Xanthanolides in Xanthium L.: Structures, Synthesis and Bioactivity
Abstract
:1. Introduction
2. Structures of Xanthanolides in Genus Xanthium
3. The Biological Activity of Xanthanolides
3.1. Anti-Tumor Activity
3.2. Antimicrobial Activity
3.3. Anti-Inflammatory Activity
4. Synthesis of Xanthanolides
4.1. Chemical Synthesis
4.2. Biological Synthesis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, W.; Fan, L.; Peng, C.; Zhang, Q.; Wang, L.; Li, L.; Wang, J.; Zhang, D.; Peng, W.; Wu, C. Traditional Uses, Botany, Phytochemistry, Pharmacology, Pharmacokinetics and Toxicology of Xanthium strumarium L.: A Review. Molecules 2019, 24, 359. [Google Scholar] [CrossRef] [Green Version]
- Yen, P.H.; Hoang, N.H.; Trang, D.T.; Huong, P.T.; Tai, B.H.; Nhiem, N.X.; Kiem, P.V. A New Thiazinedione Glycoside from the Fruits of Xanthium strumarium L. Nat. Prod. Commun. 2021, 16, 1934578X211032082. [Google Scholar] [CrossRef]
- Wang, Y.; Han, T.; Xue, L.; Han, P.; Zhang, Q.Y.; Huang, B.K.; Zhang, H.; Ming, Q.L.; Peng, W.; Qin, L.P. Hepatotoxicity of kaurene glycosides from Xanthium strumarium L. fruits in mice. Die Pharm. Int. J. Pharm. Sci. 2011, 66, 445–449. [Google Scholar]
- Tong, C.; Chen, R.-H.; Liu, D.-C.; Zeng, D.-S.; Liu, H. Chemical Constituents from the Fruits of Xanthium strumarium and Their Antitumor Effects. Nat. Prod. Commun. 2020, 15, 1934578X20945541. [Google Scholar] [CrossRef]
- Vasas, A.; Hohmann, J. Xanthane sesquiterpenoids: Structure, synthesis and biological activity. Nat. Prod. Rep. 2011, 28, 824–842. [Google Scholar] [CrossRef]
- Scherer, R.; Duarte, M.; Catharino, R.; Nachtigall, F.M.; Eberlin, M.; Filho, J.T.; Godoy, H. Xanthium strumarium L. antimicrobial activity and carboxyatractyloside analysis through electrospray ionization mass spectrometry. Rev. Bras. Plantas Med. 2009, 11, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Zhao, Y.; Han, P.; Yue, W.; Ma, X.; Rahman, K.; Zheng, C.; Qin, L.; Han, P.; Han, T. Anti-arthritic activity of Xanthium strumarium L. extract on complete Freund’s adjuvant induced arthritis in rats. J. Ethnopharmacol. 2014, 155, 248–255. [Google Scholar] [CrossRef]
- Vaishnav, K.; George, L.-B.; Highland, H.N. Antitumour Activity of Xanthium strumarium L. on Human Cervical Cancer HeLa Cells. J. Cancer Tumor Int. 2015, 2, 1–13. [Google Scholar] [CrossRef]
- Feng, J.; Lei, X.; Bao, R.; Li, Y.; Xiao, C.; Hu, L.; Tang, Y. Enantioselective and Collective Total Syntheses of Xanthanolides. Angew. Chem. 2017, 129, 16541–16545. [Google Scholar] [CrossRef]
- Little, J.E.; Foote, M.W.; Johnstone, D.B. Xanthatin: An antimicrobial agent from Xanthium pennsylvanicum. Arch. Biochem. 1950, 27, 247–254. [Google Scholar]
- Geissman, T.A.; Deuel, P.; Bonde, E.K.; Addicott, F.A. Xanthinin: A Plant Growth-regulating Compound from Xanthium pennsylvanicum. I. J. Am. Chem. Soc. 1954, 76, 685–687. [Google Scholar] [CrossRef]
- Yoon, J.H.; Lim, H.J.; Lee, H.J.; Kim, H.-D.; Jeon, R.; Ryu, J.-H. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium. Bioorganic Med. Chem. Lett. 2008, 18, 2179–2182. [Google Scholar] [CrossRef]
- Favier, L.S.; María, A.O.M.; Wendel, G.H.; Borkowski, E.J.; Giordano, O.S.; Pelzer, L.; Tonn, C.E. Anti-ulcerogenic activity of xanthanolide sesquiterpenes from Xanthium cavanillesii in rats. J. Ethnopharmacol. 2005, 99, 260–267. [Google Scholar] [CrossRef]
