Essential Oils from Vietnamese Asteraceae for Environmentally Friendly Control of Aedes Mosquitoes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Compositions
2.1.1. Blumea lacera
2.1.2. Blumea sinuata
2.1.3. Emilia sonchifolia
2.1.4. Parthenium hysterophorus
2.1.5. Sphaeranthus africanus
2.2. Mosquito Larvicidal Activity
3. Materials and Methods
3.1. Plant Material
3.2. Gas Chromatography–Mass Spectral Analysis
3.3. Mosquito Larvicidal Activity Screening
3.4. Diplonychus Rusticus Insecticidal Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wu, C.Y.; Raven, P.H.; Hong, D.Y. Flora of China. Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=250097954 (accessed on 14 August 2022).
- Biên, L.K. Thực vật chí Việt Nam-Flora of Vietnam; Science and Technics Publishing House: Hanoi, Vietnam, 2007; Volume 7. [Google Scholar]
- Gore, M. Bioactives and pharmacology of Blumea lacera (Burm. f.) DC. and Blumea eriantha DC. In Bioactives and Pharmacology of Medicinal Plants; Pullaiah, T., Ed.; Apple Academic Press: New York, NY, USA, 2022; pp. 249–257. ISBN 9781003281658. [Google Scholar]
- Pham, X.P.; Nhung, T.T.T.; Trinh, H.N.; Trung, D.M.; Giang, D.T.; Vu, B.D.; Diep, N.T.; Long, N.V.; Nguyen, V.T.; Men, C.V. Isolation and structural characterization of compounds from Blumea lacera. Pharmacogn. J. 2021, 13, 999–1004. [Google Scholar] [CrossRef]
- Vo, V.C. The Dictionary of Medicinal Plants of Vietnam 1; Medical Publishing House: Hanoi, Vietnam, 2012. [Google Scholar]
- Missouri Botanical Garden, Tropicos.org. Available online: https://tropicos.org/name/2700154 (accessed on 7 October 2022).
- Upadhyay, H.C. The genus Blumea: Ethnomedicinal uses, phytochemistry and pharmacology. In Medicinal Plants for Cosmetics, Health and Diseases; Lall, N., Ed.; CRC Press: Boca Raton, FL, USA, 2022; pp. 269–306. ISBN 9781003108375. [Google Scholar]
- World Flora Online. Emilia sonchifolia (L.) DC. Available online: http://www.worldfloraonline.org/taxon/wfo-0000017704 (accessed on 14 August 2022).
- Couto, V.M.; Vilela, F.C.; Dias, D.F.; dos Santos, M.H.; Soncini, R.; Nascimento, C.G.O.; Giusti-Paiva, A. Antinociceptive effect of extract of Emilia sonchifolia in mice. J. Ethnopharmacol. 2011, 134, 348–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Flora Online. Parthenium hysterophorus L. Available online: http://www.worldfloraonline.org/taxon/wfo-0000065156 (accessed on 14 August 2022).
- Dhileepan, K.; Strathie, L. Parthenium hysterophorus L. (Asteraceae). In Biological Control of Tropical Weeds Using Arthropods; Muniappan, R., Reddy, G.V.P., Raman, A., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 274–318. [Google Scholar]
- Nguyen, T.L.; Nguyen, P.N.; Adkins, S. Parthenium weed (Parthenium hysterophorus L.) in Vietnam. In Proceedings of the 23rd Asian-Pacific Weed Science Society Conference—Weed Management in a Changing World, The Sebel Cairns, QLD, Australia, 26–29 September 2011; Asian-Pacific Weed Science Society: Cairns, Australia, 2011; pp. 401–402. [Google Scholar]
- Marwat, S.K.; Fazal-ur-Rehman; Khan, I.U. Ethnobotanical importance and phytochemical constituents of Parthenium weed (Parthenium hysterophorus L.)—A review. Plant Sci. Today 2015, 2, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Kaur, L.; Malhi, D.S.; Cooper, R.; Kaur, M.; Sohal, H.S.; Mutreja, V.; Sharma, A. Comprehensive review on ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hysterophorus L.: A journey from noxious weed to a therapeutic medicinal plant. J. Ethnopharmacol. 2021, 281, 114525. [Google Scholar] [CrossRef] [PubMed]
- Sahrawat, A.; Sharma, J.; Rahul, S.N.; Tiwari, S.; Rai, D.V. Parthenium hysterophorus current status and its possible effects on mammalians- A review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3548–3557. [Google Scholar] [CrossRef]
- Royal Botanic Gardens, Kew. Sphaeranthus africanus L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:250492-1 (accessed on 14 August 2022).
