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Abstract: Titania is very famous photocatalyst for decomposition of organic pollutants. Its photocat-
alytic properties significantly depend on the morphology and chemical composition of the samples.
Herein, the TiO2 nanotubes/CuxO nanoheterostructures have been synthesized and the effect of
heat treatment performed in molecular atmospheres of air and argon on their photoelectrochemical
and photocatalytic properties has been studied. The prepared samples have a higher reaction rate
constant compared to TiO2 nanotubes in the decomposition reaction of methylene blue molecules. It is
established that in argon treated nanoheterostructures, the copper oxide is present in two phases, CuO
and Cu2O, while in air treated ones there is only CuO. In the TiO2 nanotubes/CuxO samples, Cu2+

ions and molecular O2
− radicals were detected while in TiO2 nanotubes only carbon dangling bond

defects are present. The dynamics of O2
− radicals under illumination are discussed. It was shown

that the TiO2 nanotubes do not exhibit photocatalytic activity under visible light. The mechanism of
the photocatalytic reaction on the surface of the TiO2 nanotubes/CuxO samples was proposed. It is
assumed that a photocatalytic decomposition of organic molecules under visible light at the surface
of the nanoheterostructures under investigation is realized mainly by the reaction of these molecules
with photogenerated O2

− radicals. The results obtained are completely original and indicate the high
promise of the prepared photocatalysts.

Keywords: organic molecules photodegradation; TiO2 nanotubes/CuxO; nanoheterostructures;
photocatalytic activity; molecular oxygen anion radicals; copper ions

1. Introduction

Industrial development requires significant energy resources, which leads to environ-
mental pollution with various toxic organic substances [1–3]. One of the solutions to this
problem is the use of photocatalysis to decompose toxic organic pollutant molecules to
carbon dioxide and water under the influence of sunlight [4].

TiO2 is widely studied and used as a photocatalyst for decomposition of organic
molecules due to the successful location of energy levels, photocorrosion resistance, relative
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non-toxicity and low cost [1–3]. However, the band gap of TiO2 is 3.2 eV, which does
not allow the wide use of this material in photocatalysis, due to the fact that the share of
ultraviolet radiation is about 5% of the solar spectrum [5]. When using arrays of titanium
anode oxide nanotubes, it is possible to control various geometric characteristics of this
material, such as external and internal diameters, length, and wall thickness. The geometric
characteristics of titanium dioxide nanotubes are determined by the parameters of the
anodic process of formation. Moreover, the formation of TiO2 nanotubes (TiO2 NTs) array
directly on titanium conductive substrate provides good electrical contact and more efficient
transfer of charge carriers to the electrode compared to a powder system of nanoparticles [3].

It is known that doping of TiO2 NTs with transition metals and nonmetals can increase
the response of TiO2 NTs in the visible wavelength range [6]. In addition, the photoac-
tivity of TiO2 NTs in the visible wavelength range can be increased due to the formation
of semiconductor heterostructures with narrow-band semiconductors [7]. The formed
heterojunction leads to an increase in the lifetime of photogenerated charge carriers, due to
their effective separation at the interface of two semiconductors [8,9].

Various transition metal oxides, in particular, copper oxides, are used to create TiO2/MeOx
heterojunctions. Copper oxides attract attention because of their band gap width, which is
1.2–2 eV [10]; the nanoheterojunction between TiO2 and copper oxide increases the photocat-
alytic activity in the visible radiation range. Copper oxides can be obtained in various ways:
microwave irradiation [11,12], hydrothermal synthesis [13,14], solvothermal [15], chemical
deposition in a bath [16,17] pyrolysis by spraying [18,19], ion layering (SILAR) [20–25], sol-
gel [26,27]. Among them, the SILAR method attracts a lot of attention due to its relatively low
cost and the absence of the need to use complex equipment.