- Mahmoud, A.A. Xanthanolides and Xanthane Epoxide Derivatives from Xanthium strumarium. Planta Med. 1998, 64, 724–727. [Google Scholar] [CrossRef]
- Tsankova, E.T.; Trendafilova, A.B.; Kujumgiev, A.I.; Galabov, A.S.; Robeva, P.R.; Kujumgiev, A.I. Xanthanolides of Xanthium italicum Moretti and Their Biological Activity. Z. Für Nat. C J. Biosci. 1994, 49, 154–156. [Google Scholar] [CrossRef]
- Bohlmann, F.; Knoll, K.-H.; El-Emary, N.A. Neuartige sesquiterpenlactone aus Pulicaria crispa. Phytochemistry 1979, 18, 1231–1233. [Google Scholar] [CrossRef]
- Bohlmann, F.; Zdero, C. An isomer of xanthanol from Xanthium orientale. Phytochemistry 1981, 20, 2429–2430. [Google Scholar] [CrossRef]
- Omar, A.A.; Elrashidy, E.M.; Ghazy, N.A.; Metwally, A.M.; Ziesche, J.; Bohlmann, F. Xanthanolides from Xanthium spinosum. Phytochemistry 1984, 23, 915–916. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Mahmoud, A.A.; El-Gamal, A.A. A Xanthanolide Diol and a Dimeric Xanthanolide from Xanthium Species. Planta Med. 1999, 65, 470–472. [Google Scholar] [CrossRef]
- Kovács, A.; Vasas, A.; Forgo, P.; Réthy, B.; Zupkó, I.; Hohmann, J. Xanthanolides with Antitumour Activity from Xanthium italicum. Z. Für Nat. C 2009, 64, 343–349. [Google Scholar] [CrossRef]
- Lavault, M.; Landreau, A.; Larcher, G.; Boucharab, J.P.; Fabrice, P.; Papec, P.L.; Richomme, P. Antileishmanial and antifungal activities of xanthanolides isolated from Xanthium macrocarpum. Fitoterapia 2005, 76, 363–366. [Google Scholar] [CrossRef]
- Nosse, B.; Chhor, R.B.; Jeong, W.B.; Böhm, C.; Reiser, O. Facile Asymmetric Synthesis of the Core Nuclei of Xanthanolides, Guaianolides, and Eudesmanolides. Org. Lett. 2003, 5, 941–944. [Google Scholar] [CrossRef]
- Abdei-Mogib, M.; Dawidar, A.; Metwally, M.; Abou-Elzahab, M. Xanthanolides from Xanthium spinosum. Phytochemistry 1991, 30, 3461–3462. [Google Scholar] [CrossRef]
- Pinel, B.; Audo, G.; Mallet, S.; Lavault, M.; LaPoype, F.D.; Séraphin, D.; Richomme, P. Multi-grams scale purification of xanthanolides from Xanthium macrocarpum: Centrifugal partition chromatography versus silica gel chromatography. J. Chromatogr. A 2007, 1151, 14–19. [Google Scholar] [CrossRef]
- Malik, M.S.; Sangwan, N.K.; Dhindsa, K.S. Xanthanolides from Xanthium strumarium. Phytochemistry 1993, 32, 206–207. [Google Scholar] [CrossRef]
- Joshi, S.P.; Rojatkar, S.R.; Nagasampagi, B.A. Antimalarial activity of Xanthium strumarium. J. Med. Arom. Plant Sci. 1997, 19, 366–368. [Google Scholar]
- Yokotani- Pascal, K.; Kato, J.; Kosemura, S.; Yamamura, S.; Kushima, M.; Kakuta, M.; Hasegawa, K. Light-induced aux-in-inhibiting substance from sunflower seedlings. Phytochemistry 1997, 46, 503–506. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Jakupovic, J.; Bohlmann, F.; Regaila, H.A.; Ahmed, A.M. Sesquiterpene lactones from Xanthium pungens. Phytochemistry 1990, 29, 2211–2215. [Google Scholar] [CrossRef]
- Mcmillan, C.; Chavez, P.I.; Plettman, S.G.; Mabry, T.J. Systematic implications of the sesquiterpene lactones in the “strumarium” morphological complex (Xanthium strumarium, Asteraceae) of Europe, Asia and Africa. Biochem. Syst. Ecol. 1975, 2, 181–184. [Google Scholar] [CrossRef]
- Bohlmann, F.; Singh, P.; Joshi, K.C.; Singh, C.L. Xanthanolides from Xanthium indicum. Phytochemistry 1982, 21, 1441–1443. [Google Scholar] [CrossRef]
