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Abstract: During our ongoing efforts to investigate biotechnological sources of caffeoylquinic acid
(CQA) metabolites, we discovered the plant Scorzonera radiata Fisch. (Asteraceae), which is able to
produce callus cultures with high yield and extremely high stability. An actively growing callus
line, designated as Sr-L1, retained the ability to produce 11 CQAs during long-term cultivation
(more than 20 years). A total of 29 polyphenolic compounds were identified in the leaves and Sr-L1
callus culture of S. radiata, including CQAs, lignol derivatives, flavonoids, and dihydrostilbenes. The
composition of CQAs in the Sr-L1 culture was identical to that in the S. radiata leaves. Sr-L1 calli did
not produce flavonoids and dihydrostilbenes, but produced lignol derivatives, which were absent in
leaves. The HPLC-UV-HRMS determination showed the presence of monoacyl derivatives of CQAs
such as 5-CQA, 4-CQA, cis-5-CQA, and 5-O-p-coumaroylquinic acid in the Sr-L1 culture. Among
diacyl derivatives, 3,4-diCQA, 3,5-diCQA, cis-3,5-diCQA, 4,5-diCQA, 3-O-p-coumaroyl-5-O-CQA,
and 3-O-caffeoyl-5-O-p-coumaroylquinic acid were found. The content of 5-CQA reached 7.54 mg/g
dry weight and the content of 3,5-diCQA was as high as 18.52 mg/g dry weight. 3,5-diCQA has
been reported to be of high nutritional and pharmacological value, as it alleviates inflammatory pain,
reverses memory impairment by preventing neuronal apoptosis, and counteracts excessive adipose
tissue expansion, serving as an attractive treatment option for obesity. The high content of 3,5-diCQA
and the exceptional stability of biosynthesis make callus cultures of S. radiata a promising source for
the development of drugs and nutraceuticals.

Keywords: Scorzonera radiata; callus line; caffeoylquinic acids; secondary metabolites; caffeoylquinic acids

1. Introduction

The genus Scorzonera L. (Asteraceae) is represented by approximately 180–190 species
widely distributing in the temperate and subtropical regions of Europe, Asia, and North
Africa [1,2]. Many Scorzonera species have long been used in folk medicine of European
countries, Mongolia, and China, and also employed as food plants in these regions [3–6].
Caffeoylquinic acids (CQAs) are most typical for plants of the Asteraceae family; in particu-
lar, high content of CQAs is known for artichoke (Cynara scolymus), black salsify (Scorzonera
hispanica L.), purple coneflower (Echinacea purpurea L. Moench), common yarrow (Achillea
millefolium L.), milk thistle (Silybum marianum L. Gaertner), coltsfoot (Tussilago farfara L.),
tansy (Tanacetum vulgare L.), and chamomile (Matricaria chamomilla L.) [7]. A recent review
by Lendzion et al. [8] summarized data on phytochemistry and bioactivity of 37 species
and subspecies of the genus Scorzonera. CQAs were found in 25 examined plant taxa. In
most Scorzonera species, only chlorogenic acid (CGA) was identified (in 19 species). Among
diacyl derivatives, 3,5-diCQA was found most frequently in Scorzonera species (11 species).
The greatest diversity of CQAs was found in S. radiata and S. hispanica [8]. Structural
diagnostic hierarchical keys for CQA were developed by Clifford et al. [9–13] using the
name “chlorogenic acid” in accordance with the early IUPAC nomenclature rules [14].
Many authors use the more recent names “neochlorogenic acid” and “chlorogenic acid”
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for 5-O-CQA and 3-O-CQA according to the PubChem database and chemical abstract
(CAS) [15]. The nomenclature differences are explained in the comprehensive review by
Magaña et al. [16] for the name of chlorogenic acid (3-O-CQA). We also used new nomen-
clature, but when discussing the results and comparing our and literature data, we took
into account these disagreements.

S. austriaca, traditionally used in Chinese and Tibetan herbal medicine due to its an-
tipyretic and anti-inflammatory action [17–19], was selected by the National Committee
of China as a drug candidate for the treatment of hepatitis B because the total flavonoid
fraction isolated from S. austriaca has been shown to have hepatoprotective and inhibitory
effects on the hepatitis B virus [19]. Sezer et al. [20] investigated the neuroprotective poten-
tial of 27 taxa of the genus Scorzonera to find new sources of biologically active substances
for the treatment of neurodegenerative diseases. They concluded that at least one of the
species, S. pisidica, could be recommended for further investigation of its neuroprotective
action [20]. Thus, the pharmacological effects and experience of using Scorzonera plants
make them good candidates for drug discovery as well as nutritional supplement develop-
ment. Phytochemical studies of Scorzonera species have revealed a number of secondary
metabolites, such as stilbene derivatives, sesquiterpene lactones, lignans, phenolic acids,
flavonoids, dihydroisocoumarins, and triterpenes [3,4,8,21–25].

In the present study, plants of S. radiata Fisch. were used. This plant is interesting
due to the variety of secondary metabolites and many years of experience in traditional
medicine. S. radiata is widely distributed in Mongolia and China [5] as well as in south-
eastern Russia [5,26]. The chemical composition of S. radiata was studied by a group of
researchers [5,26,27]. From the aerial parts of the plant, they isolated dihydrostilbenes,
flavonoids, and derivatives of quinic acid including diCQAs, as well as coumarins, simple
benzoic acids, and one monoterpene glycoside. They also studied the antioxidant activity
of the isolated substances and found high antioxidant activity of two dihydrostilbenes
(scorzodihydrostilbenes A and E) and diCQAs [5,26,27]. It is known that the qualitative
and quantitative composition of plant metabolites of the same species can vary depending
on different factors, including the region of growing [28,29]. Therefore, the development
of cell cultures with stable biosynthetic characteristics is a known approach to obtain a
renewable source of secondary metabolites. Only one representative of the genus Scorzonera
(S. hispanica) was introduced into the in vitro culture. A suspension culture of transformed
S. hispanica cells producing a complex of lignans and neolignan glucosides was estab-
lished [30,31]. Previously, cell cultures of S. radiata were not obtained; here we report the
establishment of the first callus culture from this plant.