However, due to the presence of two stable phases of copper oxide (Cu2O, CuO), it
becomes difficult to control the properties of the TiO2/CuxO heterojunction. Various heat
treatments of the obtained samples are considered by different scientific groups, describing
several stoichiometric compositions of copper oxide attained depending on the temperature
of heat treatment. For example, in [28], such samples were obtained where Cu2O is formed
at lower temperatures, followed by Cu2O/CuO with increase of the temperature, and then
CuO; with each increase in temperature, the Cu2O phase gradually decreased. In [29], the
effect of the number of SILAR deposition cycles on the resulting copper oxide structure
was investigated. In that study, no heat treatment was performed, but the sample was
left at ambient temperature. From the data obtained in the work, it follows that with this
manufacturing method, CuO oxide is deposited on the surface of TiO2. The authors of [30]
describe the study of the decomposition of tartrazine dyes by combining the processes of
electrocoagulation and photocatalysis. To evaluate these processes, a sample with TiO2
nanotubes and copper oxide particles deposited on them by the SILAR method was used.
In the present work, heat treatment was carried out at a temperature of 500 ◦C for 3 h
in air to obtain a stable crystalline structure of copper oxide. At this temperature CuO
was also formed. In [31], a similar heat treatment at 450 ◦C for 3 h in air was used to
crystallize copper oxide. At this time, CuxO nanoparticles were inside TiO2 nanotubes.
The results obtained show that the presence of CuO nanoparticles causes a decrease in
the optical band gap of TiO2 from 3.2 eV to 2.8 eV. In all the described works, annealing
in air is used to control the copper oxide phase. At the same time, heat treatment in
oxygen-free atmospheres after deposition of copper oxide nanoparticles by the SILAR
method can contribute to the formation of TiO2/Cu2O or more complex TiO2/CuO/Cu2O
heterojunctions. However, at present, only a small number of works are devoted to the
study of the influence of heat treatment conditions on the performance of TiO2 NTS/CuxO
photocatalysts obtained by the SILAR method.

Therefore, the purpose of this work is to study the photocatalytic and photoelectron
properties of synthesized TiO2/CuxO nanoheterostructures depending on the conditions of
heat treatment. Since defects (radicals) play an important role in photoelectron processes,
investigation of the type and properties of defects in the obtained samples were carried out
in parallel.
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2. Results
2.1. Morphology

The morphology of the formed TiO2 NTs and TiO2 NTs/CuO samples was studied
using SEM. Figure 1 shows the photos obtained.
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Figure 1. SEM images of the surface and chips of the obtained samples: (a,b) TiO2 NTs, (c,d) TiO2

NTs-S-Air, (e,f) TiO2 NTs-S-Arg.

As can be seen from the microscopy results, there is an uneven distribution of copper
oxide nanoparticles on the surface of titania nanotubes.

2.2. Structural Properties

To determine the phase of the copper oxides on the surface of TiO2 NTs, the samples
obtained were examined by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS).
Well-separated peaks of ions of isotopes 63Cu−, 63CuO−, 63CuO2

− were observed. It was
found that the ratio of 63CuO−, 63CuO2

− ions to the total number of registered ions is the
largest for the TiO2-S-Air sample and exceeds that for the TiO2-S-Arg sample by 6 times.
Based on the obtained results of the difference in the ratio of ion yield from the obtained
samples, it can be concluded that the copper oxide on the surface of the TiO2-S-Air sample
is in the more oxidized state compared to samples thermally treated in atmospheres with
a low oxygen content. It can be assumed that the copper oxide phase in the TiO2-S-Air
sample is more represented as CuO, whereas for TiO2-S-Arg samples, copper oxide located
on the surface of TiO2 NTs can be represented as Cu2O or metallic copper.
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2.3. Optical Properties

The diffuse light reflection method was used to study the optical properties (Figure 2).
As can be seen from the figure, the initial pure TiO2 NTs mainly absorb UV light with
a wavelength of less than 370 nm in accordance with the band gap width.
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Figure 2. Diffuse light reflection spectra for different types of samples.