- Kim, D.K.; Shim, C.K.; Bae, D.W.; Kawk, Y.S.; Yang, M.S.; Kim, H.K. Identification and biological characteristics of an anti-fungal compound extracted from Cocklebur (Xanthium Strumarium) against Phytophthora drechsleri. Plant Pathol. J. 2002, 1, 288–292. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.S.; Park, S.H.; Choi, S.U.; Lee, C.O.; Kim, S.K.; Kim, Y.K.; Kim, S.H.; Ryu, S.Y. Two cytotoxic sesquiterpene lactones from the leaves of Xanthium strumarium and their in vitro inhibitory activity on farnesyltransferase. Planta Med. 2003, 69, 375–377. [Google Scholar] [CrossRef]
- Nour, A.; Khalid, S.; Kaiser, M.; Brun, R.; Abdallah, W.; Schmidt, T. The Antiprotozoal Activity of Sixteen Asteraceae Species Native to Sudan and Bioactivity-Guided Isolation of Xanthanolides from Xanthium brasilicum. Planta Med. 2009, 75, 1363–1368. [Google Scholar] [CrossRef]
- Topcu, G.; Öksüz, S.; Shieh, H.-L.; Cordell, G.A.; Pezzuto, J.M.; Bozok-Johansson, C. Cytotoxic and antibacterial sesquiterpenes from Inula graveolens. Phytochemistry 1993, 33, 407–410. [Google Scholar] [CrossRef]
- Mai, J.; Li, W.; Ledesma-Amaro, R.; Ji, X.-J. Engineering Plant Sesquiterpene Synthesis into Yeasts: A Review. J. Agric. Food Chem. 2021, 69, 9498–9510. [Google Scholar] [CrossRef]
- Zdero, C.; Bohlmann, F.; Rizk, A. Sesquiterpene lactones from Pulicaria sicula. Phytochemistry 1988, 27, 1206–1208. [Google Scholar] [CrossRef]
- Saxena, V.K.; MISHRA, M. Xanthanolides from Xanthium strumarium. Fitoterapia 1995, 66, 159–161. [Google Scholar] [CrossRef]
- De Riscala, E.C.; Fortuna, M.A.; Catalán, C.A.; Díaz, J.G.; Herz, W. Xanthanolides and a bis-norxanthanolide from Xanthium cavanillesii. Phytochemistry 1994, 35, 1588–1589. [Google Scholar] [CrossRef]
- Saxena, V.; Mondal, S. A xanthanolide from Xanthium strumarium. Phytochemistry 1994, 35, 1080–1082. [Google Scholar] [CrossRef]
- Domínguez, X.A.; Pérez, F.M.; Leyter, L. Xanthinin and β-sitosterol from Xanthium orientale. Phytochemistry 1971, 10, 2828. [Google Scholar] [CrossRef]
- Cumanda, J.; Marinoni, G.; De Bernardi, M.; Vidari, G.; Finzi, P.V. New Sesquiterpenes from Xanthium catharticum. J. Nat. Prod. 1991, 54, 460–465. [Google Scholar] [CrossRef]
- Bohlmann, F.; Mahanta, P.K.; Jakupovic, J.; Rastogi, R.C.; Natu, A.A. New sesquiterpene lactones from Inula species. Phytochemistry 1978, 17, 1165–1172. [Google Scholar] [CrossRef]
- Rodriguez, E.; Yoshioka, H.; Mabry, T.J. The sesquiterpene lactone chemistry of the genus Parthenium (compositae). Phytochemistry 1971, 10, 1145–1154. [Google Scholar] [CrossRef]
- Ito, K.; Iida, T. Seven sesquiterpene lactones from Inula britannica var. chinensis. Phytochemistry 1981, 20, 271–273. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Zare, K.; Biniyaz, T.; Fazlalizadeh, G. A seco-guaianolide and other sesquiterpene lactones from Postia bombycina. Phytochemistry 1989, 28, 3127–3129. [Google Scholar] [CrossRef]
- Marcinek-Hüpen-Bestendonk, C.; Willuhn, G.; Steigel, A.; Wendisch, D.; Middelhauve, B.; Wiebcke, M.; Mootz, D. Germa-cranolides, Guaianolides, and Xanthanolides from the Flowers of Arnica mollis and an X-ray Structure Analysis of Baileyin Acetate. Planta Med. 1990, 56, 104. [Google Scholar] [CrossRef]
- Spring, O.; Vargas, D.; Fischer, N.H. Sesquiterpene lactones and benzofurans in glandular trichomes of three Pappobolus species. Phytochemistry 1991, 30, 1861–1867. [Google Scholar] [CrossRef]
- Sevil, O. A eudesmanolide and other constituents fromInula graveolens. Phytochemistry 1992, 31, 195–197. [Google Scholar]