Our goal was to obtain a callus culture of S. radiata as a reproducible source of useful
metabolites. In this study, we presented the composition of polyphenolic compounds in the
S. radiata callus line, designated Sr-L1. We showed the exceptionally high stability of CQA
biosynthesis in the Sr-L1 callus line. Two valuable compounds, 5-CQA and 3,5-diCQA, were
produced by this culture in high yields. In addition, the chemical composition of S. radiata
plants collected on Sakhalin Island was studied and compared with literature data.

2. Results
2.1. Callus Line Sr-L1

The callus line Sr-L1 of S. radiata was selected as the most actively growing culture.
The selection was carried out in the usual way, that is, the selection of actively growing
cell aggregates during the first years of cultivation. This line has been maintained by
subculturing in the Plant Cell Culture Collection of the Federal Scientific Center for Terres-
trial Biodiversity of East Asia (Vladivostok, Russia) for 20 years without any additional
manipulations and has retained its excellent growth characteristics all this time. Sr-L1
produces a friable, vigorously growing callus of light green-yellow color (Figure 1).
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Figure 1. View of the Sr-L1 callus line of Scorzonera radiata at the stationary phase of growth, 30 days.

The calli demonstrate the usual growth dynamics with an exponential phase of growth,
a linear phase, and a stationary phase ending on day 34–37 by the time of collecting calli
for drying. The growth index of the Sr-L1 callus line was 16.5 ± 0.06, with an inoculum
mass of 0.2 g. Dry biomass obtained by drying calli at 50 ◦C to constant weight was 3.15%
of fresh biomass.

2.2. Analysis of Secondary Metabolites in the Sr-L1 Callus Line and Leaves of S. radiata Plants

HPLC-UV and ESI-MS chromatograms of crude methanol extracts of callus tissues
and leaves of S. radiata are presented in Figures 2 and 3.
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Figure 2. Representative HPLC-UV profiles of S. radiata extracts, monitored at 325 nm. (A) Methanolic
extract of the Sr-L1 callus line; (B) methanolic extract of S. radiata leaves. Peak numbers correspond
to each of the identified components listed in Tables 1–4.
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Figure 3. The HPLC-ESI-MS analysis of extracts obtained from the Sr-L1 callus line (A) and leaves
(B) of S. radiata. Extracted ion chromatograms of the identified components in negative ion detection
mode are presented. The monitored ions correspond to the most abundant deprotonated molecules
[M-H]− for 1–11 and 14–29, and acetylated molecular ions [M+CH3COO]− for 12 and 13. Peak
numbers correspond to each of the identified components listed in Tables 1–4.

A total of 29 substances were detected in extracts of the Sr-L1 callus line and leaves of
S. radiata: 14 in the Sr-L1 line and 26 in leaves. Eleven compounds found were common to
both callus and leaf extracts. All determined components of the extracts were identified
on the base of UV spectra, recorded with a DAD detector, mass spectral data, and chro-
matographic separation using a reverse phase column. The values of the monoisotopic
molecular masses were obtained using the high-resolution mass spectrometry. Based on
these mass data, molecular formulas were obtained that are in good agreement with the the-
oretical data for each found component. A mass error was less than 5 ppm, thus confirming
the elemental composition of each component. To detect the characteristic fragmentation
patterns of regioisomers, multistage MS analysis was performed, and target fragmentation
spectra were obtained in the negative ion mode using an ion trap mass spectrometer. For
the qualitative determination of all peaks, their ESI-MS data were compared with those
of chemical standards and/or literature data, and each peak was assigned on the basis
of the structural diagnostic hierarchical keys previously developed [9–13,32]. All identi-
fied metabolites belonged to four classes: CQAs, lignans (presented as lignol derivatives),
flavonoids, and stilbenoids (presented as dihydrostilbene derivatives). A total of 11 CQAs
were found in the Sr-L1 line and leaves of S. radiata (Table 1), 3 lignol derivatives were
found in the Sr-L1 line, and 15 flavonoids and dihydrostilbene derivatives were found
in the leaves of S. radiata. Thus, calli produced CQAs and lignol derivatives, but did not
produce flavonoids and dihydrostilbenes. The leaves, in turn, did not contain lignols.
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Table 1. List of caffeoyl- and coumaroylquinic acid derivatives identified in methanol extracts of
Sr-L1 callus culture and S. radiata leaves by their retention times and UV and MS data.

Peak
No.

tR
(min)

λmax
(nm)

[M-H]−
(m/z

Detected)

[M-H]−
(m/z Calcu-

lated)

Molecular
Formula

MS2

Fragmentation
(Precursor Ions

[M-H]−) (% Base
Peak) (m/z)

MS3 Frag-
mentation (%

Base Peak)
(m/z) **

MS4 Frag-
mentation (%

Base Peak)
(m/z) **

Assignment

1 8.4 324 353.0888 353.0878 C16H18O9
191(100) *,

179(46), 135(6)

173(91),
155(41),
127(82),

111(48), 93(73),
85(100)

- 3-O-CQA

2 11.9 325 353.0892 353.0878 C16H18O9 191(100), 179(2)

173(100),
127(80),
111(46),

109(48), 93(48),
85(94)

- 5-O-CQA

3 12.4 325 353.0889 353.0878 C16H18O9
191(38), 179(62),
173(100), 135(5)

155(35),
137(18),
111(30),
93(100)