After application of copper oxide nanoparticles, the light reflection coefficient from
TiO2-S-Air and TiO2-S-Arg samples decreases in the visible range. Consequently, these
samples absorb visible light better than the original ones. Compared with annealing in air,
annealing in argon increases the absorption of visible light more significantly (Figure 3),
which may be due to an increase in the concentration of defects.
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The optical band gap of TiO2 NTs and TiO2 NTs/CuxO was calculated using the
Kubelka–Munch theory [32]. The corresponding graphical constructions are shown in
Figure 4. The equations were used for semiconductors with direct band-to-band transitions.
It was demonstrated earlier [33] that this approach provides reliable results for titanium-
dioxide nanostructures. It is due to the size effect when crystal structure undergoes changes
because of substance volume decrease; this results in an increased probability of direct
band-to-band transitions. Conversion of an indirect semiconductor into a direct one is
commonly described from the viewpoint of DFT theory [33].
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The optical band gap of the initial TiO2 NTs annealed in air is about 3.2± 0.1 eV. After the
introduction of copper oxide, the band gap practically did not change and was 3.3 ± 0.1 eV
and 3.2 ± 0.1 eV, respectively, for samples annealed in air and in argon.

2.4. Photoelectrochemical Properties

The photoactivity of the obtained samples was evaluated by chronoamperometry in
a three-electrode photoelectrochemical cell (Figures 5 and 6).

Molecules 2022, 27, x FOR PEER REVIEW 6 of 16 
 

 

The optical band gap of the initial TiO2 NTs annealed in air is about 3.2 ± 0.1 eV. After 
the introduction of copper oxide, the band gap practically did not change and was 3.3 ± 
0.1 eV and 3.2 ± 0.1 eV, respectively, for samples annealed in air and in argon. 

2.4. Photoelectrochemical Properties 
The photoactivity of the obtained samples was evaluated by chronoamperometry in 

a three-electrode photoelectrochemical cell (Figures 5 and 6). 

 
Figure 5. Photocurrent density kinetics of the samples annealed in different media and illuminated 
by visible light with a wavelength of more than 430 nm. 

 
Figure 6. Photocurrent density kinetics for samples annealed in different media and under illumi-
nation in the wide light range using AM1.5 filter, imitating sunlight. 

Figure 5. Photocurrent density kinetics of the samples annealed in different media and illuminated
by visible light with a wavelength of more than 430 nm.
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It can be seen from Figure 5 that the application of copper oxide does not lead to
an increase in the generated photocurrent by TiO2 NTs arrays in the visible wavelength
range. The photocurrent recorded in this region of the spectrum for all samples remains
within the range of 1 µA/cm2. It is important to note that the dark current in 0.1 M solution
of Na2SO4 for TiO2 NTs-S-Air and TiO2 NTs-S-Arg samples lies in the cathode region,
which indicates the passage of a reduction reaction on the surface of the photocathode.

From Figure 6, it can be seen that the application of copper oxide leads to a decrease in
the photoactivity of the samples under illumination over a wide range including UV light.
The photocurrent values are about ~16 µA/cm2 and are almost the same for TiO2-S-Arg
and TiO2-S-Air samples. The greatest value of the photocurrent 60 µA/cm2 is observed for
the pure sample, TiO2 NTs, since titanium dioxide effectively absorbs UV light to generate
free charge carriers. It is important to note that at the moment of switching on the light
with the AM1.5 filter, no cathode current is observed on the samples decorated with copper
oxide. This may be due to its insignificant value compared to the total anode current from
TiO2 NTs samples.

2.5. Photocatalytic Activity and EPR Spectroscopy

To assess the photocatalytic activity with respect to organic molecules, the kinetics of
decomposition of the methylene blue dye on the surface of TiO2 NTs/CuO samples were
obtained. The degree of decomposition of the dye was estimated by the light transmission
spectra. The obtained transmission data were recalculated into the relative concentration of
the dye molecules Cn/C0 (Figure 7), where C0 is the initial concentration.
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Figure 7. Kinetics of decomposition of methylene blue dye molecules on the surface of TiO2 NTs,
TiO2-S-Air, TiO2-S-Arg samples and, for comparison, without a catalyst (SD) under illumination in
the visible region.

From the data obtained, it can be concluded that the TiO2-S-Air and TiO2-SArg samples
have the best photocatalytic properties (a change in the dye concentration of approximately
20%) comparing to the TiO2 NTs. The use of the TiO2 NTs sample did not add an effect
compared to the self-degradation of methylene blue molecules under illumination (approx-
imately 10%). This indicates the absence of catalytic activity of TiO2 NTs under visible light
irradiation, which is consistent with the literature data.

