Identification of Heavy Metals and Organic Micropollutants in Drinking Water Sources in Typical Villages and Towns in Northeast China
Abstract
:1. Introduction
2. Material and Methods
2.1. Selected Target Compounds and Chemicals
2.2. Study Site and Sample Collection
2.3. Sample Preparation
2.3.1. Pretreatment for Metal Element Detection
2.3.2. Pretreatment for Non-Metal Detection
2.3.3. Pretreatment for Micropollutants Detection
2.4. Instrument Analysis
2.4.1. Inorganic Pollutant Detection
2.4.2. Organic Micropollutant Detection
3. Results and Discussion
3.1. Occurrence of Heavy Metals
3.1.1. Occurrence of Manganese Ions
3.1.2. Occurrence of Iron Ions
3.1.3. Occurrence of Lead Ions
3.1.4. Occurrence of Chromium Ions
3.1.5. Occurrence of Copper and Zinc Ions
3.1.6. Occurrence of Cadmium and Barium Ions
3.2. Occurrence of Light Metals
3.2.1. Occurrence of Sodium and Potassium Ions
3.2.2. Occurrence of Calcium and Magnesium Ions
3.3. Conventional and Inorganic Non-Metallic Parameters
3.3.1. Sensory and Physical Index Analysis
3.3.2. Inorganic Non-Metal Parameters
3.4. Total Organic Pollutants Analysis
3.5. Occurrence of Organic Micropollutants
3.5.1. Pesticide Detection
3.5.2. PAEs Detection
3.5.3. OPEs Detection
3.5.4. PPCPs Detection
3.5.5. Distribution Analysis of Organic Micropollutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, Z.H. Current Situation and Main Pollution Sources of Rural Water Environment in China; Trans Tech Publications Ltd.: Shenyang, China, 2011; pp. 113–116. [Google Scholar]
- Wu, J.; Lu, J.; Li, L.; Min, X.; Luo, Y. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere 2018, 201, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Derdour, A.; Guerine, L.; Allali, M. Assessment of drinking and irrigation water quality using WQI and SAR method in Maader sub-basin, Ksour Mountains, Algeria. Sustain. Wat. Resour. Manag. 2021, 7, 14. [Google Scholar] [CrossRef]
- Bexfield, L.M.; Belitz, K.; Lindsey, B.D.; Toccalino, P.L.; Nowell, L.H. Pesticides and Pesticide Degradates in Groundwater Used for Public Supply across the United States: Occurrence and Human-Health Context. Environ. Sci. Technol. 2021, 55, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; Wang, B.; Huang, J.; Dong, R.; Deng, S.; Yu, G. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere 2015, 119, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Lu, G.H.; Shao, P.W.; Piao, H.T.; Gai, N.; Rao, Z.; Yang, Y.L. Source Tracking and Risk Assessment of Pharmaceutical and Personal Care Products in Surface Waters of Qingdao, China, with Emphasis on Influence of Animal Farming in Rural Areas. Arch. Environ. Contam. Toxicol. 2020, 78, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Gangula, S.; Suen, S.Y.; Conte, E.D. Analytical applications of admicelle and hemimicelle solid phase extraction of organic analytes. Microchem. J. 2010, 95, 2–4. [Google Scholar] [CrossRef]
- Augusto, F.; Hantao, L.W.; Mogollón, N.G.; Braga, S.C. New materials and trends in sorbents for solid-phase extraction. TrAc-Trends Anal. Chem. 2013, 43, 14–23. [Google Scholar] [CrossRef]
- Valverde, S.; Ares, A.M.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Simultaneous determination of thiamethoxam, clothianidin, and metazachlor residues in soil by ultrahigh performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2017, 40, 1083–1090. [Google Scholar] [CrossRef]
- Adeyeye, O.; Xiao, C.; Zhang, Z.; Liang, X. State, source and triggering mechanism of iron and manganese pollution in groundwater of Changchun, Northeastern China. Environ. Monit. Assess. 2020, 192, 15. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Xiao, C.; Adeyeye, O.; Yang, W.; Liang, X. Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China. Water 2020, 12, 534. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Luo, J.; Chen, L.G.; Zhu, R.L.; Wang, S.; Tang, C.H. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Sci. Total Environ. 2019, 650, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Lobo, G.P.; Kalyan, B.; Gadgil, A.J. Electrochemical deposition of amorphous aluminum oxides on lead pipes to prevent lead leaching into the drinking water. J. Hazard. Mater. 2022, 423, 10. [Google Scholar] [CrossRef] [PubMed]