- 4-O-CQA

4 14.2 320 353.0887 353.0878 C16H18O9 191(100), 179(2)

173(100),
127(75),
111(26),

109(27), 93(42),
85(92)

- cis-5-O-CQA

5 14.7 315 337.0939 337.0929 C16H18O8 191(100), 163(3)

173(93),
127(100),

111(40), 93(48),
85(88)

-
5-O-p-

coumaroylquinic
acid

6 20.1 326 515.1213 515.1195 C25H24O12

353(100), 335(9),
299(1), 255(3),
203(5), 179(11),

173(30)

191(50),
179(61),

173(100),
135(10)

155(65),
111(23),
93(100)

3,4-O-diCQA

7 20.7 326 515.1207 515.1195 C25H24O12 353(100), 191(5)
191(100),

179(38), 173(4),
135(6)

173(100),
127(75),

111(63), 85(83)
3,5-O-diCQA

8 21.1 325 515.1208 515.1195 C25H24O12 353(100), 191(6)
191(100),

179(32), 173(3),
135(5)

173(100),
127(70),

111(55), 85(81)

cis-3,5-O-
diCQA

9 21.7 326 515.1206 515.1195 C25H24O12

353(100), 335(3),
317(4), 299(5),
255(3), 203(11),
179(8), 173(10)

191(29),
179(53),

173(100),
135(7)

111(60),
93(100) 4,5-O-diCQA

10 22.9 316 499.1259 499.1246 C25H24O11

353(5), 337(100),
335(3), 173(5),

163(12)

173(59),
163(100),

119(6)
119(100)

3-O-p-
coumaroyl-5-O-

CQA

11 23.1 317 499.1257 499.1246 C25H24O11
353(100), 337(21),

191(5), 179(5)
191(100),
179(16)

173(100),
127(54),

111(68), 93(42),
85(64)

3-O-caffeoyl-5-
O-p-

coumaroylquinic
acid

* Precursor ions for the subsequent MSn fragmentation are shown in bold. ** The characteristic fragmentation
patterns of regioisomers are shown.

2.3. Determination and Quantification of CQAs

Among detected compounds, 11 CQAs were identified (Figures 2 and 3). Five monoa-
cyl (peaks 1–5) and six diacyl (peaks 6–11) CQAs were identified according to a pre-
viously described approach [33] based on comparison of their MSn fragmentation pat-
terns, elution/retention time, and UV absorption spectra with standards and published
data [9–13,32]. Chromatographic and spectral characteristics of the studied metabolites are
presented in Table 1.

According to the hierarchical keys previously developed [9–13,32] and reference
standards, all eleven CQAs were designated as 3-O-CQA (1), 5-O-CQA (2), 4-O-CQA
(3), cis-5-O-CQA (4), 5-O-p-coumaroylquinic acid (5), 3,4-O-diCQA (6), 3,5-O-diCQA (7),
cis-3,5-O-diCQA (8), 4,5-O-diCQA (9), 3-O-p-coumaroyl-5-O-CQA (10), and 3-O-caffeoyl-5-
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O-p-coumaroylquinic acid (11) (Table 1). Compounds 4 and 8, presented in minor amounts
and showing the MSn fragmentation pattern similar to those of compounds 2 and 7,
respectively, were tentatively assigned to the cis isomers of compounds 2 and 7. Since it
is known that chlorogenic acid undergoes trans–cis isomerization under the action of UV
light [13], we tested this assumption in experiments with UV irradiation of all samples.
After UV irradiation of extracts, the compounds 4 and 8 were detected in chromatograms
as peaks with a significant increased intensity, which confirmed the presence of two cis
isomers in our samples, cis-5-O-CQA (4) and cis-3,5-O-diCQA (8). Figure 4 presents the
general structures of CQAs, diCQAs, and p-coumaroylquinic acids in S. radiate plants and
the Sr-L1 callus line.
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Figure 4. Structures of caffeoylquinic acids found in S. radiate plants and calluses. A scheme
explaining geometric isomerization of caffeoyl moieties under UV irradiation is presented.

All identified CQAs were quantified using HPLC with UV detection at a wavelength
of 325 nm on the basis of four-point regression curves built with the reference commer-
cial standards. Chlorogenic acid was used for quantitative determination of monoacyl
derivatives, and 1,3-O-diCQA (cynarin) was used for quantification of diacyl derivatives.
The content of CQAs in the S. radiata Sr-L1 callus line and leaves is presented in Table 2.
It should be noted that these measurements were started in November 2014 during the
revision of callus cultures of various plant species from the Sakhalin collection. It was
surprising to find that the Sr-L1 callus culture showed a high content of secondary metabo-
lites, since by this time 13 years had passed after establishing the culture. Table 2 presents
a summary of quantification data for the period 2014–2022. Currently, there is no trend
towards a decrease in the content of CQAs or depletion of their composition. There was
only one difference in the composition of CQAs: 3-CQA was not detected in Sr-L1 during
2014–2019, but was found in the samples of 2020–2022, although in small amounts. For
the entire period of observation, the maximum content of the total CQAs in the calli of the
Sr-L1 line was 40.61 mg/g dry weight, which was obtained in March 2022.
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Table 2. Content of CQA derivatives (mg/g dry weight ± SE) in the callus line Sr-L1 and leaves of
S. radiate. Results were obtained as an average of ten biological samples from different passages for
callus line and three biological samples for leaves, with three analytical replicates each.