To evaluate the efficiency of methylene blue molecules decomposition by all the
studied samples, the reaction rate constants were calculated. The TiO2-S-Air and TiO2-S-
Arg samples have a high reaction rate constant (approximately 0.002). The smallest reaction
rate constants, equal to 0.001, were found during dye self-degradation and when using
TiO2 NTs (Figure 8).
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Before proceeding to the obtained results analysis and the identification of the mech-
anism of the photocatalytic process, it is necessary to study the structure of defects in
the samples under study. Since most defects in metal oxides are paramagnetic, we used
the electron paramagnetic resonance (EPR) method. The EPR spectra of TiO2-S-Air and
TiO2-S-Arg nanocomposites are a superposition of several EPR signals (Figure 9).
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illumination (2). A “shoulder” of EPR signal marked with a symbol *, corresponds to the Cu2+ ions
embedded in the TiO2 lattice during synthesis.

First, a powerful EPR signal from Cu2+ copper ions (g = 2.1612) is recorded [34], which
indicates the presence of the CuO phase. Besides, a signal from O2

− radicals is observed in the
right part of the EPR spectra (Figure 9), (g1 = 2.029, g2 = 2.009, g3 = 2.003) [35]. The appearance
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of O2
− radicals can be easily explained by the adsorption of oxygen on the surface of the

samples, followed by the capture of electrons from the conduction band. The intensity of
the EPR signal from Cu2+ ions in TiO2-S-Arg samples is lower compared to TiO2-S-Air. This
result is in good agreement with the data on TOF-SIMS, according to which, in TiO2-S-Arg
samples, along with CuO, there is a Cu2O phase containing non-paramagnetic Cu+ ions.
Thus, the smaller number of Cu2+ ions in TiO2-S-Arg can be explained by the presence of
copper oxide in these structures in two phases: CuO and Cu2O. Under illumination, there is
a decrease in the intensity of the EPR signal from Cu2+ ions in both TiO2-S-Air and TiO2-S-Arg
samples, which can be explained by the transition of Cu2+ to Cu+, that is, the formation of
the Cu2O phase [36]. The intensity of the EPR signal from molecular O2

− radicals before
illumination is significantly higher in TiO2-S-Arg. This can be explained by the fact that the
annealing of samples in an inert atmosphere is accompanied by the formation of oxygen
vacancies on which oxygen molecules can be adsorbed, followed by capturing of electrons
from the conduction band and the formation of molecular O2

− radicals. The phase change
from CuO to Cu2O is accompanied by the formation of O2 molecules [37]; this oxygen can
also be restored and contribute to the EPR signal from molecular O2

− radicals. Under the
influence of illumination, photoinduced oxygen adsorption is initiated with the formation
of molecular O2

− radicals; therefore, a sharp increase in the intensity of the EPR signal from
molecular O2

− radicals in TiO2−S−Air is observed. However, there is no significant increase
in the concentration of oxygen anion radicals in TiO2-S-Arg under illumination, which can be
explained by the predominant generation of nonparamagnetic O2

2− ions in these samples due
to the continuous capture of electrons: O2

− + e−→ O2
2−. Such oxygen species are chemically

less active than oxygen anion radicals and the photocatalysis rate of the TiO2-S-Arg samples
does not exceed the photocatalysis rate of the TiO2-S-Air ones. We suppose that a transition
from Cu2O to Cu is difficult at the surface of the TiO2-S-Arg, and no new oxygen molecules
are released. This fact may also indicate that Cu2O is located predominantly on the surface.
In the range of the magnetic field from 260 to 300 mT, a “shoulder” (marked with a symbol
* in Figure 9a) on the EPR spectrum is observed, which is most pronounced for TiO2-S-Arg.
According to data in the literature, EPR from Cu2+ copper ions embedded in the TiO2 lattice
during synthesis is observed in this spectral range [36]. Notice that in TiO2 NTs without
copper oxide nanoparticles only carbon dangling bond defects are detected [38]. Such defects
in TiO2 nanotubes create energy levels in the band gap and are thus responsible for absorption
in the visible range of the spectrum.