- Knowles, A.D.; Nguyen, C.K.; Edwards, M.A.; Stoddart, A.; McIlwain, B.; Gagnon, G.A. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2015, 50, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.R.; Liu, S.; Dai, C.; Duan, Y.; Makhinov, A.N.; Hon, L.K.; Araruna Júnior, J.T. Study on the influence mechanism of underground mineral element Fe(II) on Cr(VI) transformation under subsurface and groundwater interaction zones. Environ. Sci Eur. 2020, 32, 14. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Bai, J.H.; Yan, M.H. Problems and Countermeasures of Water Resources for Sustainable Utilization in China. Chin. Geogr. Sci. 2002, 12, 289–293. [Google Scholar] [CrossRef]
- Bokar, H.; Tang, J.; Lin, N.F. Groundwater Quality and Contamination Index Mapping in Changchun City, China. Chin. Geogr. Sci. 2004, 14, 63–70. [Google Scholar]
- Lou, J.C.; Lee, W.L.; Han, J.Y. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction. J. Environ. Manag. 2007, 82, 1–12. [Google Scholar] [CrossRef]
- Meenakshi; Maheshwari, R.C. Fluoride in drinking water and its removal. J. Hazard. Mater. 2006, 137, 456–463. [Google Scholar] [CrossRef]
- Gilbert, P.M. Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 2017, 124, 591–606. [Google Scholar] [CrossRef]
- Lima, J.; Labanowski, J.; Bastos, M.C.; Zanella, R.; Prestes, O.D.; de Vargas, J.P.R.; Dos Santos, D.R. “Modern agriculture” transfers many pesticides to watercourses: A case study of a representative rural catchment of southern Brazil. Environ. Sci. Pollut. Res. 2020, 27, 10581–10598. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Goolsby, D.A.; Thurman, E.M. Pesticides in Near-Surface Aquifers—An Assessment Using Highly Sensitive Analytical Methods and Tritium. J. Environ. Qual. 1995, 24, 1125–1132. [Google Scholar] [CrossRef]
- Osimitz, T.G.; Grothaus, R.H. The Present Safety Assessment of Deet. J. Am. Mosq. Control Assoc. 1995, 11, 274–278. [Google Scholar] [PubMed]
- Riviere, J.E.; Baynes, R.; Brooks, J.; Yeatts, J.; Monteiro-Riviere, N. Percutaneous absorption of topical N,N-diethyl-m-toluamide (DEET): Effects of exposure variables and coadministered toxicants. J. Toxicol. Environ. Health Part A 2003, 66, 133–151. [Google Scholar] [CrossRef]
- Mahai, G.; Wan, Y.; Xia, W.; Wang, A.; Shi, L.; Qian, X.; Xu, S. A nationwide study of occurrence and exposure assessment of neonicotinoid insecticides and their metabolites in drinking water of China. Water Res. 2021, 189, 12. [Google Scholar] [CrossRef] [PubMed]
- Bornehag, C.G.; Lundgren, B.; Weschler, C.J.; Sigsgaard, T.; Hagerhed-Engman, L.; Sundell, J. Phthalates in indoor dust and their association with building characteristics. Environ. Health Perspect. 2005, 113, 1399–1404. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Kannan, K. Challenges encountered in the analysis of phthalate esters in foodstuffs and other biological matrices. Anal. Bioanal. Chem. 2012, 404, 2539–2554. [Google Scholar] [CrossRef]
- Marklund, A.; Andersson, B.; Haglund, P. Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere 2003, 53, 1137–1146. [Google Scholar] [CrossRef]
- Reemtsma, T.; Weiss, S.; Mueller, J.; Petrovic, M.; González, S.; Barcelo, D.; Knepper, T.P. Polar pollutants entry into the water cycle by municipal wastewater: A European perspective. Environ. Sci. Technol. 2006, 40, 5451–5458. [Google Scholar] [CrossRef]
- Ding, J.J.; Shen, X.; Liu, W.; Covaci, A.; Yang, F. Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China. Sci. Total Environ. 2015, 538, 959–965. [Google Scholar] [CrossRef]