- Tran, H.T.; Pferschy-Wenzig, E.M.; Kretschmer, N.; Kunert, O.; Huynh, L.; Bauer, R. Antiproliferative carvotacetones from Sphaeranthus africanus. J. Nat. Prod. 2018, 81, 1829–1834. [Google Scholar] [CrossRef]
- Tran, H.T.; Gao, X.; Kretschmer, N.; Pferschy-Wenzig, E.M.; Raab, P.; Pirker, T.; Temml, V.; Schuster, D.; Kunert, O.; Huynh, L.; et al. Anti-inflammatory and antiproliferative compounds from Sphaeranthus africanus. Phytomedicine 2019, 62, 152951. [Google Scholar] [CrossRef]
- Tran, H.T.; Solnier, J.; Pferschy-Wenzig, E.M.; Kunert, O.; Martin, L.; Bhakta, S.; Huynh, L.; Le, T.M.; Bauer, R.; Bucar, F. Antimicrobial and efflux pump inhibitory activity of carvotacetones from Sphaeranthus africanus against mycobacteria. Antibiotics 2020, 9, 390. [Google Scholar] [CrossRef]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti vector competence studies: A review. Infect. Genet. Evol. 2019, 67, 191–209. [Google Scholar] [CrossRef]
- Paupy, C.; Delatte, H.; Bagny, L.; Corbel, V.; Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 2009, 11, 1177–1185. [Google Scholar] [CrossRef]
- Hung, T.M.; Clapham, H.E.; Bettis, A.A.; Cuong, H.Q.; Thwaites, G.E.; Wills, B.A.; Boni, M.F.; Turner, H.C. The estimates of the health and economic burden of dengue in Vietnam. Trends Parasitol. 2018, 34, 904–918. [Google Scholar] [CrossRef] [Green Version]
- Haroon-Or-Rashid, M.; Patwary, M.M.H.; Tariquzzaman, M.; Imtiaz, A.; Bony, M.R.I. Chikungunya virus: An emerging threat to South East Asia region. Asian J. Res. Infect. Dis. 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Dinh, T.C.; Bac, N.D.; Minh, L.B.; Ngoc, V.T.N.; Pham, V.-H.; Vo, H.-L.; Tien, N.L.B.; Thanh, V.V.; Tao, Y.; Show, P.L.; et al. Zika virus in Vietnam, Laos, and Cambodia: Are there health risks for travelers? Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1585–1590. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Nasir, S.; Fakhar-e-Alam, M.; Saadullah, M. Toxicity of different groups of insecticides and determination of resistance in Aedes aegypti from different habitats. Pak. J. Agric. Sci. 2019, 56, 161–169. [Google Scholar] [CrossRef]
- Hernandez, H.M.; Martinez, F.A.; Vitek, C.J. Insecticide resistance in Aedes aegypti varies seasonally and geographically in Texas/Mexico border cities. J. Am. Mosq. Control Assoc. 2022, 38, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.B.; Sahoo, A.K.; Elango, K.; Rao, K.S. Role of pesticide application in environmental degradation and its remediation strategies. In Environmental Degradation: Causes and Remediation Strategies; Kumar, V., Singh, J., Kumar, P., Eds.; Agriculture and Environmental Science Academy: Haridwar, India, 2020; Volume 1, pp. 36–46. ISBN 978-81-942017-1-7. [Google Scholar]
- Kaushal, J.; Khatri, M.; Arya, S.K. A treatise on organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. Ecotoxicol. Environ. Saf. 2021, 207, 111483. [Google Scholar] [CrossRef] [PubMed]
- Zaller, J.G.; Brühl, C.A. Non-Target Effects of Pesticides on Organisms Inhabiting Agroecosystems; Frontiers Media: Lausanne, Switzerland, 2019; Volume 7, ISBN 9782889459766. [Google Scholar]
- Serrão, J.E.; Plata-Rueda, A.; Martínez, L.C.; Zanuncio, J.C. Side-effects of pesticides on non-target insects in agriculture: A mini-review. Sci. Nat. 2022, 109, 17. [Google Scholar] [CrossRef] [PubMed]
- Piplani, M.; Bhagwat, D.P.; Singhvi, G.; Sankaranarayanan, M.; Balana-Fouce, R.; Vats, T.; Chander, S. Plant-based larvicidal agents: An overview from 2000 to 2018. Exp. Parasitol. 2019, 199, 92–103. [Google Scholar] [CrossRef]
- Esmaili, F.; Sanei-Dehkordi, A.; Amoozegar, F.; Osanloo, M. A review on the use of essential oil-based nanoformulations in control of mosquitoes. Biointerface Res. Appl. Chem. 2021, 11, 12516–12529. [Google Scholar] [CrossRef]
- Hoi, T.M.; Huong, L.T.; van Chinh, H.; Hau, D.V.; Satyal, P.; Tai, T.A.; Dai, D.N.; Hung, N.H.; Hien, V.T.; Setzer, W.N. Essential oil compositions of three invasive Conyza species collected in Vietnam and their larvicidal activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Molecules 2020, 25, 4576. [Google Scholar] [CrossRef]
- Hung, N.H.; Satyal, P.; Do, N.D.; Tai, T.A.; Huong, L.T.; Chuong, N.T.H.; Hieu, H.V.; Tuan, P.A.; Vuong, P.V.; Setzer, W.N. Chemical compositions of Crassocephalum crepidioides essential oils and larvicidal activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Nat. Prod. Commun. 2019, 14, 1934578X19850033. [Google Scholar] [CrossRef] [Green Version]