Peak
Number Metabolite Abbreviation Sr-L1 Leaves

1 3-O-caffeoylquinic acid 3-CQA 0.02 ± 0.01 0.31 ± 0.04
2 5-O-caffeoylquinic acid 5-CQA 7.54 ± 0.80 7.29 ± 0.06
3 4-O-caffeoylquinic acid 4-CQA 0.04 ± 0.00 0.19 ± 0.03
4 cis-5-O-caffeoylquinic acid cis-5-CQA 0.03 ± 0.01 0.07 ± 0.01
5 5-O-p-coumaroylquinic acid 0.45 ± 0.03 0.26 ± 0.01

Total monoacyl derivatives 8.05 ± 0.79 8.11 ± 0.07
6 3,4-O-dicaffeoylquinic acid 3,4-diCQA 0.29 ± 0.03 0.77 ± 0.05
7 3,5-O-dicaffeoylquinic acid 3,5-diCQA 18.52 ± 1.98 10.28 ± 0.37
8 cis-3,5-O-dicaffeoylquinic acid cis-3,5-diCQA 0.10 ± 0.03 0.09 ± 0.01
9 4,5-O-dicaffeoylquinic acid 4,5-diCQA 0.40 ± 0.05 1.34 ± 0.12

10 3-O-p-coumaroyl-5-O-
caffeoylquinic acid 0.24 ± 0.04 0.06 ± 0.01

11 3-O-caffeoyl-5-O-p-
coumaroylquinic acid 0.34 ± 0.03 0.06 ± 0.01

Total diacyl derivatives 19.90 ± 2.03 12.60 ± 0.39
Total 27.95 ± 1.86 20.71 ± 0.31

2.4. Determination of Lignol Derivatives

The HPLC-UV-MS analysis of extracts from the Sr-L1 callus line of S. radiata showed
the presence of three interesting peaks (12–14) (Figure 3), which were absent in leaf extracts.
These components displayed absorption maxima at nearly 266 nm and were identified
as monolignol (12, 13) and dilignol (14) derivatives on the basis of their detailed MS
investigation (Table 3). The UV profile and MS data of component 13 corresponded
to those described for syringin (sinapyl alcohol hexoside, also known as eleutheroside
B) [34–36]. In particular, the perfectly shown negative [M+CH3COO]− ions at m/z 431.1594
and positive [M+Na]+ ions at m/z 395.1329 of peak 13 were exactly matched to the molecular
formula of syringin (C17H24O9). The negative MS2 spectrum of [M+CH3COO]− precursor
ions demonstrated two main signals at m/z 371 and 209, corresponding to the fragments
produced by consistent elimination of acetic acid and dehydrated hexose moiety, with the
compositions [M-H]− and [M-H-C6H10O5]−, respectively (Table 3). In addition, the MS3

stage of ions at m/z 209 produced the fragmentation pattern that coincided with typical ion
fragmentation for sinapyl alcohol [36]. Component 12 displayed the mass spectrometric
behavior similar to that of component 13, with a slight difference.

The calculated molecular formula (using HRMS) of component 12 was C16H22O8,
which had one less methoxy group compared to compound 13, defined as syringin. We
designated the component 12 as coniferyl alcohol O-hexoside, also known as coniferin [37].
The MS2 fragmentation pattern of compound 12 was also consistent with previously
published data for coniferin [37].

Similarly, component 14 was identified as syringaresinol-O-hexoside (also known as
eleutheroside E1), the UV and MS characteristics of which were described previously [38,39].
In the ESI conditions, component 14 showed the formation of deprotonated ions [M-H]− at
m/z 579.2096 and positive sodium adduct ions [M+Na]+ at m/z 603.2082. These data are
in good agreement with the molecular formula of syringaresinol-hexoside (C28H36O13).
MS2 fragmentation of [M-H]− showed an intensive signal at m/z 417 due to the loss of the
hexoside moiety, and the MS3 stage of precursor ions at m/z 417 provided fragmentation
patterns identical to syringaresinol [34,40].
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Table 3. List of lignol derivatives identified in the methanol extracts of Sr-L1 callus culture of S.
radiata by their retention times, UV and MS data, and by comparison with published data.

Peak
No. *

tR
(min)

λmax
(nm)

Detected
Ions

Composition

m/z
Detected

m/z Cal-
culated

Molecular
Formula

MS2

Fragmentation
(% Base Peak)

(m/z)

MS3

Fragmentation
(% Base Peak)

(m/z)

Assignment

12 11.7 258
[M+CH3COO]− 401.1462 401.1453 C16H22O8

341(46), 221(2),
179(100) **,

164(3), 161(3),
146(4)

164(62),
161(100),
146(43)

Coniferyl alcohol
O-hexoside
(coniferin,

coniferoside, and
abietin)

[M+Na]+ 365.1221 365.1207 - -

13 12.9 266
[M+CH3COO]− 431.1594 431.1573 C17H24O9

371(16), 221(8),
209(100), 194(9),
179(3), 176(4),

161(2)

194(100),
191(32), 179(3),
176(19), 161(3)

Sinapyl alcohol
O-hexoside

(syringin and
eleutheroside B)[M+Na]+ 395.1329 395.1313 - -

14 21.3 275
[M-H]− 579.2096 579.2083 C28H36O13

417(100), 181(5)

402(40), 387(3),
371(3), 205(3),

181(100), 175(3),
166(38), 151(15)

Syringaresinol-O-
hexoside

(eleutheroside E1)
[M+Na]+ 603.2082 603.2054 - -

* The peaks are numbered as shown in Figure 3. ** Ions subjected to subsequent MSn fragmentation are shown
in bold.

2.5. Determination of Flavonoid and Dihydrostilbene Derivatives

Peaks 15–29 were detected only in leaves of S. radiate and were absent in callus extracts.
A DAD profile of leaf extracts at 325 nm in conjunction with extracted ion chromatograms
(Figures 2B and 3B) indicated several peaks corresponding to flavonoid glycosides (flavones
15–20, 22, 26 and 27; flavonoles 23 and 24) (Table 4). The complete structural assignments
of these peaks were performed by means of comparison of all collected UV and MS data
with previously published information on the genus Scorzonera [26,40,41].

