. Xi, L.; Sun, J.; Wang, K.; Lu, J.; Jing, P.; Li, L. Slow magnetic relaxation in CoII-LnIII heterodinuclear complexes achieved through a functionalized nitronyl nitroxide biradical. *Dalton Trans.* **2020**, *49*, 1089–1096. [\[CrossRef\]](http://doi.org/10.1039/C9DT04036F) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/31872199)
- 117. Shi, J.Y.; Chen, P.Y.; Wu, M.Z.; Tian, L.; Liu, Z.Y. Synthesis of a series of hetero-multi-spin Ln₂Cu₃ complexes based on a methyl-pyrazole nitronyl nitroxide radical with slow magnetic relaxation behaviors. *Dalton Trans.* **2019**, *48*, 9187–9193. [\[CrossRef\]](http://doi.org/10.1039/C9DT00981G)
- 118. Hu, P.; Wu, Y.-N.; Zhao, Y.-H.; Cao, J.-F.; Lai, J.-L.; Ma, D.-Y.; Zhu, L.-L.; Xiao, F.-P. Structure changes from radical-3d ring dimer to radical-3d-4f 1D chain with different magnetic properties. *Inorg. Chim. Acta* **2020**, *512*, 119867. [\[CrossRef\]](http://doi.org/10.1016/j.ica.2020.119867)
- 119. Li, H.; Sun, J.; Yang, M.; Sun, Z.; Tang, J.; Ma, Y.; Li, L. Functionalized Nitronyl Nitroxide Biradicals for the Construction of 3d-4f Heterometallic Compounds. *Inorg. Chem.* **2018**, *57*, 9757–9765. [\[CrossRef\]](http://doi.org/10.1021/acs.inorgchem.7b03186)
- 120. Romanenko, G.V.; Kuznetsova, O.V.; Fursova, E.Y.; Letyagin, G.A.; Ovcharenko, V.I. The structure of multinuclear copper (II) hexafluoroacetylacetone. *J. Struct. Chem.* **2019**, *60*, 275–278. [\[CrossRef\]](http://doi.org/10.1134/S0022476619020124)
- 121. Mautner, F.A.; Bierbaumer, F.; Gyurkac, M.; Fischer, R.C.; Torvisco, A.; Massoud, S.S.; Vicente, R. Synthesis and characterization of Lanthanum(III) complexes containing 4,4,4-trifluoro-1-(naphthalen-2yl)butane-1,3-dionate. *Polyhedron* **2020**, *179*, 114384. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2020.114384)
- 122. Wong, H.-Y.; Chan, W.T.K.; Law, G.-L. Assembly of Lanthanide(III) Cubanes and Dimers with Single-Molecule Magnetism and Photoluminescence. *Inorg. Chem.* **2018**, *57*, 6893–6902. [\[CrossRef\]](http://doi.org/10.1021/acs.inorgchem.8b00505) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/29808999)
- 123. Zaim, A.; Favera, N.D.; Guenee, L.; Nozary, H.; Hoang, T.N.Y.; Eliseeva, S.V.; Petoud, S.; Piguet, C. Lanthanide hexafluoroacetylacetonates vs. nitrates for the controlled loading of luminescent polynuclear single-stranded oligomers. *Chem. Sci.* **2013**, *4*, 1125–1136. [\[CrossRef\]](http://doi.org/10.1039/c2sc21982d)
- 124. Filyakova, T.I.; Saloutina, L.V.; Slepukhin, P.A.; Saloutin, V.I.; Chupakhin, O.N. Synthesis and crystal structures of the heptafluoroacetylacetonatocopper(II) and 4-iminoheptafluoropent-2-ene-2-aminatocopper(II) complexes with triphenylphosphine oxide and pyridine. *Russ. Chem. Bull.* **2009**, *58*, 1132–1138. [\[CrossRef\]](http://doi.org/10.1007/s11172-009-0147-7)