- Meragelman, K.M.; Espinar, L.A.; Sosa, V.E.; Uriburu, M.L.; de la Fuente, J.R. Terpenoid constituents of Viguiera tucumanensis. Phytochemistry 1996, 41, 499–502. [Google Scholar] [CrossRef]
- Spring, O.; Heil, N.; Vogler, B. Sesquiterpene lactones and flavanones in Scalesia species. Phytochemistry 1997, 46, 1369–1373. [Google Scholar] [CrossRef]
- Spring, O.; Heil, N.; Eliasson, U. Chemosystematic studies on the genus Scalesia (Asteraceae). Biochem. Syst. Ecol. 1999, 27, 277–288. [Google Scholar] [CrossRef]
- Marco, J.; Sanz-Cervera, J.F.; Corral, J.; Carda, M.; Jakupovic, J. Xanthanolides from Xanthium: Absolute configuration of xanthanol, isoxanthanol and their C-4 epimers. Phytochemistry 1993, 34, 1569–1576. [Google Scholar] [CrossRef]
- Winters, T.E.; Geissman, T.A.; Safir, D. Sesquiterpene lactones of Xanthium species. Xanthanol and isoxanthanol, and correlation of xanthinin with ivalbin. J. Org. Chem. 1969, 34, 153–155. [Google Scholar] [CrossRef]
- Minato, H.; Horibe, I. 1294. Studies on sesquiterpenoids. Part XI. Structure and stereochemistry of Xanthumin, a stereoisomer of Xanthinin. J. Chem. Soc. 1965, 7009–7017. [Google Scholar] [CrossRef]
- Deuel, P.G.; Geissman, T.A. Xanthinin. II. The Structures of Xanthinin and Xanthatin. J. Am. Chem. Soc. 1957, 79, 3778–3783. [Google Scholar] [CrossRef]
- Yoshioka, H.; Higo, A.; Mabry, T.J.; Herz, W.; Anderson, G.D. Apachin, a new sesquiterpene lactone, and other xanthanolides from Iva ambrosiaefolia. Phytochemistry 1971, 10, 401–404. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Jakupovic, J.; Chau-Thi, T.; Bohlmann, F.; Sadjadi, A. Further sesquiterpene lactones from the genus Dittrichia. Phytochemistry 1987, 26, 2603–2606. [Google Scholar] [CrossRef]
- Dendougui, H.; Benayache, S.; Benayache, F.; Connoly, J.D. Sesquiterpene lactones from Pulicaria crispa. Fitoterapia 2000, 71, 373–378. [Google Scholar] [CrossRef]
- Herz, W.; Chikamatsu, H.; Viswanathan, N.; Sudarsanam, V. Constituents of Iva species. VIII. Structure of ivalbin, a modified guaianolide from Iva dealbata. J. Org. Chem. 1967, 32, 682–686. [Google Scholar] [CrossRef]
- Herz, W.; Kumar, N.; Blount, J.F. Crystal structure and stereochemistry of ivalbin, a xanthanolide. J. Org. Chem. 1979, 44, 4437–4438. [Google Scholar] [CrossRef]
- Ansari, A.H.; Dubey, K.S. 2-Desacetyl-8-Epi-Xanthumanol-4-O-[beta]-D-Galactopyranoside: The Potential Antitumour Ses-quiterpenoidal Lactone from Xanthium spinosum Bark. Asian J. Chem. 2000, 12, 521. [Google Scholar]
- Ahmed, A.A.; Mohamed, A.E.-H.H.; Tzakou, O.; Petropoulou, A.; Hassan, M.E.; El-Maghraby, M.A.; Zeller, K.-P. Terpenes from Inula verbascifolia. Phytochemistry 2003, 62, 1191–1194. [Google Scholar] [CrossRef]
- Piacente, S.; Pizza, C.; Tommasi, N.D.; Simone, F.D. Sesquiterpene and diterpene glycosides from Xanthium spinosum. Phytochemistry 1996, 41, 1357–1360. [Google Scholar] [CrossRef]
- Threlfall, D.R.; Whistance, G.R.; Goodwin, T.W. Aspects of Terpenoid Chemistry and Biochemistry; Academic Press: London, UK, 1971; pp. 53–94. [Google Scholar]
- Lavault, M.; Bruneton, J. Xanthium macrocarpum DC Xanthanolides. Ann. Pharm. Fr. 1979, 37, 59–63. [Google Scholar]