Compounds related to peaks 15 and 16 were identified as a pair of isomers by the
identity of their UV and MS data (Table 4). The molecular formula of 15 and 16 was
calculated as C26H28O14. The MS2 spectra of [M-H]− at m/z 563 exhibited the pattern
of fragmentation, which is typical for di-C-glycoside conjugates: [(M-H)-60]− at m/z 503,
[(M-H)-90]− at m/z 473, [(M-H)-120]− at m/z 443, [Agl+113]− at m/z 383, and [Agl+83]−

at m/z 353. The presence of [(M-H)-60]− fragments in the MS2 spectra corresponded to
elimination of the C-pentosyl ring moiety, whereas fragment ions with the composition
[(M-H)-90]− and [(M-H)-120]− indicated the C-hexosylated molecule.

Thus, compounds 15 and 16 were identified as isomers of apigenin-C-hexoside-C-
pentoside, namely isoschaftoside and schaftoside, respectively, found earlier in the Aster-
aceae family [40,42]. The remaining C-glycosides were determined the same way using a
well-known algorithm [43,44]. On the basis of retention times and UV and MS data (Table 4),
these compounds were identified as luteolin-6-C-glucoside (isoorientin) (17), luteolin-8-
C-glucoside (orientin) (18) [26,40,41], two isomers of apigenin-di-C-pentoside (19 and 20),
apigenin-8-C-glucoside (vitexin) (22), apigenin-6-C-glucoside (isovitexin) (26) [41,42], and
apigenin-C-pentoside (27). Components corresponding to peaks 23 and 24 were identified
as two isomers of flavonol O-glycoside due to typical UV profiles and MS2 fragmentations
of deprotonated ions (Table 4). As a result, quercetin-3-O-galactoside (hyperoside) (23) and
quercetin-3-O-glucoside (isoquercitrin) (24) were identified, according to [40–42]. Flavonoid
derivative content in extracts of S. radiata leaves is presented in Table 5.
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Table 4. List of flavonoid and dihydrostilbene derivatives identified in the methanol extracts of S.
radiata leaves by their retention times, UV and MS data, and by comparison with published data.

Peak
No. *

tR
(min)

λmax
(nm)

Detected Ions
Composition

m/z
Detected

m/z Cal-
culated

Molecular
Formula

MS2 Fragmentation
(% Base Peak) (m/z) Assignment

15 16.4 271, 338 [M-H]− 563.1429 563.1406 C26H28O14

503(11), 473(68),
443(98), 383(86),

353(100)
Apigenin-C-hexoside-C-

pentoside I
[M+H]+ 565.1531 565.1552 -

16 16.9 271, 238 [M-H]− 563.1430 563.1406 C26H28O14

503(5), 473(50),
443(95), 383(57),

353(100)
Apigenin-C-hexoside-C-

pentoside II
[M+H]+ 565.1542 565.1552 -

17 17.0
257sh.,

269, 348
[M-H]− 447.0953 447.0933 C21H20O11

429(25), 357(82),
327(100) Luteolin-6-C-glucoside

(isoorientin)[M+H]+ 449.1075 449.1079 -

18 17.5
256sh.,

268, 350
[M-H]− 447.0942 447.0933 C21H20O11

357(50), 327(100) Luteolin-8-C-glucoside
(Orientin)[M+H]+ 449.1093 449.1079 -

19 18.3 270, 339 [M-H]− 533.1325 533.1300 C25H26O13

515(15), 473(71),
443(100), 383(60),

353(56)
Apigenin-di-C-

pentoside I
[M+H]+ 535.1427 535.1446 -

20 18.7 271, 338 [M-H]− 533.1323 533.1300 C25H26O13

515(19), 473(85),
443(100), 413(16),
383(72), 353(68)

Apigenin-di-C-
pentoside II

[M+H]+ 535.1463 535.1446 -

21 18.9 285
[M-H]− 433.1523 433.1504

C22H26O9

271(100), 165(4)
Scorzodihydrostilbene C[M-H-

C6H10O5]− 271.0968 271.0970 229(4), 165(100),
149(22)

[M+Na]+ 457.1458 457.1475 -

22 19.0 271, 337 [M-H]− 431.0998 431.0984 C21H20O10
341(6), 311(100) Apigenin-8-C-glucoside

(vitexin)[M+H]+ 433.1119 433.1129 -

23 19.2
255,

265sh.,
360

[M-H]− 463.0898 463.0882 C21H20O12

301(100), 271(2),
179(3), 151(1)

Quercetin-3-O-
galactoside

(hyperoside)[M+H]+ 465.1011 465.1028 -

24 19.5
255,

265sh.,
358

[M-H]− 463.0901 463.0882 C21H20O12

301(100), 271(1),
179(3), 151(2)

Quercetin-3-O-
glucoside

(isoquercitrin)[M+H]+ 465.1015 465.1028 -

25 19.9 284
[M-H]− 463.1626 463.1610

C23H28O10

301(100), 165(2)
Scorzodihydrostilbene A[M-H-

C6H10O5]− 301.1072 301.1081 283(10), 259(4),
165(100), 149(48)

[M+Na]+ 487.1571 487.4580 -

26 20.0 Nd**
[M-H]− 431.1005 431.0984 C21H20O10

341(2), 311(100) Apigenin-6-C-glucoside
(isovitexin)[M+H]+ 433.1141 433.1129 -

27 22.2 269, 340 [M-H]− 401.0891 401.0878 C20H18O9
341(29), 311(100) Apigenin-C-pentoside

[M+H]+ 403.1037 403.1024 -

28 22.8 280
[M-H]− 477.1777 477.1766 C24H30O10

315(100) Scorzodihydrostilbene D
[M+Na]+ 501.1755 501.1737 -

29 23.7 285
[M-H]− 477.1785 477.1766

C24H30O10

357(23), 315(100),
163(1) Scorzodihydrostilbene B

[M-H-
C6H10O5]− 315.1229 305.1238

299(22), 297(44),
281(25), 163(100),

149(31)
[M+Na]+ 501.1751 501.1737 -

* The peaks are numbered as shown in Figures 2 and 3. ** Not detected.