- 125. Chen, L.; Tan, Y.; Xu, H.; Wang, K.; Chen, Z.-H.; Zheng, N.; Li, Y.-Q.; Lin, L.-R. Enhanced E/Z-photoisomerization and luminescence of stilbene derivative co-coordinated in di-β-diketonate lanthanide complexes. *Dalton Trans.* **2020**, *49*, 16745–16761. [\[CrossRef\]](http://doi.org/10.1039/D0DT03383A) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/33146650)
- 126. Bruno, S.M.; Ananias, D.; Almeida, P.; Filipe, A.; Pillinger, M.; Valente, A.A.; Carlos, L.D.; Goncalves, I.S. Crystal structure and temperature-dependent luminescence of a heterotetranuclear sodium-europium(III) β-diketonate complex. *Dalton Trans.* **2015**, *44*, 488–492. [\[CrossRef\]](http://doi.org/10.1039/C4DT02301C)
- 127. Lin, J.; Yue, L.; Xin, L.; Jinlei, T.; Shiping, Y. Three series of heterometallic Ni^{II}-Ln^{III} Schiff base complexes: Synthesis, crystal structures and magnetic characterization. *Dalton Trans.* **2017**, *46*, 12558–12573. [\[CrossRef\]](http://doi.org/10.1039/C7DT02351K)
- 128. Kogane, T.; Harada, K.; Hirota, R.; Urushiyama, A. Structures and characterization of reaction products of bis(1,1,1,5,5,5 hexafluoropentane-2,4-dionato)copper(II) with 3-methyl- and 3,5-dimethyl-1H-pyrazoles. *Polyhedron* **1996**, *15*, 4093–4101. [\[CrossRef\]](http://doi.org/10.1016/0277-5387(96)00007-1)
- 129. Saaidi, P.-L.; Jeanneau, E.; Bouchu, D.; Hasserodt, J. The case of a Cd_2Cu_2 complex containing an apparently C3-symmetric ligand: Erroneous ligand-structure assignment by X-ray diffraction data analysis. *Polyhedron* **2007**, *26*, 1191–1198. [\[CrossRef\]](http://doi.org/10.1016/j.poly.2006.10.008)
- 130. Chappidi, D.Y.; Gordon, M.N.; Ashberry, H.M.; Huang, J.; Labedis, B.M.; Cooper, R.E.; Cooper, B.J.; Carta, V.; Skrabalak, S.E.; Dunbar, K.R.; et al. Mechanochemical Syntheses of $Ln(hfac)_{3}(H_{2}O)_{x}$ (Ln = La-Sm, Tb): Isolation of 10-, 9-, and 8-Coordinate Ln(hfac)n Complexes. *Inorg. Chem.* **2022**, *61*, 12197–12206. [\[CrossRef\]](http://doi.org/10.1021/acs.inorgchem.2c01274)
- 131. Wang, S.; Pang, Z.; Smith, K.D.L.; Hua, Y.-S.; Deslippe, C.; Wagner, M.J. Decomposition and Cycloaddition Reactions of hfacac, and Syntheses and Structures of Ln^{III}_2 (hfacac)₄(bdmap)₂(H₂O)₂(THF)₂, Ln^{III} Cu^{II}(bdmapH)₂(hfacac)₂(O₂CCF₃)L, $\text{Ln}^{\text{III}}\text{Cu}^{\text{II}}$ 2(hfacac)(bdmap)3(O2CCH3)2(O2CCF3)(hfacacH) (Ln = Y, Pr, Nd; hfacac = hexafluoroacetylacetonato; bdmap = 1,3-bis(dimethylamino)-2-propanolato; L = 2-methyl-2,4,6-tris(trifluoromethyl)-1,3-dioxane-4,6-diolato). *Inorg. Chem.* **1995**, *34*, 908–917. [\[CrossRef\]](http://doi.org/10.1021/ic00108a023)
- 132. Bazhin, D.N.; Kudyakova, Y.S.; Edilova, Y.O.; Burgart, Y.V.; Saloutin, V.I. Fluorinated 1,2,4-triketone analogs: New prospects for heterocyclic and coordination chemistry. *Russ. Chem. Bull.* **2022**, *71*, 1321–1341. [\[CrossRef\]](http://doi.org/10.1007/s11172-022-3539-6)