- Hung, N.H.; Satyal, P.; Hieu, H.V.; Chuong, N.T.H.; Dai, D.N.; Huong, L.T.; Tai, T.A.; Setzer, W.N. Mosquito larvicidal activity of the essential oils of Erechtites species growing wild in Vietnam. Insects 2019, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Hung, N.H.; Dai, D.N.; Satyal, P.; Huong, L.T.; Chinh, B.T.; Hung, D.Q.; Tai, T.A.; Setzer, W.N. Lantana camara essential oils from Vietnam: Chemical composition, molluscicidal, and mosquito larvicidal activity. Chem. Biodivers. 2021, 18, e2100145. [Google Scholar] [CrossRef]
- Higa, Y.; Yen, N.T.; Kawada, H.; Son, T.H.; Hoa, N.T.; Takagi, M. Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam. J. Am. Mosq. Control Assoc. 2010, 26, 1–9. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Dias, C.N.; Moraes, D.F.C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicide: Review. Parasitol. Res. 2014, 113, 565–592. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.A.; da Silva, L.; dos Santos, M.A.C.; Macêdo, M.J.F.; Lacerda-Neto, L.J.; Coutinho, H.D.M.; de Oliveira, L.C.C.; Cunha, F.A.B. Larvicidal activity of essential oils against Aedes aegypti (Diptera: Culicidae). Curr. Pharm. Des. 2020, 26, 4092–4111. [Google Scholar] [CrossRef]
- Osanloo, M.; Sedaghat, M.M.; Sanei-Dehkordi, A.; Amani, A. Plant-derived essential oils; their larvicidal properties and potential application for control of mosquito-borne diseases. Galen Med. J. 2019, 8, 1532. [Google Scholar] [CrossRef] [PubMed]
- Laakso, I.; Seppänen-Laakso, T.; Hiltunen, R.; Ekundayo, O. Composition of the essential oil of Blumea lacera DC. (Asteraceae) leaves from Nigeria. Flavour Fragr. J. 1989, 4, 73–75. [Google Scholar] [CrossRef]
- Hac, L.V.; Muoi, T.T.; Dung, N.X. Essential oils of Blumea lacera (Burm. f) DC. (Asteraceae) produced from arial parts of plants grown in central of Vietnam. J. Essent. Oil-Bear. Plants 2003, 6, 36–40. [Google Scholar] [CrossRef]
- Joshi, R.K.; Pai, S.R.; Nagarajan, H.; Vetrivel, U. Identification of potentially bioactive compounds from Blumea lacera essential oil by gas chromatography-mass spectroscopy and molecular docking studies for targeting inflammatory bowel disease. Nat. Prod. Res. 2022, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Satyal, P.; Chhetri, B.K.; Dosoky, N.S.; Shrestha, S.; Poudel, A.; Setzer, W.N. Chemical composition of Blumea lacera essential oil from Nepal. Biological activities of the essential oil and (Z)-lachnophyllum ester. Nat. Prod. Commun. 2015, 10, 1749–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Başer, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-1-4200-6315-8. [Google Scholar]
- Dinde, A.V.; Lokhande, P.B.; Mujawar, H.A. Essential oil extraction, characterization and antimicrobial study of Blumea laciniata DC from Konkan Region. J. Biol. Chem. Chron. 2018, 4, 70–76. [Google Scholar]
- Joshi, R.K. Volatile constituents of Emilia sonchifolia from India. Nat. Prod. Commun. 2018, 13, 1355–1356. [Google Scholar] [CrossRef] [Green Version]
- Ogundajo, A.L.; Ewekeye, T.; Sharaibi, O.J.; Owolabi, M.S.; Dosoky, N.S.; Setzer, W.N. Antimicrobial activities of sesquiterpene-rich essential oils of two medicinal plants, Lannea egregia and Emilia sonchifolia, from Nigeria. Plants 2021, 10, 488. [Google Scholar] [CrossRef]
- Gough, J.; Powell, V.; Sutherland, M.D. Constitution and biogenesis of two new sesquiterpenes. Tetrahedron Lett. 1961, 2, 763–767. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Gonçalves-Martins, M.; Jones, G.L. Phytochemistry chemogeography and antimicrobial activity of essential oils from Geijera parviflora and Geijera salicifolia (Rutaceae): Two traditional Australian medicinal plants. Phytochemistry 2014, 104, 60–71. [Google Scholar] [CrossRef]
- Baldemir, A.; Demirci, B.; Paksoy, M.Y.; İlgün, S.; Koşar, M.; Başer, K.H.C.; Demirci, F. Chemical composition of the essential oil and antimicrobial activity of Scaligeria DC. taxa and implications for taxonomy. Rec. Nat. Prod. 2018, 12, 14–28. [Google Scholar] [CrossRef]
- Goel, R.; Singh, V.R.; Gupta, A.K.; Mallavarapu, G.R.; Kumar, S. Constituents of the essential oil of Artemisia annua variety Sanjeevani compared with those of its parental varieties Arogya and Jeevanraksha: Selection for high artemisinin content co-selected high sesquiterpene content in essential oil. J. Essent. Oil Bear. Plants 2018, 21, 1336–1348. [Google Scholar] [CrossRef]
