Adsorption of Toxic Tetracycline, Thiamphenicol and Sulfamethoxazole by a Granular Activated Carbon (GAC) under Different Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Granular Activated Carbon
2.2. Effect of pH on GAC Adsorption
2.3. Effect of GAC Dosage on the Adsorption
2.4. Determination of the Adsorption Equilibrium Time
2.5. Sorption Kinetics
Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sorbate | C0 (mg/L) | qe,exp (mg/g) | qe,cal (mg/g) | K1 (min−1) | R2 | qe,cal (mg/g) | K2 [g/(min mg)] | K2q2e,cal [mg/(min g)] | R2 |
TC | 6.01 | 0.52 | 2.332 | 0.023 | 0.77 | 0.49 | 0.704 | 0.169 | 0.68 |
12.02 | 1.27 | 0.481 | 0.043 | 0.88 | 1.64 | 0.028 | 0.076 | 0.91 | |
24.04 | 2.78 | 2.773 | 0.053 | 0.98 | 3.46 | 0.014 | 0.167 | 0.98 | |
48.09 | 5.75 | 3.377 | 0.050 | 0.94 | 6.27 | 0.020 | 0.790 | 0.99 | |
THI | 7.12 | 0.79 | 15.7 | 0.109 | 0.73 | 0.80 | 5.14 | 3.306 | 1.00 |
10.68 | 1.24 | 14.11 | 0.100 | 0.74 | 1.25 | 2.39 | 3.740 | 1.00 | |
17.81 | 2.13 | 12.23 | 0.091 | 0.76 | 2.14 | 2.65 | 12.158 | 1.00 | |
35.62 | 4.35 | 10.51 | 0.096 | 0.75 | 4.37 | 1.54 | 29.409 | 1.00 | |
SMZ | 6.33 | 0.63 | 4.57 | 0.021 | 0.78 | 0.65 | 0.811 | 0.349 | 0.99 |
12.66 | 1.42 | 3.38 | 0.027 | 0.77 | 1.46 | 0.482 | 1.033 | 0.99 | |
25.32 | 3 | 1.11 | 0.038 | 0.84 | 3.10 | 0.185 | 1.781 | 0.99 | |
50.65 | 6.16 | 1.58 | 0.074 | 0.95 | 6.4 | 0.78 | 31.948 | 0.99 |
2.6. Sorption Isotherm
2.7. Adsorption Thermodynamics
2.8. Regeneration Experiments
3. Materials and Methods
3.1. GAC Preparation
3.2. Chemicals
3.3. Methodology for Selecting Antibiotics
3.4. Sorption Experiments
3.5. Regeneration Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhou, L.-J.; Ying, G.-G.; Liu, S.; Zhao, J.-L.; Yang, B.; Chen, Z.-F.; Lai, H.-J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci. Total. Environ. 2013, 452–453, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.; Ternes, T. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef]
- Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Huang, C.H.; Renew, J.E. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. J. Contemp. Water Res. Educ. 2011, 1, 324–332. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, X.; Yin, D.; Zhang, H.; Yu, Z. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere 2011, 82, 822–828. [Google Scholar] [CrossRef]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment agents of subtle change. Environ. Health Perspect. 1999, 107, 907–938. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Mao, D.; Luo, Y.; Wang, L.; Xu, B.; Xu, L. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 2012, 46, 2355–2364. [Google Scholar] [CrossRef]
- Lai, H.-T.; Hou, J.-H.; Su, C.-I.; Chen, C.-L. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotoxicol. Environ. Saf. 2009, 72, 329–334. [Google Scholar] [CrossRef]
- Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K.H. Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, J. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 2014, 95, 604–612. [Google Scholar] [CrossRef]
- Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrjouei, M.; Mueller, S. Energy consumption of three different advanced oxidation methods for water treatment: A cost-effectiveness study. J. Clean. Prod. 2014, 65, 178–183. [Google Scholar]
- Sera, B.V.; Muflihatul, M.; Eko, Y. Degradation of ciprofloxacin in aqueous solution using ozone microbubbles: Spectroscopic, kinetics, and antibacterial analysis. Heliyon 2022, 8, e10137. [Google Scholar]
- Shang, K.; Morent, R.; Wang, N.; Wang, Y.; Peng, B.; Jiang, N.; Lu, N.; Li, J. Degradation of sulfamethoxazole (SMX) by water falling film DBD Plasma/Persulfate: Reactive species identification and their role in SMX degradation. Chem. Eng. J. 2021, 431, 133916. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. Adsorption of phenolic compounds on low-cost adsorbents: A review Advances in Colloid and Interface Science. Process Biochem. 2008, 143, 148–167. [Google Scholar]
- Han, R.; Ding, D.; Xu, Y.; Zou, W.; Wang, Y.; Li, Y.; Zou, L. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresour. Technol. 2008, 99, 2938–2946. [Google Scholar] [CrossRef]
- Lam, A.; Rivera, A.; Rodrídguez-Fuentes, G. Theoretical study of metronidazole adsorption on clinoptilolite. Microporous Mesoporous Mater. 2001, 49, 157–162. [Google Scholar] [CrossRef]
- Homem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices—A review. J. Environ. Manag. 2011, 92, 2304–2347. [Google Scholar] [CrossRef]
- Rabølle, M.; Spliid, N.H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 2000, 40, 715–722. [Google Scholar] [CrossRef]
- Ahmed, M.J. Microwave assisted preparation of microporous activated carbon from Siris seed pods for adsorption of metro-nidazole antibiotic. Chem. Eng. J. 2013, 214, 310–318. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Theydan, S.K. Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption. J. Anal. Appl. Pyrolysis 2012, 99, 101–109. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Prados-Joya, G.; Sánchez-Polo, M.; Ferro-García, M.; Bautista-Toledo, I. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. J. Hazard. Mater. 2009, 170, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Ocampo-Pérez, R.; Orellana-Garcia, F.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Velo-Gala, I.; López-Ramón, M.; Alvarez-Merino, M. Nitroimidazoles adsorption on activated carbon cloth from aqueous solution. J. Colloid Interface Sci. 2013, 401, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Dan, C.; Jian, D. Core-shell magnetic nanoparticles with surface-imprinted polymer coating as a new adsorbent for solid phase extraction of metronidazole. Anal. Methods 2013, 5, 722–728. [Google Scholar]
- He, J.; Dai, J.; Zhang, T.; Sun, J.; Xie, A.; Tian, S.; Yan, Y.; Huo, P. Preparation of highly porous carbon from sustainable α-cellulose for superior removal performance of tetracycline and sulfamethazine from water. RSC Adv. 2016, 6, 28023–28033. [Google Scholar] [CrossRef]
- Fan, Y.; Zheng, C.; Hou, H. Preparation of Granular Activated Carbon and Its Mechanism in the Removal of Isoniazid, Sulfamethoxazole, Thiamphenicol, and Doxycycline from Aqueous Solution. Environ. Eng. Sci. 2019, 36, 1027–1040. [Google Scholar] [CrossRef]