- Bohlmann, F.; Jakupovic, J.; Schuster, A. Further eudesmanolides and xanthanolides from Telekia speciosa. Phytochemistry 1981, 20, 1891–1893. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Y.-N.; Ma, S.-G.; Li, L.; Wang, X.-J.; Li, Y.; Liu, Y.-B.; Qu, J.; Yu, S.-S. Xanthanoltrimer A–C: Three xanthanolide sesquiterpene trimers from the fruits of Xanthium italicum Moretti isolated by HPLC-MS-SPE-NMR. Org. Chem. Front. 2021, 8, 1288–1293. [Google Scholar] [CrossRef]
- He, Y.; Lei, D.; Yang, Q.; Qi, H.; Almira, K.; Askar, D.; Jin, L.; Pan, L. Xanthium orientale subsp. italicum (Moretti) Greuter: Bioassay-guided isolation and its chemical basis of antitumor cytotoxicit. Nat. Prod. Res. 2021, 35, 2433–2437. [Google Scholar] [CrossRef]
- Hehner, S.P.; Hofmann, T.G.; Dröge, W.; Schmitz, M.L. The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kappa B by targeting the I kappa B kinase complex. J. Immunol. 1999, 163, 5617–5623. [Google Scholar]
- Zhang, L.; Ruan, J.; Yan, L.; Li, W.; Wu, Y.; Tao, L.; Zhang, F.; Zheng, S.; Wang, A.; Lu, Y. Xanthatin induces cell cycle arrest at G2/M checkpoint and apoptosis via disrupting NF-κB pathway in A549 non-small-cell lung cancer cells. Molecules 2012, 17, 3736–3750. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Cao, Y.; Wei, Z.; Jia, Q.; Yu, S.; Zhong, J.; Wang, A.; Woodgett, J.R.; Lu, Y. Xanthatin triggers Chk1-mediated DNA damage response and destabilizes Cdc25C via lysosomal degradation in lung cancer cells. Toxicol. Appl. Pharmacol. 2017, 337, 85–94. [Google Scholar] [CrossRef]
- Liu, R.; Shi, D.; Zhang, J.; Li, X.; Han, X.; Yao, X.; Fang, J. Xanthatin Promotes Apoptosis via Inhibiting Thioredoxin Reductase and Eliciting Oxidative Stress. Mol. Pharm. 2018, 15, 3285–3296. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, X.; Liu, P.; Liu, Y.; Geng, Y.; Zhang, L. Xanthatin inhibits non-small cell lung cancer proliferation by breaking the redox balance. Drug Dev. Res. 2022, 83, 1176–1189. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, C.; Sun, M.; Tan, M.; Hu, L.; Yu, Q. Xanthatin inhibits STAT3 and NF-κB signalling by covalently binding to JAK and IKK kinases. J. Cell. Mol. Med. 2019, 23, 4301–4312. [Google Scholar] [CrossRef]
- Ma, Y.-Y.; Di, Z.-M.; Cao, Q.; Xu, W.-S.; Bi, S.-X.; Yu, J.-S.; Shen, Y.-X.; Yu, Y.-Q.; Feng, L.-J. Xanthatin induces glioma cell apoptosis and inhibits tumor growth via activating endoplasmic reticulum stress-dependent CHOP pathway. Acta Pharmacol. Sin. 2019, 41, 404–414. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Zong, C.; Zhang, Q.; Ge, S.; Ma, L.; Fan, J.; Zhang, J.; Jia, R. Xanthatin Selectively Targets Retinoblastoma by Inhibiting the PLK1-Mediated Cell Cycle. Investig. Opthalmology Vis. Sci. 2021, 62, 11. [Google Scholar] [CrossRef]
- Rodino, S.; Butu, A.; Fidler, G.; Butu, M.; Cornea, P.C. Investigation of the antimicrobial activity of extracts from indigenous Xanthium strumarium plants against Phytophthora infestans. Curr. Opin. Biotechnol. 2013, 24, S72–S73. [Google Scholar] [CrossRef]
- Zhi, X.-Y.; Song, L.-L.; Liang, J.; Wei, S.-Q.; Li, Y.; Zhang, Y.; Hao, X.-J.; Cao, H.; Yang, C. Synthesis and in vitro antifungal activity of new Michael-type amino derivatives of xanthatin, a natural sesquiterpene lactone from Xanthium strumarium L. Bioorganic Med. Chem. Lett. 2022, 55, 128481. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Z.M.; Lan, P. Experimental study on effect of Fructus Xanthii extract on duck hepatitis B virus. Lishizhen Med. Mater. Med. Res. 2009, 20, 1776–1777. [Google Scholar]