3. Discussion

Based on the obtained results of the study of the photocurrent, photocatalytic activity,
and the behavior of paramagnetic centers under illumination, the following model of the
photocatalytic reaction mechanism on the surface of the obtained TiO2 NTs samples can
be assumed (Figure 10). The relative position, the values of the energy band edges and
reaction potentials are indicated in accordance with the literature data [39–44].
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As a result of the spatial charge region formation at the TiO2/CuO interface, the
current of the main charge carriers (e−) in n-type semiconductors is strongly suppressed,
which is confirmed by the results of measurement of photocurrent dependencies. The re-
gion of spatial charge depleted by electrons (e−) in TiO2 can be comparable with the small
(~50 nm) thickness of the walls of nanotubes, which can lead to almost complete block-
ing of the current through the volume of the nanotube. In the case when the depletion
region formed at the TiO2/electrolyte interface completely overlaps TiO2, this does not
prevent the reaction of photogenerated holes with adsorbed water molecules and OH−

ions. The photogenerated electrons move towards the cathode through an electrical circuit.
In turn, the H+ ions formed during the water decomposition reaction migrate through the
electrolyte volume and are reduced at the cathode, thereby closing the electrochemical
circuit. In the case of the arrays of TiO2 nanotubes with CuO or Cu2O on their surface,
the current of photogenerated holes will be directed to copper oxide. The valence band
potential of copper oxide is insufficient for the water decomposition reaction to proceed:
without additional bias the holes can only recombine in the volume of copper oxide without
contributing to the photocurrent. However, this does not affect photocatalysis, because the
mechanism of decomposition of organic substances in our case is different. Let us discuss it.

The process of organic molecules decomposition on the surface of semiconductors is
often associated with the indirect decomposition of complex molecules due to the formation
of highly active radicals O2

− and OH• [45,46]. The formation of such radicals occurs due
to the reaction of molecules of adsorbed oxygen, hydroxide ions OH− and water molecules
with photoinduced charge carriers, according to Reactions 1–3:

OH− + h+ → OH•

EOH−/OH• = 1.47 V vs. NHE (pH = 7) (1)

H2O + h+ → H+ + OH•

EH2O/H+ ,OH• = 2.31 V vs. NHE (pH = 7) (2)

O2 + e− → O−2

EO2/O−2
= −0.18 V vs. NHE (pH = 7) (3)

Due to the fact that the study of photocatalytic activity was carried out with illumina-
tion by light with the wavelength longer than 430 nm, the maximum energy of the incident
photon is ~2.9 eV. This energy is insufficient to generate electron-hole pairs in the TiO2
NTs sample (Eg ~ 3.2 eV), and therefore active reactions involving free charge carriers and
adsorbed ions are impossible. In turn, to generate free charge carriers in CuO and Cu2O,
the energy of the photon equal to 2.9 eV is sufficient.

The course of Reactions 1 and 2 on the surface of copper oxide nanoparticles is
suppressed due to the more negative potential of the valence band top of both CuO and
Cu2O and the potentials of Reactions 1 and 2. Therefore, the presence of free charge carriers
in the near-surface layer of copper oxide nanoparticles cannot contribute to the course of
these reactions.

In turn, the oxygen reduction Reaction (3) is thermodynamically possible on both
semiconductors in the presence of free electrons. As shown by the EPR method, in the
samples TiO2-S-Air and TiO2-S-Arg even without lighting, oxygen radicals O2

− necessary
for the decomposition reaction of methylene blue molecules are present. When the light
is turned on, the concentration of O2

− radicals for the TiO2-S-Air sample increases; as
a result of a change in the CuO phase to Cu2O, O2 molecules can be released with its further
reduction on the surface of copper oxide (I) to O2

−. It can be assumed that due to the
additional source of molecular O2

− radicals, the reaction rate constant of the TiO2-S-Air
sample is slightly higher compared to TiO2-S-Arg. In turn, it is clearly shown that the
TiO2 NTs sample without copper oxide and oxygen radicals does not exhibit photocatalytic
activity, which is associated with the generation of O2

− on the surface of copper oxides. The
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results obtained indicate that the mechanism of photocatalytic decomposition of organic
molecules under visible light illumination using TiO2/CuO-Cu2O nanoheterostructures is
associated with the generation of O2

− on the surface of the samples and organic molecules’
reaction with O2

− radicals.