- de Miranda, C.A.S.F.; Cardoso, M.G.; de Carvalho, M.L.M.; Figueiredo, A.C.S.; Nelson, D.L.; de Oliveira, C.M.; Gomes, M.S.; de Andrade, J.; de Souza, J.A.; de Albuquerque, L.R. Chemical composition and allelopathic activity of Parthenium hysterophorus and Ambrosia polystachya weeds essential oils. Am. J. Plant Sci. 2014, 5, 1248–1257. [Google Scholar] [CrossRef]
- Kaul, P.N.; Rajeswara Rao, B.R.; Bhattacharya, A.K.; Singh, K.; Mallavarapu, G.R.; Ramesh, S. Essential oil composition of Sphaeranthus indicus L. J. Essent. Oil Res. 2005, 17, 453–454. [Google Scholar] [CrossRef]
- Hung, N.H.; Huong, L.T.; Chung, N.T.; Thi, N.; Thuong, H.; Satyal, P.; Dung, N.A.; Tai, T.A.; Setzer, W.N. Callicarpa species from central Vietnam: Essential oil compositions and mosquito larvicidal activities. Plants 2020, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Hung, N.H.; Dai, D.N.; Cong, T.N.; Setzer, W.N. Pesticidal activities of Callicarpa and Premna essential oils from Vietnam. Nat. Prod. Commun. 2022, 17, 1934578X221110660. [Google Scholar] [CrossRef]
- Lobato Rodrigues, A.B.; Martins, R.L.; Rabelo, É.M.; Tomazi, R.; Santos, L.L.; Brandão, L.B.; Faustino, C.G.; Ferreira Farias, A.L.; Dos Santos, C.B.R.; de Castro Cantuária, P.; et al. Development of nano-emulsions based on Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PLoS ONE 2021, 16, e0254225. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pac. J. Trop. Med. 2010, 3, 874–877. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.S.; Lin, C.Y.; Chung, M.J.; Liu, Y.H.; Huang, C.G.; Chang, S.T. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind. Crops Prod. 2013, 47, 310–315. [Google Scholar] [CrossRef]
- Chellappandian, M.; Thanigaivel, A.; Vasantha-Srinivasan, P.; Edwin, E.S.; Ponsankar, A.; Selin-Rani, S.; Kalaivani, K.; Senthil-Nathan, S.; Benelli, G. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. Environ. Sci. Pollut. Res. 2018, 25, 10294–10306. [Google Scholar] [CrossRef] [PubMed]
- Hung, N.H.; Satyal, P.; Dai, D.N.; Huong, L.T.; Giang, L.D.; Hung, L.T.; Hoa, V.V.; Hien, T.T.; Hien, V.T.; Setzer, W.N. Chemical constituents of the leaf essential oil of Vitex axillariflora (Merr.) Bramley from Vietnam. J. Essent. Oil Bear. Plants 2021, 24, 1256–1259. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4. [Google Scholar]
- Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
- NIST. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
- Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Dissertation, University of Alabama in Huntsville, Huntsville, AL, USA, 2015. [Google Scholar]
RIcalc | RIdb | Compound | % | ||
---|---|---|---|---|---|
Floral | Leaf | Stem | |||
931 | 933 | α-Pinene | 0.5 | 0.1 | 0.1 |
949 | 950 | Camphene | tr | tr | --- |
971 | 972 | Sabinene | 0.1 | tr | --- |
990 | 986 | Safranal | 0.1 | 0.4 | tr |
1024 | 1025 | p-Cymene | 0.1 | tr | tr |
1028 | 1030 | Limonene | tr | tr | --- |
1057 | 1054 | γ-Terpinene | tr | tr | --- |
1063 | 1086 | 2,6,6-Trimethyl-1,4-cyclohexadiene-1-carboxaldehyde | 0.1 | tr | tr |
1099 | 1101 | Linalool | 0.2 | 0.1 | tr |
1101 | 1106 | Filifolone | 1.2 | 0.9 | 0.1 |
1105 | 1107 | Nonanal | 0.1 | 0.1 | --- |
1108 | 1106 | iso-Chrysanthenone | 0.1 | 0.1 | --- |
1112 | 1110 | (E)-4,8-Dimethylnona-1,3,7-triene | 0.1 | tr | tr |
1122 | 1124 | Chrysanthenone | 1.3 | 1.0 | 0.1 |
1129 | 1129 | 1,3,8-p-Menthatriene | --- | --- | 0.1 |
1137 | 1136 | trans-Chrysanthenol | 0.3 | 0.2 | 0.1 |
1159 | 1152 | Albene | tr | tr | 0.2 |
1223 | 1215 | Isothymyl methyl ether | --- | --- | tr |
1229 | 1229 | Thymyl methyl ether | 0.1 | 0.1 | 1.0 |
1238 | 1239 | Carvacryl methyl ether | tr | tr | 0.1 |
1256 | 1261 | cis-Chrysanthenyl acetate | 0.1 | --- | --- |
1284 | 1285 | Bornyl acetate | --- | --- | 0.1 |
1290 | 1289 | Thymol | --- | --- | tr |
1345 | 1345 | Silphinene | --- | --- | tr |
1374 | 1375 | α-Copaene | 0.1 | 0.1 | tr |
1380 | 1381 | cis-β-Elemene | tr | 0.1 | 0.1 |
1382 | 1382 | β-Bourbonene | tr | tr | tr |
1386 | 1387 | β-Cubebene | 0.1 | 0.1 | tr |
1388 | 1390 | trans-β-Elemene | 1.6 | 2.1 | 1.1 |
1394 | 1392 | 2-Ethylidene-6-methyl-3,5-heptadienal | 0.9 | 0.6 | --- |
1413 | 1411 | Thymohydroquinone dimethyl ether | 5.0 | 4.1 | 28.4 |
1419 | 1417 | (E)-β-Caryophyllene | 23.8 | 27.2 | 11.7 |
1428 | 1430 | β-Copaene | 0.2 | 0.1 | 0.1 |
1431 | 1432 | trans-α-Bergamotene | 0.3 | 0.2 | 0.2 |
1434 | 1443 | Dimethoxy-p-cymenene | 0.1 | tr | 0.5 |