- Kim, I.-T.; Park, Y.-M.; Won, J.-H.; Jung, H.-J.; Park, H.-J.; Choi, J.-W.; Lee, K.-T. Methanol Extract of Xanthium strumarium L. Possesses Anti-inflammatory and Anti-nociceptive Activities. Biol. Pharm. Bull. 2005, 28, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, W.; Zheng, F.; Yu, H.; Wei, K. Xanthatin Alleviates LPS-Induced Inflammatory Response in RAW264.7 Macrophages by Inhibiting NF-κB, MAPK and STATs Activation. Molecules 2022, 27, 4603. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, Y.; Bai, Y.; Fu, L.; Li, X.; Ma, Z.; Zhang, S. Isoxanthanol has protective and anti-inflammatory effects on sub-chondral bone deterioration in experimental osteoarthritic rat model. Acta Biochim. Pol. 2022, 69, 65–69. [Google Scholar]
- Rudler, H.; Alvarez, C.; Parlier, A.; Perez, E.; Denise, B.; Xu, Y.; Vaissermann, J. Triple nucleophilic additions of (trimethylsilyl)ketene acetals to tropylium derivatives: Access to the core nuclei of xanthanolides. Tetrahedron Lett. 2004, 45, 2409–2411. [Google Scholar] [CrossRef]
- Lei, X.; Li, Y.; Lai, Y.; Hu, S.; Qi, S.; Wang, G.; Tang, Y. Strain-Driven Dyotropic Rearrangement: A Unified Ring-Expansion Approach to α-Methylene-γ-butyrolactones. Angew. Chem. Int. Ed. 2021, 60, 4221–4230. [Google Scholar] [CrossRef]
- Evans, M.A.; Morken, J.P. Asymmetric Synthesis of (−)-Dihydroxanthatin by the Stereoselective Oshima—Utimoto Reaction. ChemInform 2005, 36, 3371–3373. [Google Scholar] [CrossRef]
- Kummer, D.A.; Brenneman, J.B.; Martin, S.F. Application of a Domino Intramolecular Enyne Metathesis/Cross Metathesis Reaction to the Total Synthesis of (+)-8-e pi-Xanthatin. Org. Lett. 2005, 7, 4621–4623. [Google Scholar] [CrossRef]
- Yokoe, H.; Yoshida, M.; Shishido, K. Total synthesis of (−)-xanthatin. Tetrahedron Lett. 2008, 49, 3504–3506. [Google Scholar] [CrossRef]
- Yokoe, H.; Noboru, K.; Manabe, Y.; Yoshida, M.; Shibata, H.; Shishido, K. Enantioselective Synthesis of 8-epi-Xanthatin and Biological Evaluation of Xanthanolides and Their Derivatives. Chem. Pharm. Bull. 2012, 60, 1340–1342. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Bian, Y.; Zhang, Z.; Shang, H.; Zhang, P.; Chen, Y.; Yang, Z.; Luo, T.; Tang, Y. Enantioselective and Collective Syntheses of Xanthanolides Involving a Controllable Dyotropic Rearrangement of cis-β-Lactones. Angew. Chem. 2012, 124, 7090–7094. [Google Scholar] [CrossRef]
- Matsumoto, K.; Koyachi, K.; Shindo, M. Asymmetric total syntheses of xanthatin and 11,13-dihydroxanthatin using a stere-ocontrolled conjugate allylation to γ-butenolide. Tetrahedron 2013, 69, 1043–1049. [Google Scholar] [CrossRef]
- Ro, D.-K.; Paradise, E.M.; Ouellet, M.; Fisher, K.J.; Newman, K.L.; Ndungu, J.M.; Ho, K.A.; Eachus, R.A.; Ham, T.S.; Kirby, J.; et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006, 440, 940–943. [Google Scholar] [CrossRef]
- Kumeta, Y.; Ito, M. Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol. 2010, 154, 1998–2007. [Google Scholar] [CrossRef] [Green Version]
- Markus Lange, B.; Turner, G.W. Terpenoid biosynthesis in trichomes—Current status and future opportunities. Plant Biotech-Nology J. 2013, 11, 2–22. [Google Scholar] [CrossRef]
- Soetaert, S.S.; Van Neste, C.M.; Vandewoestyne, M.L.; Head, S.R.; Goossens, A.; Van Nieuwerburgh, F.C.; Deforce, D.L. Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua. BMC Plant Biol. 2013, 13, 220. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, F.; Li, Z.; Li, C.; Zhang, Y. Identification and Functional Characterization of Sesquiterpene Synthases from Xanthium strumarium. Plant Cell Physiol. 2016, 57, 630–641. [Google Scholar] [CrossRef]