- He, Y.; Cheng, F. The Affect Analysis of Microwave Regeneration on the Adsorption Properties of Granular Activated Carbon. J. Tianjin Inst. Urban Constr. 2012, 18, 6. [Google Scholar]
- Ilavsk, J.; Barlokov, D.; Marton, M. Removal of Selected Pesticides from Water Using Granular Activated Carbon. IOP Conf. Ser. Earth Environ. Sci. 2021, 900, 012011. [Google Scholar] [CrossRef]
- Gagliano, E.; Falciglia, P.P.; Zaker, Y. Microwave regeneration of granular activated carbon saturated with PFAS. Water Res. 2021, 15, 198. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Q. Sorption of sulfadiazine, norfloxacin, metronidazole, and tetracycline by grangranular activated carbon: Kinetics, mechanisms, and isotherms. Water Air Soil Pollut. J. 2017, 228, 1027–1040. [Google Scholar] [CrossRef]
- Ho, Y.-S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Khaiary, I.M.; Malash, G.F. On the use of linearized pseudo-second-order kinetic equations for modeling adsorption systems. Desalination 2010, 257, 93–101. [Google Scholar] [CrossRef]
- Mannarswamy, A.; Munson-McGee, S.H.; Steiner, R.; Andersen, P.K. D-optimal experimental designs for Freundlich and Langmuir adsorption isotherms. Chemom. Intell. Lab. Syst. 2009, 97, 146–151. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Ueber die adsorption in Loesungen. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Atkins, P.; Paula, J. Physical Chemistry; W. H. Freeman and Company: New York, NY, USA, 2010. [Google Scholar]
- Chang, R.; Thoman, J.W. Physical Chemistry for the Chemical Sciences; University Science Books, AIP Publishing LLC.: New York, NY, USA, 2014. [Google Scholar]
- Çaliskan, E.; Göktürk, S. Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Sep. Sci. Technol. 2010, 45, 244–255. [Google Scholar] [CrossRef]
- Zhang, S.Y. Adsorption and Removal of Sulfonamide Antibiotics in Water by Granular Activated Carbon and Modified Attapulgite; Lanzhou Jiaotong University: LanZhou, China, 2020. [Google Scholar]
- Zhu, Y.; Liu, L. Experimental Study of Sewage Plant Tail Water Treatment by Granular Active Carbon Immobilized Catalyst fen-Ton-like. Shandong Chem. Ind. 2018, 8, 21–24. [Google Scholar]
- Qin, Q.; Chen, Y. Optimization of the Modified Components of mn-sn-ce/gac Particle Electrode by Response Surface Method. Ind. Water Treat. 2019, 1, 54–59. [Google Scholar]
BET | Specific Surface Area | Low Pressure (p/p0 < 0.1) Adsorption Capacity | Hysteresis Loop (p/p0 = 0.2) | Total Pore Volume | Micro Pore Volume |
---|---|---|---|---|---|
1059.011 m2/g | increased | closed | 0.625 cm3/g | 0.488 cm3/g | |
micropores | mesoporous |
Intra-Particle Diffusion Model | |||||||
---|---|---|---|---|---|---|---|
Sorbate | C0 (mg/L) | Kid1 (mg/g min1/2) | I1 (mg/g) | R2 | Kid2 (mg/g min1/2) | I2 (mg/g) | R2 |
TC | 6.01 | 0.13 | −0.3 | 0.94 | 0.01 | 0.44 | 0.83 |
12.02 | 0.25 | −0.29 | 0.93 | 0.01 | 1.10 | 0.58 | |
24.04 | 0.47 | −0.4 | 0.99 | 0.10 | 1.84 | 0.77 | |
48.09 | 0.66 | 1.31 | 0.98 | 0.13 | 4.58 | 0.77 | |
THI | 7.12 | 0.00 | 0.75 | 0.70 | ----- | ---- | --- |