1445 | 1446 | epi-β-Santene | --- | --- | 0.1 |
1446 | 1453 | Geranyl acetone | 0.1 | tr | tr |
1451 | 1452 | (E)-β-Farnesene | 0.9 | 0.8 | 0.5 |
1455 | 1454 | α-Humulene | 3.7 | 3.5 | 1.5 |
1459 | 1457 | allo-Aromadendrene | 0.1 | 0.1 | tr |
1461 | 1461 | cis-Cadina-1(6),4-diene | 0.1 | 0.1 | --- |
1471 | 1475 | trans-Cadina-1(6),4-diene | tr | --- | --- |
1473 | --- | Unidentified (43, 148, 218) | 0.4 | 0.2 | 1.0 |
1475 | 1480 | Thymyl isobutyrate | 0.9 | 0.5 | 2.7 |
1477 | 1481 | γ-Curcumene | 5.9 | 7.7 | 4.7 |
1480 | 1479 | ar-Curcumene | 8.0 | 3.7 | 1.9 |
1482 | 1483 | Germacrene D | 18.5 | 21.0 | 11.2 |
1482 | 1490 | Neryl isobutyrate | tr | --- | 5.2 |
1488 | 1489 | β-Selinene | 0.4 | 0.3 | 0.2 |
1491 | 1492 | trans-Muurola-4(14),5-diene | tr | 0.1 | 0.1 |
1493 | 1493 | α-Zingiberene | 5.7 | 7.1 | 4.6 |
1497 | 1497 | α-Muurolene | 0.5 | 0.4 | 0.2 |
1502 | 1504 | (E,E)-α-Farnesene | 0.6 | 0.2 | 0.1 |
1506 | 1508 | β-Bisabolene | tr | 0.1 | 0.1 |
1512 | 1514 | γ-Cadinene | 0.5 | 0.3 | 0.3 |
1516 | 1518 | δ-Cadinene | 1.7 | 1.0 | 0.6 |
1522 | 1521 | β-Sesquiphellandrene | 3.6 | 3.8 | 2.4 |
1559 | 1562 | (E)-Nerolidol | 0.4 | 0.2 | 0.1 |
1565 | 1571 | Thymyl 2-methylbutanoate | 0.9 | 0.4 | 1.1 |
1568 | 1571 | Neryl 2-methylbutanoate | 0.9 | 0.8 | 3.3 |
1576 | 1580 | Neryl isovalerate | 0.8 | 0.5 | 1.3 |
1582 | 1587 | Caryophyllene oxide | 1.4 | 1.4 | 0.5 |
1598 | 1598 | Humulene epoxide I | 0.2 | 0.2 | 0.1 |
1610 | 1611 | Humulene epoxide II | 0.1 | 0.1 | tr |
1613 | 1611 | Zingiberenol | 0.3 | 0.2 | 0.3 |
1630 | 1632 | 7-epi-cis-Sesquisabinene hydrate | 0.2 | 0.1 | 0.3 |
1634 | 1635 | Caryophylla-4(12),8(13)-dien-5α-ol | 0.1 | 0.1 | 0.1 |
1637 | 1636 | Caryophylla-4(12),8(13)-dien-5β-ol | 0.1 | 0.3 | 0.1 |
1639 | 1638 | (2S,5E)-Caryophyll-5-en-12-al | 1.0 | 1.1 | 0.4 |
1642 | 1643 | τ-Cadinol | 0.8 | 0.8 | 3.0 |
1644 | 1645 | τ-Muurolol | 0.4 | 0.3 | 0.4 |
1646 | 1645 | δ-Cadinol | 0.1 | 0.1 | 0.1 |
1651 | 1650 | β-Eudesmol | --- | --- | 0.1 |
1655 | 1655 | α-Cadinol | 1.2 | 1.0 | 1.3 |
1659 | 1658 | Selin-11-en-4α-ol | tr | 0.1 | 0.1 |
1665 | 1665 | Intermedeol | tr | --- | 0.1 |
1667 | 1673 | 6-Methoxythymyl isobutyrate | 0.2 | 0.1 | 0.9 |
1670 | 1671 | 14-Hydroxy-9-epi-(E)-caryophyllene | --- | 0.1 | --- |
1685 | 1687 | 4-Himachalen-1β-ol (2-Himachalen-6β-ol) | 0.7 | 0.5 | 0.8 |
1687 | 1685 | α-Bisabolol | 0.1 | 0.1 | --- |
1694 | 1713 | (2Z,6Z)-Farnesal | 0.1 | --- | --- |
1713 | 1715 | Pentadecanal | --- | 0.2 | 0.2 |
1745 | 1751 | Xanthorrhizol | --- | --- | 0.1 |
1780 | 1780 | (Z)-Nerolidyl isobutyrate | 0.2 | --- | --- |
2013 | --- | Unidentified (43, 71, 145, 162) | 0.3 | 0.2 | 1.8 |
2098 | --- | Unidentified (43, 57, 71, 85, 145, 162) | 0.5 | 0.3 | 1.0 |
2103 | 2106 | (E)-Phytol | tr | 0.2 | 0.1 |
2500 | 2500 | Pentacosane | tr | tr | 0.1 |
Monoterpene hydrocarbons | 0.6 | 0.1 | 0.1 | ||
Oxygenated monoterpenoids | 13.0 | 9.3 | 44.9 | ||
Sesquiterpene hydrocarbons | 76.1 | 80.1 | 41.5 | ||
Oxygenated sesquiterpenoids | 7.6 | 6.8 | 7.7 | ||
Others | 0.4 | 0.9 | 0.6 | ||
Total identified | 97.7 | 97.3 | 94.7 |
RIcalc | RIdb | Compound | % |
---|---|---|---|
925 | 925 | α-Thujene | tr |
933 | 933 | α-Pinene | 8.8 |
949 | 950 | Camphene | tr |
952 | 953 | Thuja-2,4(10)-diene | tr |
970 | 969 | Dimethyltrisulfide | tr |
972 | 972 | Sabinene | tr |
977 | 978 | β-Pinene | tr |
985 | 986 | 6-Methylhept-5-en-2-one | tr |
988 | 989 | Myrcene | 0.1 |
989 | 989 | 2-Pentylfuran | tr |
1007 | 1007 | α-Phellandrene | tr |
1025 | 1025 | p-Cymene | 0.1 |
1029 | 1030 | Limonene | 0.1 |
1031 | 1031 | β-Phellandrene | tr |
1045 | 1045 | (E)-β-Ocimene | tr |
1100 | 1101 | Linalool | 0.1 |
1106 | 1107 | Nonanal | 0.1 |
1107 | 1107 | 1-Octen-3-yl acetate | tr |
1110 | 1108 | p-Mentha-2,8-dien-1-ol | tr |
1113 | 1113 | (E)-1,5-Dimethylnona-1,3,7-triene | tr |
1146 | 1145 | trans-Verbenol | tr |
1159 | 1161 | Albene | 0.3 |
1196 | 1195 | α-Terpineol | tr |
1207 | 1206 | Decanal | tr |
1230 | 1229 | Thymyl methyl ether | 0.4 |
1239 | 1239 | Carvacryl methyl ether | tr |
1266 | 1272 | Nonanoic acid | 0.1 |
1284 | 1285 | Bornyl acetate | 0.3 |
1323 | 1326 | Myrtenyl acetate | tr |
1346 | 1348 | α-Cubebene | 0.1 |
1350 | 1348 | α-Longipinene | tr |
1359 | 1361 | Neryl acetate | 0.3 |
1371 | 1371 | Decanoic acid | 1.5 |
1375 | 1375 | α-Copaene | 1.2 |
1383 | 1382 | β-Bourbonene | 0.1 |
1387 | 1387 | β-Cubebene | 0.4 |
1389 | 1390 | trans-β-Elemene | 0.3 |