A DAD profile of leaf extracts at 280 nm demonstrated four low-intensity peaks
matched to dihydrostilbene glycosides. The compound corresponding to peak 21 has
the molecular formula C22H26O9, as determined by accurate mass measurement of its
deprotonated molecules [M-H]− at m/z 433.1523 and sodium adduct ions [M+Na]+ at
m/z 457.1458 (Table 3, Figure 3B). MS2 investigation of [M-H]− at m/z 433 showed major
fragment ions formed by the elimination of the O-hexoside residue [M-H-C6H10O5]−. Based
on these data, compound 21 was identified as scorzodihydrostilbene C, first discovered
in S. radiata and described by Wang et al. [5]. Using the same method, components 25,
28, and 29, with similar UV and MS2 profiles, were assigned as scorzodihydrostilbene A,
scorzodihydrostilbene D, and scorzodihydrostilbene B, respectively [5].
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Table 5. Content of flavonoid derivatives (mg/g dry weight) in leaves of S. radiata. The results are
presented as mean ± SE of three biological samples.

Peak Number Metabolite Content
15 Apigenin-C-arabinoside-C-glucoside I 0.61 ± 0.05
16 Apigenin-C-arabinoside-C-glucoside II 0.99 ± 0.07
17 Luteolin-6-C-glucoside I 1.32 ± 0.05
18 Luteolin-8-C-glucoside II 0.57 ± 0.09
19 Apigenin-di-C-arabinoside I 0.31 ± 0.03
20 Apigenin-di-C-arabinoside II 2.02 ± 0.19
22 Apigenin-C-glucoside I 0.79 ± 0.10
23 Quercetin-O-glucoside I 0.25 ± 0.02
24 Quercetin-O-glucoside II 0.15 ± 0.01
26 Apigenin-C-glucoside II 0.31 ± 0.02
27 Apigenin-C-arabinoside 0.67 ± 0.04

Total 7.98 ± 0.29

3. Discussion

Efficient production of secondary metabolites requires their stable production by plant
cell cultures during long-term cultivation. In this regard, the study of the biosynthetic
properties stability of cultured cells should be carried out during long-term cultivation
([45]—Section “Increasing cell productivity: what next?”). Extremely high yields of sec-
ondary metabolites are desirable, but they are difficult to attain in combination with such
characteristics as long-term stability and vigorous growth [45,46]. There are few examples
of long-term preservation of high productivity of secondary metabolites in plant cell cul-
tures. The most prominent examples are isoflavones (25 years of stable production, [47]),
naphthoquinones and rosmarinic acid derivatives (15 years, [45]), and anthraquinones
(14 years, [48]). The callus line Sr-L1 was established 21 years ago. From 2014 to the
present, it has been under intense scrutiny for the production of secondary metabolites.
The composition of CQAs in the Sr-L1 culture was identical to that in the S. radiata leaves.
The total content of CQA derivatives in Sr-L1 was 1.35 times higher than in leaves (27.95
vs. 20.71 mg/g dry weight). Among CQAs, the highest content was detected for 5-CQA
(7.54 mg/g dry weight) and 3,5-diCQA (18.52 mg/g dry weight) (Table 2).

These values are close to the maximum yields of CQAs previously obtained in cul-
tured cells or tissues of various plant species. For example, 5-CQA was produced in the cell
suspension culture of Nicotiana plumbaginifolia at the level of 4–6.5 mg/g dry weight; the
Fabiana imbricate callus culture contained 5-CQA at the level of 4.6 mg/g dry weight, and the
highest content (9.5 mg/g dry weight) was found in Cichorium intybus hairy roots, trans-
formed with the pRi-1855 Agrobacterium rhizogenes strain (reviewed by Bulgakov et al. [46]).
Likewise, the content of 3,5-diCQA was 3 mg/g dry weight in Rhaponticum carthamoides
hairy roots; an in vitro culture of Tanacetum vulgare roots produced 10.2 mg/g dry weight
of 3,5-diCQA [49]. Most likely, the maximum yield of 3,5-diCQA was achieved in the
hairy root culture of Cichorium intybus, which amounted to 55.7 mg/g dry weight [46].
Interestingly, artichoke (the cultivated cardoon or Cynara cardunculus var. altilis DC (Aster-
aceae)) calli transformed in our laboratory with the rolC gene (which is a known inducer of
secondary metabolism) produced predominantly 1,5-diCQA, 3,4-diCQA, and chlorogenic
acid, but not 3,5-diCQA [33]. The total content of CQAs was 15.4 mg/g dry weight, which
is less than that of the Sr-L1 line.

Regarding biological activity of the most abundant compound, 3,5-diCQA, it should
be noted that considerable attention has been paid to this compound in recent years.
Raineri et al. [50] reported that 3,5-diCQA treatment increased the level of the transcrip-
tion factor Nrf2 (nuclear factor erythroid 2-related factor 2) that induces the expression
of the heme oxygenase 1 (HO-1) with a subsequent inhibition of both C/EBP-α (late adi-
pogenic transcription factor C/EBP) expression and adipocyte terminal differentiation. This
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molecular mechanism is probably common to other compounds containing a caffeic acid
moiety [50], however, 3,5-diCQA seems to be more effective that other CQA derivatives [51].
Another important action of 3,5-diCQA is its beneficial effect in neurodegenerative dis-
eases. In particular, 3,5-diCQA improved learning and alleviated memory deficits in mice
by preventing neuronal apoptosis through the protection of mitochondrial activities and
the repression of apoptotic signaling molecules [52]. 3,5-DCQA attenuates inflammation-
mediated hypersensitivity to pain through inhibition of MCP3-induced JAK2/STAT3 (a
protein module that induces the expression of genes regulating inflammation) signaling [53].
Therefore, 3,5-DCQA could be a potential therapeutic agent for alleviating inflammatory
pain. Pang et al. [54] showed that the methyl derivatives of 5-CQA (MCGA) and 3,5-diCQA
are potent antiproliferation agents in hepatocellular carcinoma cells, exceeding this effect of
5-CQA. MCGA and 3,5-diCQA perturb the expression of the HIF-1α-GLUT1/3-glycolysis
pathway, thus inhibiting hepatocellular carcinoma proliferation and metastasis. The authors
indicated these effects as a new research hotspot in carcinoma treatment.