4. Materials and Methods
4.1. Synthesis of TiO2 NTs

Samples of titanium nanotube oxide (TiO2 NTs) were obtained by electrochemical
oxidation of titanium. Electrolyte used: ethylene glycol, 0.3 g NH4F, 2 mL H2O per
100 mL volume of electrolyte. Anodizing was carried out in a thermostatically controlled
cell at 20 ◦C in 2 stages. The first stage lasted 30 min, after which the formed nanotube
layer was removed from the foil surface by cathodic polarization in a 5% H2SO4 solution.
The second stage lasted 1 h, after which the sample was washed in ethyl alcohol and dried
in an air stream.

After that, the obtained samples were subjected to heat treatment in a muffle furnace
at 450 ◦C for 1 h for crystallization.

4.2. Synthesis of TiO2 NTs/CuxO Heterostructures

CuO particles on the surface of TiO2 NTs were obtained by molecular layering (SILAR).
The source of copper ions was an aqueous solution of CuCl2·2H2O, the pH of which was
brought to 10 with a solution of 25% ammonia (NH4OH). As a source of anions, heated to
70 ◦C solution of ethyl alcohol with deionized water in a ratio of 1 to 3 was used.

The SILAR method consists of three stages. At the first stage, the sample was immersed
for 30 s in an aqueous solution of copper chloride containing [Cu(NH3)4]+2 ions. At the
second stage, the sample was placed in a solution of ethyl alcohol with deionized water for
7 s. The third stage consists of washing the sample in deionized water for 30 s. After the
deposition process was completed, the obtained samples were subjected to heat treatment
in a furnace at a temperature of 300 ◦C for 1 h to crystallize the deposited CuO layer in
various annealing media (air, argon). We chose two different media for annealing—oxygen-
rich and oxygen-free, in order to determine in which media the largest number of oxygen
radicals (involved in photocatalytic oxidation reactions of organic substances) are formed
on the sample surface.

Depending on the conditions of heat treatment, the designations of the samples in
the work will be used as follows: TiO2 NTs—without copper oxide applied, TiO2-S-Air—
annealing in air after applying copper oxide, TiO2-S-Arg—annealing in argon after applying
copper oxide.

4.3. Microscopy

The surface morphology was studied using a Helios G4CX (Thermo Fisher Scientific,
Waltham, MA, USA) scanning electron microscope.

4.4. Time-of-Flight Secondary Ion Mass Spectrometry

The Time-of-Flight Secondary Ion Mass Spectrometer was produced by TOF-SIMS IV
manufactured by IONTOF GmbH, Muenster, Germany, and clusters of bismuth ion (Bi3+)
were used.

4.5. Investigation of Optical Properties

The obtained samples were examined by diffuse light reflection in the wavelength
range from 200 to 800 nm using the spectrometer (LS-55 PerkinElmer, St Waltham, MA,
USA). The values of the optical band gap width were obtained using the mathematical
transformation based on Kubelka–Munch theory.
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4.6. Photoelectrochemical Properties

To assess the photoelectrochemical properties, the Zolix SCS10-PEC-Pro (Tongzhou
District, Beijing, China) photoelectrochemical research unit was used, which consisted of
a 150 mL photoelectrochemical cell equipped with an Ag/AgCl (3M) reference electrode
and a platinum counterelectrode. Chronoamperograms were obtained at 0 V bias vs.
Ag/AgCl (3M). A 500 W xenon lamp was used as a light source. The photoactivity of the
samples was studied in the visible range λ > 430 nm, for which a UV filter (Photooptic-
filters, Obninsk, Russia) was used, and AM1.5 filter (Zolix Instruments, Beijing, China) was
also used to study the samples in a spectrum similar to the solar one. The incident light
power was about 100 mW/cm2 and 80 mW/cm2, respectively. An aqueous solution of
0.1 M Na2SO4 was used as the electrolyte.