No. | Compounds | Plant Resource | Parts of Plant | Reference |
---|---|---|---|---|
1 | xanthatin | Xanthium cavanillesii | Aerial parts | [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24] |
Xanthium italicum | Leaves | |||
Xanthium macrocarpum | Leaves | |||
Xanthium macrocarpum | Fruits | |||
Xanthium orientale | Aerial parts | |||
Xanthium pennsylvanicum | Leaves | |||
Xanthium spinosum | Fruits Aerial parts | |||
Xanthium strumarium | Aerial parts | |||
2 | 8-epi-Xanthatin | Xanthium pungens | Aerial parts | [19,25,26,27,28,29,30,31,32,33] |
Xanthium spinosum | Fruits Aerial parts | |||
Xanthium strumarium | Aerial parts | |||
Xanthium brasilicum | Aerial parts | |||
Xanthium indicum | Aerial parts | |||
3 | xanthatin-1b,5b-epoxide | Xanthium spinosum | Fruits Aerial parts | [18,23] |
4 | 8-epi-xanthatin-1b, 5b-epoxide | Xanthium pungens | Aerial parts | [26,28,30,32,33,34,35,36,37,38] |
Xanthium strumarium | Aerial parts | |||
Xanthium brasilicum | Aerial parts | |||
5 | 6b,9b-Dihydroxy-8- epi-xanthatin | Xanthium strumarium | Aerial parts | [39] |
6 | xanthatin-1a,5a-epoxide | Xanthium spinosum | Fruits Aerial parts | [14,18,40] |
Xanthium strumarium | Aerial parts | |||
7 | 11a,13-Dihydro-8- epi-xanthatin | Xanthium catharticum | Whole plant | [41] |
8 | 11a,13-dihydroxanthatin | Xanthium strumarium | Aerial parts | [14] |
9 | 11a,13-dihydroxyxanthatin | Xanthium strumarium | Aerial parts | [19] |
10 | 11a,13-dihydro-8-epi- xanthatin-1a,5a-epoxide | Xanthium catharticum | Whole plant | [41] |
11 | 11a,13-dihydro-8-epi- xanthatin-1b,5b-epoxide | Xanthium catharticum | Whole plant | [28,38,41] |
Xanthium cavanillesii | Aerial parts | |||
Xanthium strumarium | Aerial parts | |||
12 | tomentosin | Xanthium strumarium | Aerial parts | [26,28,30,36,42,43,44,45,46,47,48,49,50,51] |
Xanthium indicum | Aerial parts | |||
Xanthium pungens | Aerial parts | |||
13 | 4-epi-xanthanol | Xanthium italicum | Leaves | [14,20,21,24,52] |
Xanthium macrocarpum | Leaves | |||
Xanthium macrocarpum | Fruits | |||
Xanthium strumarium | Aerial parts | |||
14 | Xanthinin | Xanthium italicum | Leaves | [10,11,15, 21,22,23,40,53,54,55,56] |
Xanthium macrocarpum | Fruits | |||
Xanthium orientale | Aerial parts | |||
Xanthium pennsylvanicum | Leaves | |||
Xanthium spinosum | Fruits Aerial parts | |||
Xanthium strumarium | Aerial parts | |||
15 | xanthanol | Xanthium spinosum | Fruits Aerial parts | [13,15,23,25,53] |
Xanthium strumarium | Aerial parts | |||
Xanthium strumarium subsp. italicum | Aerial parts | |||
Xanthium cavanillesii | Aerial parts | |||
Xanthium italicum | Leaves | |||
16 | isoxanthanol | Xanthium italicum | Leaves | [15,16,23,25,53] |
Xanthium spinosum | Fruits Aerial parts | |||
Xanthium strumarium | Aerial parts | |||
17 | 4-epi-Isoxanthanol | Xanthium italicum | Leaves | [20,21,24,52] |
Xanthium strumarium | Aerial parts | |||
Xanthium strumarium subsp. italicum | Aerial parts | |||
18 | 2-oxo-4-O-acetyl-desacetylxanthanol | Xanthium spinosum | Fruits Aerial parts | [23] |
19 | 2-hydroxytomentosin-1b,5b-epoxide | Xanthium strumarium | Aerial parts | [25] |
20 | Xanthumin | Xanthium brasilicum | Aerial parts | [25,26,28,30,53,54] |