It is also interesting to compare the chemical composition of the plants used in our
experiments with the literature data. Previously, the chemical composition of S. radiata
metabolites from Mongolia was studied by Wang et al. [5,26] and Tsevegsuren et al. [27].
Totally, these authors isolated 20 metabolites from the aerial parts of the plant, includ-
ing 6 flavonoids, 5 dihydrostilbenes, and 9 derivatives of CQA. Overall, we identified 26
polyphenolic compounds in leaves of S. radiata, with the most significant differences be-
tween samples observed in the composition of flavonoids. Four of the five dihydrostilbenes
first discovered by Wang et al. [5] in S. radiata from Mongolia, scorzodihydrostilbene A, B, C,
and D, were also detected in Sakhalin plants. At the same time, only one flavonoid, luteolin-
6-C-glucoside I (isoorientin), was detected in both samples, while five other flavonoids
(scorzonerin A, scorzonerin B, violanthin, kaempferol 3-O-rutinoside, and rutin), previ-
ously identified in Mongolian plants [26,27], were not detected in Sakhalin samples. Ten
flavonoids were found in Sakhalin samples, which are not described for Mongolian plants,
and thus, they are described for the first time for S. radiata (Tables 4 and 5). As shown in
a recent review by Lendzion et al. [8], the aerial parts of various species of the Scorzonera
genus contain a wide variety of flavonoids. Apigenin, luteolin, and quercetin, as well
as apigenin-C-glycosides, luteolin-C-glycosides, luteolin-O-glycosides, and quercetin-O-
glycosides are the most frequently found in Scorzonera species. Luteolin 6-C-glucoside
(isoorientin), found in the present work and by Wang et al. [26] in S. radiata plants, was also
identified in nine other Scorzonera species [8].

As for CQAs, their composition also differs in the samples from Mongolia and Sakhalin
Island. Quinic acid and eight CQA derivatives, two monoacyl and six diacyl ones, were
isolated from Mongolian samples of S. radiata [26,27]. We identified 11 CQAs in S. radiata
originating from Sakhalin, namely 5 monoacyl and 6 diacyl derivatives (Table 1, Figure 4).
Four of them, 5-CQA, 5-O-p-coumaroylquinic acid, 3,5-diCQA, and 4,5-diCQA, were
common for both Mongolian and Sakhalin samples. CQAs easily undergo structural
transformation due to the spontaneous migration of caffeoyl residues among the hydroxyl
groups of quinic acid under heating [16,55–58]. Taking into account that CQA derivatives
are unstable under illumination and heating, the mildest methods of chemical analysis were
used in the present investigation. Thus, 3,4-diCQA and monoesters of quinic acid, 3-CQA
and 4-CQA, were identified for S. radiata plants for the first time (Table 1). Similarly, mixed
diesters such as 3-O-p-coumaroyl-5-O-CQA and 3-O-caffeoyl-5-O-p-coumaroylquinic acid
were identified in S. radiata for the first time (Table 1).

4. Materials and Methods
4.1. Plant Material and Callus Culture

Samples of Scorzonera radiata Fisch. (Asteraceae) were collected on Sakhalin Island in
2001 during a joint Russian–American–Japanese expedition (International Sakhalin Island
Project, https://www.burkemuseum.org/static/okhotskia/isip/Results/reports/nsf/02
report.htm: accessed on 17 October 2022). The plants were identified at the Department of

https://www.burkemuseum.org/static/okhotskia/isip/Results/reports/nsf/02report.htm
https://www.burkemuseum.org/static/okhotskia/isip/Results/reports/nsf/02report.htm
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Botany of the Federal Scientific Center of the East Asia Terrestrial Biodiversity (Vladivostok,
Russia). Callus cultures were established from young leaves of the collected plants in the
laboratory of the research vessel Akademik Oparin. Calli were established as described
previously [59]. Callus cultures were cultivated in 100 mL Erlenmeyer flasks on WB/A
medium at 25 ◦C in the dark at 30-day subculture intervals. The WB/A medium contained
standard Murashige and Skoog macrosalts, microsalts, and Fe-EDTA, with the exception
of NH4NO3, the concentration of which was decreased up to 400 mg/L. The following
components were added to the WB/A medium (mg/L): thiamine-HCl (0.2), nicotinic acid
(0.5), pyridoxine-HCl (0.5), meso-inositol (100), peptone (100), sucrose (25,000), agar (6000),
6-benzylaminopurine (0.5), and α-naphthaleneacetic acid (2.0). All reagents were obtained
from Sigma-Aldrich (St. Louis, MO, USA, “Tissue Culture Grade”). The actively growing
callus culture of leaf origin was selected and designated as the Sr-L1 line. The growth index
of Sr-L1 was calculated as Wf-Wi/Wi, where Wf is the final biomass and Wi represents
the inoculum biomass (0.2 g). The obtained callus culture is maintained by subculturing
in the Collection of Plant Cell Cultures at the Federal Scientific Center of the East Asia
Terrestrial Biodiversity.