4.7. Photocatalysis

A Newport xenon Lamp 150W Xe (Deere Avenue Irvine, CA, USA) with a UV filter
was used as a light source (to highlight the visible range: λ > 430 nm), the incident light
power was ~100 mW/cm2.

For the study of photocatalytic treatment of organic molecules, methylene blue
(Methylenum coeruleum) was used in an aqueous solution of 6.7 µM concentration and
a volume of 20 mL. To avoid severe degradation of methylene blue molecules due to
heating by lamp radiation, an optimal temperature of about 20 ◦C was maintained using
a circulating thermostat.

Light transmission through the aqueous solution of methylene blue was measured
using a spectrophotometer SF-102 (“NPO Akvilon”, Podolsk, Russia) at 662 nm wavelength,
since this corresponds to the peak absorption of the studied solution. Before the photocatal-
ysis process, the sample was placed in 20 mL of the prepared solution of methylene blue
for 1 h for preliminary adsorption of the dye onto the sample surface. Light transmission
through the solution before soaking the sample was also measured, which in all cases was
about 30%. After that, the light transmission through the solution was measured after
soaking the sample (zero point). Then the photocatalysis process was started and the light
transmission through the decomposed solution was measured on the spectrophotometer
every 30 min for 2 h.

4.8. EPR Spectroscopy

Electron paramagnetic resonance (EPR) spectra were recorded on a Bruker ELEXSYS
E500 EPR spectrometer (X-band) (Bruker, Karlsrue, Germany). The samples were illumi-
nated directly in the cavity of the EPR spectrometer with the light of a BRUKER ELEXSYS
ER 202 UV high-pressure mercury lamp (50 W). The photoexcitation intensity of the samples
was approximately 100 mW/cm2.

5. Conclusions

The TiO2 nanotubes/CuxO nanoheterostructures formed with heat treatment in molec-
ular atmospheres of air and argon have been prepared and investigated using microscopy,
TOF-SIMS, UV-Vis spectroscopy, chronoamperometry, photocatalysis and EPR spectroscopy.
The TiO2 nanotubes have been synthesized separately for comparative study. The TiO2
nanotubes/CuxO nanoheterostructures were characterized by better photocatalytic proper-
ties regarding dye decomposition (a change in the dye concentration was of approximately
20%) compared to the titania nanotubes (a change in the dye concentration was on the
level of self-degradation of methylene blue molecules under illumination). It was revealed
that in air treated nanoheterostructures the copper oxide was present in the CuO phase,
but in argon treated samples two phases, both CuO and Cu2O, were detected. In the TiO2
nanotubes/CuxO samples, Cu2+ ions and molecular O2

− radicals were observed while in
TiO2 nanotubes only carbon dangling bond defects were detected. The intensity of the EPR
signal from Cu2+ ions in TiO2 nanotubes/CuxO samples decreased under illumination; this
can be explained by the transition of Cu2+ to Cu+ state, that is, the formation of the Cu2O
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phase. Note that, without illumination, the amount of oxygen radicals was higher in the
samples that underwent heat treatment in argon, but under illumination, the amount of
oxygen radicals became approximately the same for both types of samples. Therefore, there
are two ways to achieve a high concentration of oxygen radicals necessary for the pho-
todegradation activity in visible light of the TiO2 nanotubes/CuxO nanoheterostructures:
(1) annealing in oxygen-enriched media followed by illumination or (2) simple annealing
in an oxygen-free media. It was also shown that the TiO2 nanotubes without copper oxide
and molecular oxygen radicals did not exhibit photocatalytic activity in the same condi-
tions. The mechanism of photocatalytic decomposition of the test dye under visible light
illumination using TiO2/CuO-Cu2O nanoheterostructures was discussed and associated
with the generation of O−2 radicals on the surface of the samples and the involvement of
O−2 radicals in redox reactions with dye molecules.

The results obtained are completely new and give us every reason to consider the
prepared TiO2 nanotubes/CuxO nanoheterostructures with high concentrations of oxygen
radicals as promising photocatalysts.
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