- Done, H.Y.; Halden, R.U. Reconnaissance of 47 antibiotics and associated microbial risks in seafood sold in the United States. J. Hazard. Mater. 2015, 282, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, J.P.S.; Ahmed, W.; Gernjak, W.; Aryal, R.; McCarthy, D.; Palmer, A.; Toze, S. Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers. Sci. Total Environ. 2013, 463, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Liu, W.R.; Liu, Y.S.; Zhao, J.L.; Zhang, Q.Q.; Zhang, M.; Ying, G.G. Suitability of pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) as wastewater indicators in the Pearl River Delta, South China. Sci. Total Environ. 2017, 590, 611–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.L.; Lin, S.S.; Dai, C.M.; Shi, L.; Zhou, X.F. Sorption-desorption and transport of trimethoprim and sulfonamide antibiotics in agricultural soil: Effect of soil type, dissolved organic matter, and pH. Environ. Sci. Pollut. Res. 2014, 21, 5827–5835. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ullman, J.L.; Bary, A.; Cogger, C.G.; Teel, A.L.; Watts, R.J. Antibiotic Degradation During Thermophilic Composting. Water Air Soil Pollut. 2015, 226, 12. [Google Scholar] [CrossRef]
- Ren, J.; Jiang, K. Atrazine and its degradation products in surface and ground waters in Zhangjiakou District, China. Chin. Sci. Bull. 2002, 47, 1612–1615. [Google Scholar] [CrossRef]
Time/Min | Mobile Phase A/% | Mobile Phase B/% | Maximum Pressure Limit/Bar |
---|---|---|---|
0 | 95 | 5 | 1000 |
3 | 95 | 5 | 1000 |
5 | 90 | 10 | 1000 |
16 | 80 | 20 | 1000 |
22 | 70 | 30 | 1000 |
28 | 40 | 60 | 1000 |
34 | 5 | 95 | 1000 |
36 | 5 | 95 | 1000 |
36.01 | 95 | 5 | 1000 |
40 | 95 | 5 | 1000 |
Number | Category | Name | Detection Rate |
---|---|---|---|
1 | antibiotic | Amantadine | 17.86% |
2 | Lincomycin | 3.57% | |
3 | L-Tyrosine | 1.79% | |
4 | 8-Hydroxyquinoline | 1.79% | |
5 | Sulfadimethylisopyrimidine | 1.79% | |
6 | Sulfamethazine | 1.79% | |
7 | Analgesics | Antipyrine | 7.14% |
8 | paracetamol | 1.79% | |
9 | Dihydrocodeine | 1.79% | |
10 | antidepressant | L-Phenylalanine | 16.07% |
11 | Sulpiride | 1.79% | |
12 | Diazepam | 1.79% | |
13 | cosmetic | Dibutyl adipate | 19.64% |
14 | diet pills | mazindol | 3.57% |
15 | beta-blockers | Metoprolol | 1.79% |
16 | Anesthetic | Lidocaine | 1.79% |
17 | progesterone | Progesterone | 1.79% |
18 | other | Oleamide | 82.14% |
19 | nicotine | 8.93% | |
20 | melamine | 5.36% | |
21 | caffeine | 1.79% | |
22 | 5-Methylbenzotriazole | 1.79% |
Number | Category | Name | CAS Number |
---|---|---|---|
1 | pesticide | Atrazine | 1912–24-9 |
2 | Metolachlor | 51218–45-2 | |
3 | Propazine | 139–40-2 | |
4 | Nicosulfuron | 1119910–09-4 | |
5 | Diethyltoluamide | 134–62-3 | |
6 | Thiamethoxam | 153719–23-4 | |
7 | Isoprothiolane | 50512–35-1 | |
8 | Metalaxyl | 57837–19-1 | |
9 | OPES | TBP | 126–73-8 |
10 | TCPP | 13674–84-5 | |
11 | TPP | 115–86-6 | |
12 | TEP | 78–40-0 | |
13 | TDCP | 13674–87-8 | |
14 | PPCPs | Oleamide | 301–02-0 |
15 | Dibutyl adipate | 105–99-7 | |
16 | Amantadine | 768–94-5 | |
17 | Phenylalanine | 63–91-2 | |
18 | Antipyrine | 60–80-0 | |
19 | Acetaminophen | 103–90-2 | |
20 | Sulfamethazine | 57–68-1 | |
21 | PAEs | DHXP | 117–81-7 |
22 | DEP | 84–66-2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Shen, J.; Wei, S.; Cai, D.; Liu, J. Identification of Heavy Metals and Organic Micropollutants in Drinking Water Sources in Typical Villages and Towns in Northeast China. Molecules 2022, 27, 8033. https://doi.org/10.3390/molecules27228033
Wang G, Shen J, Wei S, Cai D, Liu J. Identification of Heavy Metals and Organic Micropollutants in Drinking Water Sources in Typical Villages and Towns in Northeast China. Molecules. 2022; 27(22):8033. https://doi.org/10.3390/molecules27228033
Chicago/Turabian StyleWang, Guangyuan, Jimin Shen, Shengyue Wei, Daxing Cai, and Jinde Liu. 2022. "Identification of Heavy Metals and Organic Micropollutants in Drinking Water Sources in Typical Villages and Towns in Northeast China" Molecules 27, no. 22: 8033. https://doi.org/10.3390/molecules27228033
APA StyleWang, G., Shen, J., Wei, S., Cai, D., & Liu, J. (2022). Identification of Heavy Metals and Organic Micropollutants in Drinking Water Sources in Typical Villages and Towns in Northeast China. Molecules, 27(22), 8033. https://doi.org/10.3390/molecules27228033