4.2. Chemicals

All used solvents were of high-performance liquid chromatography (HPLC) grade.
Chemical standards for the quantitative determination of CQAs (chlorogenic acid, CAS
number: 327-97-9, and cynarin, 30964-13-7) and flavonoids (rutin trihydrate, CAS number:
250249-75-3) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.3. Sample Preparation for Analytical Chromatography

Scorzonera radiata plants were brought from Sakhalin Island and transplanted into
pots. Fresh leaves were collected for analysis, washed in distilled water, and subjected to
convection drying at 50 ◦C in the darkness to a constant weight. Callus tissue was collected
from the culture vessels and immediately dried under the same conditions. Leaf and
callus samples were prepared for further analysis in the same way. Dried and powdered
samples (about 100 mg, in duplicate) were sonicated at room temperature for 20 min in
3 mL of methanol, equilibrated for 3 h in the darkness, and then centrifuged (15,000× g,
10 min). The supernatant was filtered, and the residue was re-extracted once more in the
same manner. The extracts were combined, cleared with a 0.45 µm membrane (Millipore,
Bedford, MA, USA), and used for HPLC analysis. Then, 1 mL aliquots were employed for
UV irradiation.

4.4. UV Irradiation

UV irradiation was performed to confirm the presence of cis isomers, since chlorogenic
acid derivatives are known to undergo trans–cis isomerization under UV light [13]. If, after
UV irradiation, the compound increases the peak intensity on the HPLC chromatogram,
this means that this compound is indeed a cis isomer. The prepared samples of plant
material (1 mL of each) were irradiated under a shortwave UV lamp at 245 nm for 40 min
and used for HPLC analysis.

4.5. Analytical Chromatography and Mass Spectrometry

HPLC analysis of the samples was performed at the Instrumentation Center for
Biotechnology and Genetic Engineering of the Federal Scientific Center for Terrestrial Bio-
diversity of East Asia using a 1260 Infinity analytical HPLC system (Agilent Technologies,
Santa Clara, CA, USA) equipped with a G1315D photodiode array detector, G1311C qua-
ternary pump, G1316A column oven, and G1329B auto sampler. The HPLC system was
interfaced with an ion trap mass spectrometer (Bruker HCT ultra PTM Discovery System,
Bruker Daltonik GmbH, Bremen, Germany) equipped with an electrospray ionization (ESI)
source. The MS analyses were carried out with negative ions detection. The following
settings were used: the range of m/z detection was 100–1000 and the drying gas (N2) flow
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rate was 8.0 L/min. The nebulizer gas (N2) pressure was 175 kPa, the ion source potential
was −4.0 kV, and the drying gas temperature was 325 ◦C. Tandem mass spectra were
acquired in Auto-MSn mode (smart fragmentation) using a ramping of the collision energy.
The fragmentation amplitude was set to 1 V. If necessary, multistage MS experiments were
performed for the parent ions of the monitoring compounds.

HPLC with high-resolution mass spectrometry (HPLC-UV-HRMS) was carried out
using a LCMS-IT-TOF tandem mass spectrometer (Shimadzu, Japan) including LC-20AD
Prominence liquid chromatograph (Shimadzu, Japan) and an ion trap/time-of-flight mass
spectrometer. The mass spectra were recorded applying electrospray ionization (ESI) with
simultaneous negative and positive ion detection with a resolution of 12,000. The following
settings were used: the range of m/z detection was 100–1000, the drying gas (N2) pressure
was 195 kPa, the nebulizer gas flow rate was 1.5 L/min, the ion source potential changed
from −3.8 to 4.5 kV, and the interface temperature was 200 ◦C.

An analytical Zorbax C18 column (150 mm, 2.1 mm i.d., 3.5 µm part size, Agilent
Technologies, Santa Clara, CA, USA) was applied for separation. The column temperature
was maintained at 40 ◦C. The mobile phase consisted of a gradient elution of 0.1% aqueous
acetic acid (A) and acetonitrile (B). The gradient profile with a flow rate of 0.2 mL/min
was the following: 0 min 5% B; 20 min 30% B; 30 min 100% B; and then eluent B until
40 min. The injection volume was 1–5 µL. UV spectra were recorded with a DAD detector
in the range between 200 and 400 nm. Chromatograms for quantification were acquired at
a wavelength of 325 nm.

All identified phenolic acids and flavonoid glycosides were quantified using HPLC
with UV detection at a wavelength of 325 nm on the basis of four-point regression curves
built with the reference commercial standards. For quantification of CQAs, two external
standards were used: chlorogenic acid for monoacyl derivatives and cynarin for diacyl
derivatives. Quantitative data of all flavonoid glycosides were obtained using rutin trihy-
drate solution as the external standard. The amount of each individual compound was
calculated to correct for the difference in molecular weights.

4.6. Statistical Analysis

All values were expressed as the mean ± SE using Statistica 10.0 (StatSoft Inc., Tulsa,
OK, USA).

5. Conclusions

The Sr-L1 callus line produced CQAs and lignol derivatives but did not produce
flavonoids and dihydrostilbenes. The leaves of S. radiata, in turn, did not contain lignols.
The high content of CQAs and the exceptional stability of biosynthesis make the callus cul-
ture of S. radiata Sr-L1 a promising source for the development of drugs and nutraceuticals
for daily and dietary nutrition. This is especially important in connection with the search
for effective means to combat obesity and other metabolic disorders, as well as potential
activity of 3,5-diCQA in improving cognitive functions. From a biotechnological point of
view, it is interesting to note that the Sr-L1 line produces 3,5-diCQA in high amounts, 1.9%
of the dry cell weight, for many years. Apparently, this observation will contribute to the
increased interest of biotechnology companies in this class of secondary metabolites.
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