1415 | 1411 | Thymohydroquinone dimethyl ether | 29.4 |
1420 | 1417 | (E)-β-Caryophyllene | 19.7 |
1430 | 1430 | β-Copaene | 0.2 |
1433 | 1432 | trans-α-Bergamotene | 0.1 |
1441 | 1439 | (Z)-β-Farnesene | 0.1 |
1447 | 1446 | epi-β-Santalene | 0.1 |
1453 | 1452 | (E)-β-Farnesene | 3.5 |
1456 | 1454 | α-Humulene | 4.3 |
1460 | 1457 | allo-Aromadendrene | 0.5 |
1475 | 1478 | γ-Muurolene | 0.1 |
1479 | 1481 | (E)-β-Ionone | 0.1 |
1482 | 1483 | Germacrene D | 7.8 |
1484 | 1483 | trans-β-Bergamotene | 0.5 |
1489 | 1489 | β-Selinene | 0.1 |
1492 | 1492 | trans-Muurola-4(14),5-diene | 0.1 |
1496 | 1497 | α-Selinene | 0.7 |
1498 | 1497 | α-Muurolene | 0.2 |
1504 | 1504 | (E,E)-α-Farnesene | 1.1 |
1508 | 1508 | β-Bisabolene | 0.1 |
1513 | 1514 | γ-Cadinene | 0.1 |
1518 | 1515 | Dihydrolachnophyllum ester B | 1.0 |
1518 | 1518 | δ-Cadinene | 0.8 |
1522 | 1519 | trans-Calamenene | 0.1 |
1524 | 1523 | 7-epi-cis-Sesquisabinene hydrate | 0.2 |
1561 | 1562 | (E)-Nerolidol | 0.4 |
1564 | 1561 | 7-Hydroxyfarnesene | 0.2 |
1571 | 1568 | Palustrol | 0.2 |
1579 | 1580 | Neryl isovalerate | 0.6 |
1583 | 1587 | Caryophyllene oxide | 3.6 |
1593 | 1593 | Salvial-4(14)-en-1-one | 0.1 |
1605 | 1605 | Ledol | 0.2 |
1611 | 1611 | Humulene epoxide II | 0.4 |
1613 | 1610 | (Z)-Sesquilavandulol | 0.2 |
1617 | 1611 | β-Atlantol | 0.2 |
1629 | 1628 | 1-epi-Cubenol | 0.1 |
1635 | 1635 | Caryophylla-4(12),8(13)-dien-5α-ol | 0.1 |
1638 | 1636 | Caryophylla-4(12),8(13)-dien-5β-ol | 0.5 |
1640 | 1639 | allo-Aromadendrene epoxide | 0.1 |
1643 | 1643 | τ-Cadinol | 0.3 |
1645 | 1645 | τ-Muurolol | 0.2 |
1647 | 1653 | Pogostol | 0.2 |
1656 | 1655 | α-Cadinol | 0.8 |
1671 | 1671 | 14-Hydroxy-9-epi-(E)-caryophyllene | 0.3 |
1680 | 1683 | 15-Hydroxy-α-muurolene | 0.3 |
1686 | 1683 | Germacra-4(15),5,10(14)-trien-1α-ol | 0.5 |
1716 | 1715 | Pentadecanal | 0.4 |
1841 | 1841 | Phytone | 0.1 |
1862 | 1856 | (Z)-Lanceol acetate | 2.6 |
Monoterpene hydrocarbons | 9.1 | ||
Oxygenated monoterpenoids | 30.5 | ||
Sesquiterpene hydrocarbons | 42.4 | ||
Oxygenated sesquiterpenoids | 12.2 | ||
Others | 3.5 | ||
Total identified | 97.8 |
RIcalc | RIdb | Compound | % |
---|---|---|---|
882 | 880 | 2-Butylfuran | 0.3 |
933 | 932 | α-Pinene | 2.4 |
949 | 950 | Camphene | 0.2 |
977 | 978 | β-Pinene | 1.2 |
989 | 989 | Myrcene | 0.8 |
991 | 987 | 1-Decene | 0.4 |
1024 | 1024 | p-Cymene | 1.7 |
1029 | 1030 | Limonene | 1.5 |
1046 | 1045 | (E)-β-Ocimene | 0.8 |
1092 | 1091 | 1-Undecene | 41.9 |
1335 | 1335 | δ-Elemene | 0.6 |
1369 | 1367 | Cyclosativene | 0.3 |
1375 | 1375 | α-Copaene | 0.3 |
1387 | 1387 | β-Cubebene | 0.4 |
1389 | 1390 | trans-β-Elemene | 1.4 |
1418 | 1417 | (E)-β-Caryophyllene | 2.2 |
1428 | 1427 | γ-Elemene | 0.6 |
1452 | 1452 | (E)-β-Farnesene | 0.2 |
1454 | 1454 | α-Humulene | 2.8 |
1459 | 1461 | Precocene I (=6-Demethoxyageratochromene) | 0.8 |
1474 | 1475 | γ-Muurolene | 0.6 |
1480 | 1480 | Germacrene D | 11.0 |
1492 | 1492 | 1-Pentadecene | 0.2 |
1497 | 1497 | α-Muurolene | 0.5 |
1503 | 1503 | (E,E)-α-Farnesene | 0.3 |
1506 | 1508 | β-Bisabolene | 1.4 |
1511 | 1512 | γ-Cadinene | 0.4 |
1517 | 1518 | δ-Cadinene | 0.8 |
1527 | 1528 | Kessane | 0.5 |
1557 | 1557 | Germacrene B | 0.6 |
1559 | 1561 | (E)-Nerolidol | 1.1 |
1566 | 1566 | 1,5-Epoxysalvial-4(14)-ene | 0.9 |
1575 | 1576 | Spathulenol | 1.0 |
1580 | 1577 | Caryophyllene oxide | 1.3 |
1607 | 1607 | Humulene epoxide I | 1.2 |
1626 | 1629 | iso-Spathulenol | 0.7 |
1637 | 1644 | allo-Aromadendrene epoxide | 0.8 |
1640 | 1640 | τ-Cadinol | 0.3 |
1642 | 1644 | τ-Muurolol | 0.5 |
1653 | 1655 | α-Cadinol | 3.8 |
1659 | --- | Unidentified (43, 79, 91, 105, 133(100%), 163, 206) | 1.1 |
1666 | --- | Unidentified (41, 55, 81(100%), 93, 164, 206) | 1.2 |
1827 | --- | Unidentified (41, 55, 81, 123(100%), 151, 191) | 2.8 |
1839 | 1841 | Phytone | 0.8 |
2113 | 2109 | Phytol | 3.8 |
Monoterpene hydrocarbons | 8.7 | ||
Oxygenated monoterpenoids | 0.0 | ||
Sesquiterpene hydrocarbons | 24.7 | ||
Oxygenated sesquiterpenoids | 11.6 | ||
Diterpenoids | 3.8 | ||
Others | 44.4 | ||
Total identified | 93.2 |
RIcalc | RIdb | Compound | % |
---|---|---|---|
922 | 923 | Tricyclene | 0.1 |
925 | 925 | α-Thujene | tr |
932 | 932 | α-Pinene | 1.0 |
949 | 950 | Camphene | 2.2 |
972 | 972 | Sabinene | 0.6 |
978 | 978 | β-Pinene | 3.0 |
979 | 978 | 1-Octen-3-ol | 0.3 |
986 | 986 | Octan-3-one | tr |
990 | 989 | Myrcene | 14.4 |
1025 | 1025 | p-Cymene | 0.1 |
1030 | 1030 | Limonene | 1.0 |