Xanthium strumarium | Aerial parts | |||
Xanthium chasei, Xanthium chinense | Leaves | |||
Xanthium indicum | Aerial parts | |||
21 | 2-epi-xanthumin | Xanthium indicum | Aerial parts | [30] |
22 | xanthinosin | Xanthium cavanillesii, | Aerial parts | [12,13,14,15,16,17] |
Xanthium italicum, | leaves | [21,36,42,43,57,58] | ||
Xanthium macrocarpum | Fruits | |||
Xanthium orientale | Aerial parts | |||
Xanthium spinosum | Fruits Aerial parts | |||
Xanthium strumarium | Aerial parts | |||
23 | 2-hydroxyxanthinosin | Xanthium italicum | Leaves | [13,20,21,23,36] |
Xanthium macrocarpum | Fruits | |||
Xanthium spinosum | Fruits Aerial parts | |||
Xanthium cavanillesii | Aerial parts | |||
24 | 4-hydroxyxanthinosin | Xanthium macrocarpum, Xanthium strumarium subsp. italicum | Fruits, Aerial parts | [16,21,52] |
25 | Ivalbin | Xanthium spinosum | Fruits Aerial parts | [18,47,59,60] |
26 | Xanthumanol | Xanthium strumarium | Aerial parts | [37] |
27 | 2-Desacetyl-8-epi- xanthumanol-4-O-b-D- galactopyranoside | Xanthium spinosum | Fruits Aerial parts | [61] |
28 | anhydrodehydroivalbin | Xanthium spinosum | Fruits Aerial parts | [23] |
29 | 4-O-dihydroinusoniolide | Xanthium strumarium subsp. italicum | Aerial parts | [52,62] |
30 | 2-O-b-D-Glucopyranosyl-11a,13-dihydro-8- epi-deacetylxanthiuminol | Xanthium spinosum | Fruits Aerial parts | [63] |
31 | 4-O-b-D-glucopyranosyl-11a,13-dihydro-8- epi-deacetylxanthiuminol | Xanthium spinosum | Fruits Aerial parts | [63] |
32 | 15-chloro-2-epi-xanthanol | Xanthium strumarium | Aerial parts | [37] |
33 | 4b,5b-epoxyxanthatin-1a, 4a-endoperoxide | Xanthium strumarium | Aerial parts | [14] |
34 | 2-acetoxy-4,5- epoxyxanthanolide- 1,4-endoperoxide | Xanthium pungens | Aerial parts | [28,64] |
Xanthium strumarium | Aerial parts | |||
35 | pungiolide A | Xanthium brasilicum | Aerial parts | [19,28,33,65] |
Xanthium pungens | Aerial parts | |||
Xanthium spinosum | Fruits Aerial parts | |||
Xanthium strumarium | Aerial parts | |||
36 | pungiolide B | Xanthium brasilicum | Aerial parts | [28,33] |
Xanthium pungens | Aerial parts | |||
Xanthium strumarium | Aerial parts | |||
37 | 2-hydroxytomentosin | Xanthium strumarium | Aerial parts | [28,30,36,37,38,66] |
Xanthium cavanillesii | Aerial parts | |||
Xanthium indicum | Aerial parts | |||
Xanthium pungens | Aerial parts | |||
38 | Xanthanoltrimer A | Xanthium italicum Moretti | Fruits | [67] |
39 | Xanthanoltrimer B | Xanthium italicum Moretti | Fruits | [67] |
40 | Xanthanoltrimer C | Xanthium italicum Moretti | Fruits | [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, R.; Jin, L.; Pan, L.; Lei, D. Xanthanolides in Xanthium L.: Structures, Synthesis and Bioactivity. Molecules 2022, 27, 8136. https://doi.org/10.3390/molecules27238136
Zhang J, Zhao R, Jin L, Pan L, Lei D. Xanthanolides in Xanthium L.: Structures, Synthesis and Bioactivity. Molecules. 2022; 27(23):8136. https://doi.org/10.3390/molecules27238136
Chicago/Turabian StyleZhang, Jiaojiao, Rongmei Zhao, Lu Jin, Le Pan, and Dongyu Lei. 2022. "Xanthanolides in Xanthium L.: Structures, Synthesis and Bioactivity" Molecules 27, no. 23: 8136. https://doi.org/10.3390/molecules27238136
APA StyleZhang, J., Zhao, R., Jin, L., Pan, L., & Lei, D. (2022). Xanthanolides in Xanthium L.: Structures, Synthesis and Bioactivity. Molecules, 27(23), 8136. https://doi.org/10.3390/molecules27238136