10.68 | 0.01 | 1.17 | 0.85 | ----- | ---- | --- | |
17.81 | 0.01 | 2.06 | 0.75 | ----- | ---- | --- | |
35.62 | 0.01 | 4.23 | 0.79 | ----- | ---- | --- | |
SMZ | 6.33 | 0.06 | 0.33 | 0.88 | 0.00 | 0.56 | 0.82 |
12.66 | 0.13 | 0.82 | 0.76 | 0.01 | 1.32 | 0.86 | |
25.32 | 0.28 | 1.65 | 0.92 | 0.03 | 2.73 | 0.78 | |
50.65 | 0.6 | 3.21 | 0.94 | 0.09 | 5.49 | 0.76 |
Boyd Plot | |||
---|---|---|---|
Sorbate | C0 (mg/L) | Intercept | R2 |
TC | 6.01 | −0.026 | 0.92 |
12.02 | −0.344 | 0.97 | |
24.04 | −0.155 | 0.98 | |
48.09 | 0.008 | 0.99 | |
THI | 7.12 | 2.640 | 1.00 |
10.68 | 1.700 | 0.97 | |
17.81 | 2.870 | 0.96 | |
35.62 | 3.220 | 0.94 | |
SMZ | 6.33 | −0.168 | 0.97 |
12.66 | 0.206 | 0.89 | |
25.32 | −0.285 | 0.99 | |
50.65 | −0.262 | 0.99 |
Sorbate | Langmuir | Freundlich | Temkin | ||||||
---|---|---|---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF (mg/L(1−1/n) g) | n | R2 | B | KT | R2 | |
TC | 17.02 | 0.154 | 0.93 | 2.28 | 1.2 | 0.93 | 1.944 | 4.093 | 0.88 |
THI | 30.42 | 0.530 | 0.92 | 12.17 | 1.1 | 0.91 | ----- | ---- | ---- |
SMZ | 26.77 | 0.155 | 0.95 | 3.51 | 1.1 | 0.94 | 2.930 | 3.800 | 0.97 |
Value of RL | Adsorption Nature |
---|---|
0 < RL < 1 | Favorable |
RL = 0 | Irreversible |
RL = 1 | Linear |
RL > 1 | Unfavorable |
Sorbate | T0C | lnK | ΔG0 (kJ/mol) | ΔH0 (kJ/mol) | ΔS0 (kJ/mol K) |
---|---|---|---|---|---|
TC | 15 | 11.522 | −26.97 | ||
20 | 11.368 | −27.67 | −21.86 | 19.17 | |
25 | 11.215 | −27.89 | |||
THI | 15 | 12.521 | −29.98 | ||
20 | 12.412 | −30.23 | −33.58 | −12.22 | |
25 | 12.049 | −29.85 | |||
SMZ | 15 | 11.687 | −27.98 | ||
20 | 11.132 | −27.11 | −81.39 | −185.56 | |
25 | 10.545 | −26.12 |
Property | Tetracycline (TC) | Thiamphenicol (THI) | Sulfamethoxazole (SMZ) |
---|---|---|---|
Molecular formula & Chemical Structure | C22H24N2O8 | C12H15CL2NO5S | C10H11N3O3S |
Molar mass | 444.43 | 356.22 | 253.28 |
Solubility (25 °C) | 1700 mg/L | 2270 mg/L | 459 mg/L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Sun, W.; Xia, L.; U, Z.; Sun, X.; Wang, Z.; Wang, Y.; Deng, X. Adsorption of Toxic Tetracycline, Thiamphenicol and Sulfamethoxazole by a Granular Activated Carbon (GAC) under Different Conditions. Molecules 2022, 27, 7980. https://doi.org/10.3390/molecules27227980
Li R, Sun W, Xia L, U Z, Sun X, Wang Z, Wang Y, Deng X. Adsorption of Toxic Tetracycline, Thiamphenicol and Sulfamethoxazole by a Granular Activated Carbon (GAC) under Different Conditions. Molecules. 2022; 27(22):7980. https://doi.org/10.3390/molecules27227980
Chicago/Turabian StyleLi, Risheng, Wen Sun, Longfei Xia, Zia U, Xubo Sun, Zhao Wang, Yujie Wang, and Xu Deng. 2022. "Adsorption of Toxic Tetracycline, Thiamphenicol and Sulfamethoxazole by a Granular Activated Carbon (GAC) under Different Conditions" Molecules 27, no. 22: 7980. https://doi.org/10.3390/molecules27227980
APA StyleLi, R., Sun, W., Xia, L., U, Z., Sun, X., Wang, Z., Wang, Y., & Deng, X. (2022). Adsorption of Toxic Tetracycline, Thiamphenicol and Sulfamethoxazole by a Granular Activated Carbon (GAC) under Different Conditions. Molecules, 27(22), 7980. https://doi.org/10.3390/molecules27227980