1031 | 1031 | β-Phellandrene | 0.5 |
1036 | 1035 | (Z)-β-Ocimene | tr |
1046 | 1046 | (E)-β-Ocimene | 3.1 |
1052 | 1051 | 2,3,6-Trimethylhepta-1,5-diene | 0.1 |
1058 | 1058 | γ-Terpinene | tr |
1081 | 1079 | 1-Nonen-3-ol | 0.2 |
1086 | 1086 | Terpinolene | tr |
1099 | 1098 | Perillene | 0.1 |
1101 | 1101 | Linalool | 0.1 |
1114 | 1114 | 4,8 Dimethylnona-1,3,7-triene | 0.4 |
1140 | 1139 | (E)-Myroxide | tr |
1182 | 1180 | Terpinen-4-ol | 0.1 |
1189 | 1187 | Cryptone | tr |
1286 | 1286 | Cogeijerene | 4.8 |
1332 | 1331 | Bicycloelemene | 0.1 |
1335 | 1335 | δ-Elemene | 0.3 |
1347 | 1348 | α-Cubebene | 0.1 |
1370 | 1367 | Cyclosativene | 0.2 |
1376 | 1375 | α-Copaene | 0.3 |
1379 | 1380 | Daucene | 0.2 |
1382 | 1383 | cis-β-Elemene | 0.4 |
1384 | 1385 | β-Bourbonene | 0.5 |
1388 | 1387 | β-Cubebene | 0.7 |
1390 | 1390 | trans-β-Elemene | 0.9 |
1392 | 1392 | Sativene | 0.1 |
1416 | 1414 | α-Cedrene | 0.1 |
1421 | 1418 | (E)-β-Caryophyllene | 12.6 |
1430 | 1432 | γ-Elemene | 0.7 |
1433 | 1432 | trans-α-Bergamotene | 0.1 |
1441 | 1439 | (Z)-β-Farnesene | 0.1 |
1442 | 1442 | Guaia-6,9-diene | 0.1 |
1445 | 1447 | iso-Germacrene D | 0.1 |
1454 | 1452 | (E)-β-Farnesene | 0.2 |
1456 | 1454 | α-Humulene | 1.5 |
1476 | 1478 | γ-Muurolene | 2.5 |
1484 | 1483 | Germacrene D | 23.2 |
1490 | 1489 | β-Selinene | 0.2 |
1493 | 1492 | trans-Muurola-4(15),5-diene | 0.1 |
1496 | 1497 | Bicyclogermacrene | 0.8 |
1499 | 1500 | α-Muurolene | 0.5 |
1505 | 1504 | (E,E)-α-Farnesene | 3.3 |
1508 | 1508 | β-Bisabolene | 0.1 |
1514 | 1514 | γ-Cadinene | 0.1 |
1516 | 1515 | Cubebol | 0.2 |
1519 | 1520 | δ-Cadinene | 0.6 |
1525 | 1524 | β-Sesquiphellandrene | 0.2 |
1533 | 1532 | Selina-4(15),7(11)-diene | 0.4 |
1560 | 1560 | Germacrene B | 0.4 |
1562 | 1560 | (E)-Nerolidol | 0.6 |
1566 | 1571 | iso-Shyobunol | 2.8 |
1578 | 1576 | Spathulenol | 0.5 |
1584 | 1587 | Caryophyllene oxide | 2.4 |
1604 | 1609 | Carotol | 1.8 |
1611 | 1611 | Humulene epoxide II | 0.2 |
1628 | 1624 | Muurola-4,10(14)-dien-1α-ol | 0.6 |
1630 | 1629 | iso-Spathulenol | 0.3 |
1634 | 1632 | Muurola-4,10(14)-dien-1β-ol | 1.4 |
1641 | 1644 | allo-Aromadendrene epoxide | 0.7 |
1644 | 1643 | τ-Cadinol | 0.1 |
1646 | 1645 | τ-Murrolol | 0.1 |
1648 | 1651 | α-Muurolol (=δ-Cadinol) | 0.6 |
1657 | 1655 | α-Cadinol | 0.6 |
1865 | 1860 | Platambin | 0.3 |
2109 | 2109 | Phytol | 0.5 |
Monoterpene hydrocarbons | 26.1 | ||
Oxygenated monoterpenoids | 0.2 | ||
Sesquiterpene hydrocarbons | 51.9 | ||
Oxygenated sesquiterpenoids | 13.2 | ||
Diterpenoids | 0.5 | ||
Others | 5.7 | ||
Total identified | 97.8 |
RIcalc | RIdb | Compound | % |
---|---|---|---|
926 | 925 | α-Thujene | tr |
934 | 933 | α-Pinene | 21.0 |
950 | 950 | Camphene | 0.1 |
953 | 953 | Thuja-2,4(10)-diene | tr |
973 | 972 | Sabinene | 0.1 |
978 | 978 | β-Pinene | 0.2 |
979 | 982 | 1-Octen-3-ol | 0.2 |
989 | 989 | Myrcene | 0.1 |
1025 | 1025 | p-Cymene | 0.2 |
1029 | 1030 | Limonene | 0.1 |
1046 | 1045 | (E)-β-Ocimene | 0.2 |
1081 | 1079 | 1-Nonen-3-ol | 0.1 |
1099 | 1099 | (2Z)-Hexenyl propanoate | 0.9 |
1106 | 1107 | Nonanal | 0.1 |
1108 | 1107 | 1-Octen-3-yl acetate | 0.7 |
1111 | 1109 | Vinyl 2-ethylhexanoate | 0.3 |
1120 | 1118 | 3-Octyl acetate | 0.4 |
1194 | 1184 | 1-Decen-3-ol | 36.9 |
1205 | 1218 | 3-Octyl propionate | 5.6 |
1216 | 1218 | 3-Nonyl acetate | 0.1 |
1229 | 1229 | Thymyl methyl ether | 0.2 |
1242 | 1242 | Cuminaldehyde | 0.1 |
1250 | 1249 | 6-Methyldodecane | 0.2 |
1290 | 1294 | 2,2,4,4,6,8,8-Heptamethylnonane | 2.6 |
1295 | 1294 | trans-Pinocarvyl acetate | 0.1 |
1322 | 1322 | Myrtenyl acetate | 0.1 |
1345 | 1349 | 7-epi-Silphiperfol-5-ene | 0.3 |
1380 | 1382 | Modheph-2-ene | 2.4 |
1387 | 1385 | α-Isocomene | 0.4 |
1409 | 1413 | β-Isocomene | 0.4 |
1411 | 1411 | Thymohydroquinone dimethyl ether | 0.4 |
1418 | 1417 | (E)-β-Caryophyllene | 5.5 |
1452 | 1452 | (E)-β-Farnesene | 0.1 |
1454 | 1454 | α-Humulene | 0.4 |
1458 | 1458 | allo-Aromadendrene | 0.5 |
1460 | 1461 | Precocene 1 (=6-Demethoxyageratochromene) | 0.5 |
1479 | 1480 | Germacrene D | 0.1 |
1496 | 1497 | α-Muurolene | 0.1 |
1511 | 1512 | γ-Cadinene | 0.8 |
1515 | 1518 | Isoshyobunone | 0.5 |
1516 | 1518 | δ-Cadinene | 0.3 |
1579 | 1577 | Caryophyllene oxide | 1.1 |
1595 | 1597 | Dimethyl-α-ionone | 0.2 |
1600 | 1600 | β-Oplopenone | 0.1 |
1601 | 1604 | Geranyl isovalerate | 0.1 |
1623 | 1624 | Muurola-4,10(14)-dien-1β-ol | 0.1 |
1631 | 1631 | Caryophylla-4(12),8(13)-dien-5α-ol | 0.1 |
1634 | 1636 | Caryophylla-4(12),8(13)-dien-5β-ol | 0.2 |
1640 | 1641 | τ-Cadinol | 7.5 |
1651 | 1652 | β-Himachalol | 1.5 |
1662 | 1660 | Selin-11-en-4β-ol | 0.1 |
1671 | 1672 | Jatamansone | 2.0 |
1834 | 1836 | Neophytadiene | 0.4 |
1839 | 1841 | Phytone | 0.3 |
2103 | 2102 | Phytol | 2.0 |
Monoterpene hydrocarbons | 22.0 | ||
Oxygenated monoterpenoids | 1.1 | ||
Sesquiterpene hydrocarbons | 10.9 | ||
Oxygenated sesquiterpenoids | 13.4 | ||
Diterpenoids | 2.3 | ||
Others | 48.9 | ||
Total identified | 98.5 |
Aedes Aegypti | ||||
Essential Oil | 24 h | 48 h | ||
LC50 | LC90 | LC50 | LC90 | |
Blumea lacera leaf | 64.7 (59.8–70.1) | 96.4 (89.4–105.3) | 55.1 (50.5–60.2) | 83.4 (76.6–92.1) |
Blumea sinuata aerial parts | 23.4 (21.2–25.8) | 36.2 (32.6–41.9) | 17.4 (15.6–19.1) | 27.3 (24.8–31.3) |
Emilia sonchifolia aerial parts | 30.1 (27.9–32.9) | 40.8 (37.3–46.0) | 26.2 (24.2–28.8) | 36.6 (33.1–42.1) |
Parthenium hysterophorus aerial parts | 47.6 (44.7–50.5) | 63.4 (59.7–68.5) | 36.3 (33.2–39.6) | 57.7 (53.1–63.9) |
Sphaeranthus africanus aerial parts | 50.7 (46.6–55.9) | 74.4 (67.4–84.6) | 44.2 (40.8–48.4) | 65.3 (59.4–73.6) |
Aedes albopictus | ||||
24 h | 48 h | |||
LC50 | LC90 | LC50 | LC90 | |
Blumea lacera leaf | 116.7 (110.3–123.7) | 155.8 (146.4–168.5) | 99.4 (92.5–107.0) | 147.4 (136.8–161.3) |
Blumea sinuata aerial parts | 29.1 (24.7–33.4) | 104.7 (85.0–239.3) | 12.4 (9.6–14.9) | 36.5 (31.0–45.5) |
Emilia sonchifolia aerial parts | 29.6 (27.4–32.0) | 46.3 (42.8–50.9) | 23.4 (21.3–25.7) | 40.7 (37.2–45.5) |
Parthenium hysterophorus aerial parts | 44.4 (41.2–47.8) | 66.4 (61.7–72.4) | 33.8 (29.9–37.6) | 63.6 (57.9–71.2) |
Sphaeranthus africanus aerial parts | 36.9 (34.3–39.6) | 56.4 (52.5–61.3) | 28.8 (26.6–31.2) | 44.4 (40.9–49.0) |
Diplonychus rusticus | ||||
24 h | 48 h | |||
LC50 | LC90 | LC50 | LC90 | |
Blumea lacera leaf | >50 | >50 | >50 | >50 |
Blumea sinuata aerial parts | >100 | >100 | >100 | >100 |
Emilia sonchifolia aerial parts | 48.1 (±8.9) a | --- | 34.4 (±8.9) a | --- |
Parthenum hysterophorus aerial parts | >100 | >100 | >100 | >100 |
Sphaeranthus africanus aerial parts | >50 | >50 | >50 | >50 |
Plant Species | Collection Location (GPS) | Part | Mass Plant Material (kg) | Extraction Yield (%w/w) | Collection Time |
---|---|---|---|---|---|
B. lacera | Nghia Dan District, Nghe An Province (19°23′05″ N, 105°25′51″ E). | Aerial parts | 3.0 | 1.2 | August 2021 |
Leaves | 0.3 | 1.56 | August 2021 | ||
Flowers | 0.3 | 1.10 | August 2021 | ||
Stems | 0.3 | 0.35 | August 2021 | ||
B. sinuata | Nghia Dan District, Nghe An Province (19°20′06″ N, 105°25′59″ E). | Aerial parts | 4.0 | 0.16 | August 2021 |
E. sonchifolia | Diên Lãm Commune, Pù Huống Natural Reserve, Nghệ An Province (19°26′44″ N, 104°58′40″ E). | Aerial parts | 3.0 | 0.51 | August 2021 |
P. hysterophorus | Bình Chuẩn Commune, Pù Huống Natural Reserve, Nghệ An Province (19°16′53″ N, 104°55′16″ E). | Aerial parts | 5.0 | 0.05 | August 2021 |
S. africanus | Diên Lãm Commune, Pù Huống Natural Reserve, Nghệ An Province (19°26′44″ N, 104°58′40″ E). | Aerial parts | 4.0 | 0.25 | August 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoi, T.M.; Satyal, P.; Huong, L.T.; Hau, D.V.; Binh, T.D.; Duyen, D.T.H.; Dai, D.N.; Huy, N.G.; Chinh, H.V.; Hoa, V.V.; et al. Essential Oils from Vietnamese Asteraceae for Environmentally Friendly Control of Aedes Mosquitoes. Molecules 2022, 27, 7961. https://doi.org/10.3390/molecules27227961
Hoi TM, Satyal P, Huong LT, Hau DV, Binh TD, Duyen DTH, Dai DN, Huy NG, Chinh HV, Hoa VV, et al. Essential Oils from Vietnamese Asteraceae for Environmentally Friendly Control of Aedes Mosquitoes. Molecules. 2022; 27(22):7961. https://doi.org/10.3390/molecules27227961
Chicago/Turabian StyleHoi, Tran Minh, Prabodh Satyal, Le Thi Huong, Dang Viet Hau, Tran Duc Binh, Dang Thi Hong Duyen, Do Ngoc Dai, Ngo Gia Huy, Hoang Van Chinh, Vo Van Hoa, and et al. 2022. "Essential Oils from Vietnamese Asteraceae for Environmentally Friendly Control of Aedes Mosquitoes" Molecules 27, no. 22: 7961. https://doi.org/10.3390/molecules27227961
APA StyleHoi, T. M., Satyal, P., Huong, L. T., Hau, D. V., Binh, T. D., Duyen, D. T. H., Dai, D. N., Huy, N. G., Chinh, H. V., Hoa, V. V., Hung, N. H., & Setzer, W. N. (2022). Essential Oils from Vietnamese Asteraceae for Environmentally Friendly Control of Aedes Mosquitoes. Molecules, 27(22), 7961. https://doi.org/10.3390/molecules27227961